

Simple and Efficient Concurrent Data
Structures via Batch Parallelism

Le Nguyen Phong

Capstone Final Report for BSc (Honours) in

Mathematical, Computational and Statistical Sciences

Supervised by: Dr. Ilya Sergey

AY 2023/2024

Yale‐NUS College Capstone Project

DECLARATION & CONSENT

1. I declare that the product of this Project, the Thesis, is the end result of my own work and that

due acknowledgement has been given in the bibliography and references to ALL sources be they
printed, electronic, or personal, in accordance with the academic regulations of Yale‐NUS College.

2. I acknowledge that the Thesis is subject to the policies relating to Yale‐NUS College Intellectual
Property (Yale‐NUS HR 039).

ACCESS LEVEL

3. I agree, in consultation with my supervisor(s), that the Thesis be given the access level specified

below: [check one only]

 Unrestricted access
Make the Thesis immediately available for worldwide access.

 Access restricted to Yale‐NUS College for a limited period
Make the Thesis immediately available for Yale‐NUS College access only from _____________
(mm/yyyy) to _______________ (mm/yyyy), up to a maximum of 2 years for the following
reason(s): (please specify; attach a separate sheet if necessary):
___.

After this period, the Thesis will be made available for worldwide access.

 Other restrictions: (please specify if any part of your thesis should be restricted)

Name & Residential College of Student

___________________________________ __________________________
Signature of Student Date

___________________________________ __________________________
Name & Signature of Supervisor Date

Nguyen Phong Le, Cendana College

07/04/2024

Ilya Sergey 7 April 2024

i

ii

Acknowledgements
I would like to first and foremost extend my heartfelt gratitude to Prof.

Ilya Sergey. I am grateful for his wisdom and unending patience during

this capstone project and beyond. He initiated me to the world of con-

current and parallel programming during my third year, and has been

guiding me ever since.

To Prof. Seth Gilbert and Kiran, thank you for your valuable input and

help throughout this past year. Your wealth of knowledge and experience

never ceased to astound me, and this project would not have come to

fruition without you.

To my RCA mates - Dylan, Ethan, Nihal, Katif, Jesse, Julene, Wei Lin,

Angeline, Danan, Sherrill, Yejin, and Mayuko. You made Yale-NUS Col-

lege feel like home and accepted me in full for who I am. No words can

describe how grateful I am to have met all of you.

And to all of my friends at Yale-NUS College, thank you for making

my four years of college such a memorable experience.

iii

YALE-NUS COLLEGE

Abstract

B.Sc (Hons)

Simple and Efficient Concurrent Data Structures via Batch Parallelism

by Nguyen Phong LE

Designing a concurrent data structure can be challenging. Usually, the

choice is between coarse-grained concurrency, which is simple to design

and implement but does not perform well with higher numbers of threads,

and fine-grained concurrency, which promises better performance but is

notoriously difficult to implement. In this paper, we propose a system-

atic methodology to derive simple yet performant concurrent data struc-

ture based of the concept of batch parallelism - processing operations in

batches and parallelising operations within a batch. Our principal contri-

butions are two batch parallelisation strategies, rendered as OCaml func-

tors, along with detailed case studies and evaluations of sequential data

structures made concurrent using these strategies.

HTTPS://WWW.YALE-NUS.EDU.SG/

iv

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 Concurrent Data Structures are Hard 1

1.2 Batch Parallelism to the Rescue 3

1.3 Contributions . 4

2 Background 5

2.1 A Quick Introduction to OBatcher 5

2.2 Improving OBatcher . 6

2.2.1 A Better Container 6

2.2.2 Minimum Batch Size and Timer 8

2.2.3 Waiting for Batch Processing 9

2.3 Concurrent Data Structures at a Glance 9

3 Batching with Split-Join Strategy 12

3.1 A Functor for Split-Join Batching 13

3.2 Case Study: Red-Black Tree 18

3.2.1 Sequential Red-Black Tree Overview 19

3.2.2 Batch Parallel Red-Black Tree Overview 20

v

3.3 Other Split-Join Data Structures 21

4 Batching with Expose-Repair Strategy 22

4.1 Expose-Repair Functor Overview 23

4.2 Case Study: van Emde Boas Tree 27

4.2.1 Sequential van Emde Boas Tree Overview 28

4.2.2 Batch Parallel van Emde Boas Tree Overview 29

4.3 Other Expose-Repair Data Structures 30

5 Experiments 32

5.1 General Performance Trends 33

5.2 Concurrent Searching in an X-Fast Trie 34

5.3 Comparison With a Fine-Grained Skip List 35

6 Discussion and Future Work 36

6.1 Bechmarking Matters . 36

6.2 Split-Join and Expose-Repair Functors 37

7 Conclusion 38

Bibliography 39

A Benchmark Results for Batch Parallel Data Structures 42

vi

List of Figures

2.1 OBatcher functor for direct-style structure. 5

2.2 Type t for implicitly batched structures. 6

3.1 Example of splitting (left) and joining (right) a binary tree. 13

3.2 The Sequential module signature for the split-join functor. 14

3.3 The Prebatch module signature for the split-join functor. . 15

3.4 Split-join parallel batching. 16

3.5 Batch-parallel insertion for split-join. 17

3.6 Example of a red-black tree. 19

4.1 The Sequential module signature for the expose-repair

functor. 24

4.2 The Prebatch module signature for the expose-repair func-

tor. 24

4.3 Batch-parallel insertion in the expose-repair functor. 25

4.4 A vEB tree containing {0, 1}. 28

4.5 The vEB tree expose function. 29

4.6 X-fast trie and Y-fast tries. For the x-fast trie in Figure 4.6a,

solid double arrows indicate pointers from each leaf to the

previous and the next leaf, while dashed single arrows in-

dicate descendant pointers. 30

vii

A.1 Throughput comparison for the batch-parallel red-black

tree from Chapter 3. 42

A.2 Throughput comparison for the batch-parallel AVL tree from

Chapter 3. 43

A.3 Throughput comparison for the batch-parallel treap from

Chapter 3. 43

A.4 Throughput comparison for the batch-parallel van Emde

Boas tree from Chapter 4. 44

A.5 Throughput comparison for the batch-parallel x-fast trie

from Chapter 4. 44

A.6 Throughput comparison for the batch-parallel y-fast trie

from Chapter 4. 45

A.7 Throughput comparison for the batch-parallel skip list. . . 45

1

Chapter 1

Introduction

“Send help.”

A student taking PCDP, probably

1.1 Concurrent Data Structures are Hard

Multicore processors are extremely common today, allowing multiple

computing workloads to be spread out as threads among many cores and

executed in parallel (multiprocessing), thus shortening overall computa-

tion time relative to simply running them sequentially on a single core.

However, it is rare that these workloads are entirely independent of each

other. Indeed, in most multi-threaded applications, they frequently ac-

cess and update shared data, and these reads and writes need to be prop-

erly synchronised to avoid problems like data races that can result in loss

of data or even an invalid state for the data structure in question.

Therefore, designing a thread-safe, concurrent data structure is crucial

Chapter 1. Introduction 2

for taking advantage of multiprocessing. Given a sequential data struc-

ture, we can take one of two routes to create a concurrent implementa-

tion. One is coarse-grained concurrency, which involves using a lock to en-

sure mutually exclusive access to a data structure. This means that only

one thread can acquire the lock and access the underlying sequential data

structure at any given time. This approach comes with the advantage of

simplicity, as the process for implementing coarse-grained concurrency

is nearly the same for all data structures and is thus largely mechanical.

However, this also means that all operations involving a coarse-grained

data structure are effectively sequential, and we do not get any speed-up

from parallel processing within the data structure itself. This approach

can also result in slowdowns for higher numbers of cores as lock con-

tention increases and more parallel threads compete for a single lock.

The other approach is fine-grained concurrency, where we discard the

global lock in favour of a more granular design, where various opera-

tions on the data structures are carefully considered and implemented

such that, where they might overlap, the end result remains correct. This

can mean, for example, a greater reliance on atomic operations like com-

pare and swap, and only using locks sparingly and on select portions

of the data structure. This allows us to take advantage of multiprocess-

ing to execute operations on the data structures in parallel, resulting in

better performance and scaling for higher numbers of cores. However,

fine-grained concurrent data structures are notoriously hard to design

and implement, due to their sheer complexity and the non-deterministic

nature of data races that may arise (Herlihy and Shavit, 2008).

There is space then for an approach that takes the best of both worlds

Chapter 1. Introduction 3

- a way to create concurrent data structures that enable parallel opera-

tions while not incurring the design cost of a full-blown fine-grained data

structure. Batch parallelism promises to be one such approach.

1.2 Batch Parallelism to the Rescue

Like its name suggests, batch-parallel data structures process operations

in batches. The intuition behind such an approach is that it is easier to

parallelise a batch of known operations than random operations as they ar-

rive. However, creating such an explicit batch of operations is highly in-

convenient and greatly complicates the interface of the data structure, as

the onus is on the client to properly gather such operations into a single

batch. We call this approach explicit batching.

To solve this problem, Agrawal et al. (2014) proposed implicit batch-

ing, where the batching of operations is abstracted away from the user by

means of a custom scheduler, leaving only a direct interface that can be

used to interact with the batch-parallel data structure just like any other

concurrent data structure. However, as presented, this method requires

invasive modification of the implementation language’s runtime sched-

uler, which can hardly be called trivial, and can only accomodate a single

data structure per application, making its usefulness limited.

More recently, Lee (2023) proposed a way to implement implicit batch-

ing using common concurrent progamming primitives, namely async

and await - scheduling a task asynchronously, then wait for its result

elsewhere. They presented OBatcher, a library for Multicore OCaml that

provides an interface for implementing multiple batch-parallel structures

per application, without the need for modifying the runtime scheduler.

Chapter 1. Introduction 4

However, there is still no set blueprint for implementing batch-parallel

data structures, and even with the interface provided by OBatcher, im-

plementing one is still a less-than-trivial task. We propose in this paper

a way to make this “batch parallelisation” more mechanical for certain

classes of sequential data structures.

1.3 Contributions

More concretely, our contributions in this paper consist of the following:

1. Some improvements and fixes to the original OBatcher (Chapter 2).

2. Two patterns for implementing batch-parallel data structures, con-

cretised as two ready-to-use OCaml functors for OBatcher. We first

present the split-join functor, along with batch-parallel versions of

the red-black tree, the AVL tree, and the treap implemented using

it (Chapter 3). We follow this with the expose-repair functor, and

batched parallel versions of the van Emde Boas tree, the x-fast trie,

and the y-fast trie (Chapter 4).

3. A comprehensive evaluation of the performance of the above batch-

parallel data structures, where we demonstrate that they perform

favourably against their coarse-grained counterparts (Chapter 5).

All relevant code and usage instructions are available online.1

1https://github.com/phongulus/obatcher/tree/paper-artefact

https://github.com/phongulus/obatcher/tree/paper-artefact

5

Chapter 2

Background

2.1 A Quick Introduction to OBatcher

OBatcher is a new library for Multicore OCaml (OCaml 5), conceived and

implemented by Lee (2023), with the goal of enabling users to instantiate

implicitly batched data structures that can be interacted with via a sim-

ple direct style interface (e.g. a simple apply t (Search k) to search for

some key k in the implicitly batched data structure t).

OBatcher is implemented on top of Domainslib, an OCaml library that

provides support for nested parallel programming, and await/async prim-

itives for creating parallel tasks and waiting for their results. These fea-

tures are central to the implementation of OBatcher.

OBatcher provides the ability to create batched data stucture via the

module Make : functor (S : Batched) -> sig
type t
type 'a op = 'a S.op
val init : pool -> t
val apply : t -> 'a op -> 'a

end

FIGURE 2.1: OBatcher functor for direct-style structure.

Chapter 2. Background 6

functor shown in Figure 2.1. A functor in OCaml is essentially a param-

eterised module - in this example, given some explicitly batched data

structure implemented as a module S of type Batched, the functor Make

creates a new module containing the implicitly batched implementation

with the types and functions in Figure 2.1.

The keen reader will have realised that given such an interface, the

user will need to implement an explicitly batched version of the to-be-

batch-parallelised data structure themselves. Even with the benefit of

processing a batch of known operations rather than random operations,

converting a sequential data structure into an explicitly batched one can

still be a non-trivial task. We dedicate the bulk of this project to further

simplifying this process by finding patterns for some data structures and

implementing them as functors - but before that, we cover some more

minor fixes and optimisations that we contributed to OBatcher.

2.2 Improving OBatcher

2.2.1 A Better Container

type t = {

data:

(* underlying data type *) ;

container: Container.t;

is_running: bool Atomic.t

pool: Task.pool

last_time: float }

FIGURE 2.2: Type t for implic-
itly batched structures.

The type t in Figure 2.1 is essen-

tially a wrapper extending the input

data structure with additional con-

structs needed for implicit batching.

As we can see from Figure 2.2, in ad-

dition to the underlying data struc-

ture, we have a container where

pending operations are collected, an

Chapter 2. Background 7

atomic boolean is_running to check whether a batch of operations is

currently being executed or not, and the thread pool pool provided by

Domainslib for scheduling tasks. We will elaborate on last_time later.

Let us focus on container. It should be thread-safe and be able to ac-

commodate multiple threads submitting and extracting operations to and

from it. Any thread-safe channel with queue and dequeue functionality

can be used as a container for the batched operations, and Domainslib

does provide such a channel, used by the initial version of OBatcher.

However, we note, firstly, that we do not need the elements inside to

be ordered - in other words, we do not care about which operations are

submmitted first. Following the principle of linearisability, we can execute

operations in any order, as long as the end result is as if we performed all

our concurrent operations in some sequential order (Herlihy and Wing,

1990). Secondly, we will never need to dequeue anything less than all

elements, as whenever we want to process a batch of operations, we can

simply take every pending operations currently in the container.

Hence, our first improvement to OBatcher is replacing the current

channel-based container with a variation of a thread-safe lock-free stack

(Treiber, 1986) to use as container that strips away all but two operations:

push, which appends atomically to a list, and pop_all, which can be im-

plemented with a simple atomic exchange operation. This version of the

container removes the expensive list reversal logic for maintaining a first-

in-first-out queue, and avoids the need to dequeue operations one by one

from the container, thereby improving performance.

Chapter 2. Background 8

2.2.2 Minimum Batch Size and Timer

When a client task submits an operation to the container, a try_launch

function is called to start execution of the batch. If launching the batch

is sucessful, the task in question is effectively promoted to a worker that

takes all elements currently present in the operations container and starts

the parallel processing of the batched operations. Otherwise, the opera-

tion is submitted to the container and the task simply waits until a later

batch is launched that would perform the submitted operation.

In its initial implementation, OBatcher will attempt to launch a batch

as soon as it verifies that there is no batch currently being processed and

that the number of pending operations in the container is non-zero. How-

ever, this can result in very small batch sizes and thus increased batcher

overhead relative to the actual number of operations being performed.

Our second improvement to OBatcher is implementing a minimum

batch size to avoid such small batch sizes. To avoid a situation where a

small number of pending requests are never run, we also set a maximum

duration that a batched data structure can remain idle after the last batch

run - this timestamp is stored in the last_run field of the batched data

structure type t (Figure 2.2).

Furthermore, should the minimum amount of pending requests not

be met and not enough time has passed since the last run, we do not sim-

ply exit or spin, but instead we schedule another task to try launching the

batch again later. This ensures that we will not be deadlocked by a small

number of operations not being serviced and that the current thread will

not waste spin cycles waiting either.

Chapter 2. Background 9

2.2.3 Waiting for Batch Processing

Our last change to OBatcher is a fix to enable more accurate benchmarks.

When we submit an operation to the batch, we also submit a callback func-

tion that would be invoked once the operation takes effect or when any

subsequently submitted operation is guaranteed to take effect after that

first operation. This callback function fulfills a promise that the submit-

ting task is waiting on after sending the operation to the batcher. When

processing a batch of insert operations, we invoke the callback function

immediately as there is no need to wait for any return value, and any

operation submitted next will be processed on the next batch run.

While this behaviour is correct under normal circumstances, in Lee

(2023)’s OBatcher, this is slightly problematic for benchmarking as the

main task running the benchmarking logic can resume and end the bench-

mark timer before the current batch of opearations is finished. To work

around this, we supplement OBatcher with a wait_for_batch function

that blocks the main task - the one with benchmarking logic - until all

operations are finished.

2.3 Concurrent Data Structures at a Glance

We conclude this chapter with a brief overview of the state of concurrency

research for the data structures that we are studying in this project: the

red-black tree, the AVL tree, the treap, the van Emde Boas tree, the x-fast

trie, and the y-fast trie.

The first three are variations of the balanced binary tree. Among them,

the red-black tree and the AVL tree are especially well-known as standard

Chapter 2. Background 10

textbook data structures. Accordingly, there are already fine-grained con-

current implementations for them - for example, the concurrent imple-

mentation of AVL trees by Ellis (1980b), or the concurrent 2-3 tree (equiv-

alent to a red-black tree), also by Ellis (1980a). We do not intend to com-

pete with these fine-grained implementations in terms of performance,

but rather show that through using our batching patterns, we can get a

reasonable performance improvement over coarse-grained implementa-

tions at a fraction of the design cost.

The van Emde Boas tree, the x-fast trie, and the y-fast trie are sub-

logarithmic search data structures, meaning that they enable queries in

less than O(log n) time. These, while present in some textbooks (Cormen

et al., 2009), are not as widely used and less work have been done to port

them to a concurrent setting. To our knowledge, the closest known con-

current data structure to an x-fast or y-fast trie is the SkipTrie by Oshman

and Shavit (2013). The van Emde Boas trie, meanwhile, only recently re-

ceived its first concurrent implementation by Gu et al. (2023) - again, to

the best of our knowledge.

Given the state of affairs, we can see the challenge with properly im-

plementing concurrent, fine-grained versions of the above data struc-

tures. Therefore, our primary motivation is to show that it is possible

to go around all this complexity and systematically derive batch-parallel

versions from the original sequential data structure, with reasonably good

performance. One of this work’s key observations is that, for certain

classes of sequential search structures, it is possible to identify implemen-

tation strategies that streamline the development of their batch-parallel

Chapter 2. Background 11

counterparts. In the following sections, we showcase two such strate-

gies, embodied by OCaml functors: so-called split-join (Chapter 3) for the

red-black tree, the AVL tree, and the treap; and expose-repair (Chapter 4)

for the van Emde Boas tree, the x-fast trie, and the y-fast trie. We note

that the case studies we describe here are limited to search data struc-

tures that implement maps and ordered sets, and we do not claim that

our implementations are optimal in the theoretical sense. We leave such

proofs for future work.

12

Chapter 3

Batching with Split-Join Strategy

The first batch parallelism strategy we explore is based on the idea of

splitting and joining by Blelloch, Ferizovic, and Sun (2016). It is effec-

tive for various kinds of search structures represented as balanced binary

trees, such as AVL trees, red-black trees, and treaps, that allow one to

divide them into multiple non-connected trees that are themselves valid

instances of that tree type. We can then perform insertion/deletion op-

erations on each of these sub-divided trees independently and in paral-

lel, before joining them together again to get the final tree after all op-

erations have been performed. This idea has been previously explored

in the works by Akhremtsev and Sanders (2016) and by Sanders et al.

(2019), termed “bulk updates” or “bulk operations”, albeit not with the

goal to derive efficient concurrent data structures, but as an optimisation

for performing a large number of simultaneous updates on trees.

The crux of the approach is in splitting a tree instance in a way that

combining the resulting sub-components after the parallel updates can be

done with better than O(n) complexity. In the case of binary search trees,

a better complexity could be achieved if we can join trees pair-wise where

the maximum key element in the first tree, if any, is strictly less than the

Chapter 3. Batching with Split-Join Strategy 13

10

Inserting array [10, 6, 11, 1, 18, 8]Inserting arrays

[6, 1, 8] [11, 10, 18]

8 18

11

1

66

81

11

1810

FIGURE 3.1: Example of splitting (left) and joining (right) a
binary tree.

minimum key element in the second tree, so the range of keys of these

trees do not overlap with each other. This would allow us not to explore

those trees in full when joining, as hinted by the example in Figure 3.1,

where most of the subtree structure remains unchanged. To achieve that,

we adopt ideas from the work of Blelloch, Ferizovic, and Sun (2016), who

were themselves elaborating on the work of Adams (1993) on implement-

ing elegant yet efficient functional sets. They proved that split and join

for balanced binary trees, such as red-black trees, AVL trees, and treaps,

can have a worst-case time complexity of O(log n). In this scheme, join-

ing two balanced binary trees consists of connecting them, comparing

their balancing factor (i.e., height for AVL trees, black height for red-black

trees, and priority for treaps), and rebalancing them, if needed, by dis-

connecting root nodes from child nodes and applying rotations. Splitting

applies a similar rebalancing strategy. Both these functions are called re-

cursively only once per level, hence their logarithmic complexity.

3.1 A Functor for Split-Join Batching

To provide a convenient abstract interface for split/join batch parallelism,

we define two modules signatures, Sequential (Figure 3.2) and Prebatch

Chapter 3. Batching with Split-Join Strategy 14

module type Sequential = sig
type kt
type 'a t
val init : unit -> 'a t
val search : kt -> 'a t -> 'a option
val insert : kt -> 'a -> 'a t -> unit
val delete : kt -> 'a t -> unit

end

FIGURE 3.2: The Sequential module signature for the
split-join functor.

(Figure 3.3), that outline the required data types and functions to be pro-

vided by the user.

Sequential must contain the key type kt and the tree type 'a t, as

well as an implementation of the constructor init for creating a new data

structure instance, and the query and update operations search, insert,

and delete. Note that update operations should be done in-place, hence

the final return type of ‘unit‘. We also do not require 'a t to be the type

of the “node”; it is often more convenient to make it a wrapper over a root

node of a different type that recursively contains child nodes of that node

type. The users are expected implement Sequential by defining all basic

sequential operations that can be used to interface with the data struc-

ture. Should there be no need for concurrency, one can simply invoke the

functions here to use the data structure sequentially.

Prebatch is built on top of the Sequential module signature, and de-

scribes additional functions that the split-join functor will need to con-

struct the batch-parallel version of the data structure:

• The function compare exposes the comparison function for the key

type. For example, if we were using Int as the key type, we can

simply define it like so: let compare = Int.compare.

Chapter 3. Batching with Split-Join Strategy 15

module type Prebatch = sig
module S : Sequential
val compare : S.kt -> S.kt -> int
val set_root : 'a S.t -> 'a S.t -> unit
val size_factor : 'a S.t -> int
val split : 'a S.t -> S.kt -> 'a S.t * 'a S.t
val join : 'a S.t -> 'a S.t -> 'a S.t

end

FIGURE 3.3: The Prebatch module signature for the split-
join functor.

• set_root swaps out the current root of the data structure. This is

needed for updating the data structure in-place after joining its sub-

components.

• size_factor returns a number that approximates the size of the

current data structure. For instance, this can be the height of a tree.

We will describe its use shortly.

• split: given a tree and a pivot value k, returns two trees with non-

overlapping key ranges where the maximum key of the first tree is

strictly less than k, and the minimum key of the second tree is equal

or greater than k.

• join: provided two trees with non-overlapping key ranges and in

ascending order based on those ranges, returns a single valid tree

formed by joining the two input trees.

For each data structure that allows for efficient implementation of the

split and join operations, the user need only implement these two mod-

ules and their functions. Once done, OBatcher’s split-join functor can

take over and define an explicitly-batched module. Let us examine its

Chapter 3. Batching with Split-Join Strategy 16

let run_batch t pool ops_array =
let searches = ref [] in
let inserts = ref [] in
(* omitting deletions *)
Array.iter (fun elt -> match elt with
| Mk (Insert (key, vl), kont) ->

(* safe to notify the client immediately *)
kont (); inserts := (key,vl) :: !inserts

| Mk (Search key, kont) ->
searches := (key, kont) :: !searches

) ops_array;

par_search pool t (Array.of_list !searches);
par_insert pool t (Array.of_list !inserts)

FIGURE 3.4: Split-join parallel batching.

run_batch function define in Figure 3.4. For any given batch of opera-

tions, we start by separating different types of operations. We currently

limit our implementation to search and insert operations, but it should be

a fairly mechanical process to extend the functor to accommodate other

effectful operations as well, following the handling of batched searches

or inserts as a template. After separation, we execute all searches, then

all insertions. Even if we had interleaving search and insert requests in

our initial batch, executing the operations this way is still correct from

the perspective of linearisability, as we have discussed previously in Sec-

tion 2.2.1. There is no particular pre-processing needed for batch parallel

searches as those do not modify the data structure, and we simply use

Domainslib’s higher-order parallel_for function to dispatch the search

operations in parallel.

Parallel execution of inserts is slightly more subtle; it relies on the var-

ious Prebatch functions defined earlier. We begin by checking whether

(a) the present size of the data structure warrants splitting by invoking

Chapter 3. Batching with Split-Join Strategy 17

1 let par_insert ~pool s inserts =
2 let n =
3 Array.length inserts / seq_threshold + 1 in
4 (* assume that inserts are randomly ordered *)
5 let pivots =
6 Array.init n (fun i -> fst inserts.(i)) in
7 sort pivots;
8 let s_arr = split_multiple s pivots in
9 let sub_ranges =

10 partition pivots inserts in
11 parallel_for pool
12 ~start:0
13 ~finish:(Array.length sub_ranges)
14 ~body:(fun i ->
15 let range = sub_ranges.(i)
16 for j = fst range to snd range do
17 let k, v = inserts.(j) in
18 S.insert s_arr.(i) k v
19 done);
20 set_root t (join_multiple s_arr)

FIGURE 3.5: Batch-parallel insertion for split-join.

Chapter 3. Batching with Split-Join Strategy 18

size_factor and whether (b) the number of insert operations is suffi-

ciently high. We set some threshold for these two, with the intuition that

smaller data structure sizes and smaller numbers of operations are not

worth the overhead of splitting, parallelising, and rejoining, in which

case we will simply perform the operations sequentially (we omit this

part from our presentation). Otherwise, we perform the parallel insert

procedure as shown Figure 3.5. We select a number of random pivots

based on the size of the batch and the sequential threshold (lines 2-7),

and use them to split the tree (line 8) and partition the insert batch into or-

dered sub-batches (lines 9-10). We then use Domainslib’s parallel_for

to perform each sub-batch of operations on its respective subtree in par-

allel (lines 16-19). Finally, we rejoin the split trees together (line 20).

Our implementation takes advantage of some other opportunities for

parallelisation, namely, sorting the random pivots via a classic imple-

mentation of parallel merge sort, and partitioning the insertion opera-

tions with a parallel partition procedure inspired by the one used in the

QuickSort algorithm.

3.2 Case Study: Red-Black Tree

As a concrete example of the split-join strategy for batch parallelism and

its respective functor in action, let us take a look at the red-black (RB) tree

(Bayer, 1972), a classic self-balancing binary search tree data structure. In

addition to searching and insertion of elements, its typical implementa-

tions support efficient deletion, minimum, and maximum—all of them

enjoying logarithmic worst-case time complexity.

Chapter 3. Batching with Split-Join Strategy 19

116

10

1881

FIGURE 3.6: Example of a red-black tree.

3.2.1 Sequential Red-Black Tree Overview

A red-black tree is an approximately balanced binary search tree, meaning

that it is not perfectly balanced, but instead guarantees that no root-to-

leaf path is more than twice as long as any other root-to-leaf path. This

is achieved by assigning each node a colour, which can be either red or

black, and ensuring that the following invariants are upheld: (1) every

leaf (not containing any key) is black, (2) if a node is red, both its im-

mediate children must be black, and (3) each path from a given node to

any leaf must have the same black height, i.e., the same number of black

nodes. Some presentations also add an extra condition: the root node

must be black. We omit this rule for our implementation, as it is not es-

sential for the desired time complexity, and we must allow a red root for

the split and join functions later. Aside from this omission, our imple-

mentation follows the red-black tree algorithms as described by Cormen

et al. (2009). Figure 3.6 shows the balanced binary tree that we have pre-

viously seen in Figure 3.1, but as a red-black tree, with its nodes coloured

in black and red, and respecting the tree invariants stated above.

Chapter 3. Batching with Split-Join Strategy 20

Following the Sequential signature from Figure 3.2, whose effectful

functions (e.g., insert) modify the data structure in-place, we implement

a wrapper type 'a t around the root node of the red-black tree. Searching

a red-black tree follows the same procedure as for an unbalanced binary

search tree. Inserting a node involves recursively traversing the tree and

adding a new node at the leaf level, after which the tree can be repaired

by recolouring and rotating as needed (we refer the reader to Chapter 13

of the textbook by Cormen et al. (2009) for the details).

3.2.2 Batch Parallel Red-Black Tree Overview

The logic of a batch-parallel red-black tree follows the general split-join

strategy from Section 3.1, requiring one to implement the set_root,

size_factor, split, and join functions to obtain a fully functional batch-

parallel version of the data structure.

The set_root function is straightforward: we simply replace the root

node in the red-black tree wrapper type. For the sake of other func-

tions, we augment our sequential implementation with an additional

piece of information stored in each node: the black height, i.e., the number

of black nodes on the paths from that node to each leaf (Blelloch, Feri-

zovic, and Sun, 2016). This will serve as the basis for the size_factor

function: we can use the black height as an estimate of the size of the

tree. This addition also enables implementations of split and join op-

erations. For these functions, we faithfully recreate the algorithms as

described in pseudocode by Blelloch, Ferizovic, and Sun (2016), where

rebalancing and recolouring occur depending on the black height differ-

ence between the input trees. Storing black heights avoids the additional

Chapter 3. Batching with Split-Join Strategy 21

O(log n) cost of counting the number of black nodes every time we need

this information, hence keeping split and join to O(log n) time com-

plexity as well.

3.3 Other Split-Join Data Structures

As shown, balanced binary search trees are especially well-suited for the

split-join batch-parallel paradigm, subject to their own split and join

functions. Blelloch, Ferizovic, and Sun (2016) also provide blueprints of

these functions for other types of search structures: AVL trees (Adelson-

Velsky and Landis, 1962) and treaps (Seidel and Aragon, 1996).

Like an RB tree, an AVL tree balances itself through rotations. It does

not have any colour code, and instead preserves the invariant that at any

given node in the tree, its left and right sub-trees have a height difference

of at most one. A treap, meanwhile, is a probabilistically balanced tree

where each node is randomly assigned a priority number, and we rotate

the tree after each update to ensure that the priority number of each node

is higher than the prioriy numbers of its child nodes, essentially, recreat-

ing a max heap based on the random priority number.

We implement their batch-parallel versions just like with the RB tree

by defining their split and join functions as described by Blelloch, Fer-

izovic, and Sun (2016). To implement the size_factor function, we sim-

ply use the tree height already stored in AVL tree nodes, and augment

the treap nodes with stored tree heights as well.

22

Chapter 4

Batching with Expose-Repair

Strategy

The split-join strategy discussed in Chapter 3 is beneficial for search struc-

tures that admit sublinear-time changes in their shape without breaking

their invariants, such as rebalancing. For instance, we rely on being able

to move nodes around in binary search trees to split and rejoin them. Not

every data structure lends itself well to being batch-parallelised this way,

meaning that they cannot be readily split into valid sub-structures, or

that joining them would induce a prohibitively large overhead undoing

the performace improvement gained from parallelism.

This is the case for search structures, such as bitwise tries, that use

string/binary prefixes or hashes to store key values: in those structures

the position of an element in the data structure is its key. Therefore, “phys-

ically” splitting such a structure tree will inevitably require one to deal

with complex re-indexing logic. On the flipside, we can argue that such a

search structure is even better suited to a batch-parallel implementation

since each update should only affect a predictable, localised area that is

the same regardless of what other keys populate the data structure.

Chapter 4. Batching with Expose-Repair Strategy 23

However, batch parallelising such “position-based” search structures

might not be as straightforward as it seems. Advanced examples like the

van Emde Boas tree (van Emde Boas, 1977), the x-fast trie, and the y-

fast trie (Willard, 1983), which we will showcase for this section, contain

additional metadata, pointers, or even entire secondary sub-structures to

achieve the promised sub-logarithmic time complexity of their sequential

operations. Those sub-structures must be accounted for, restored, and/or

updated both before and after running a batch.

We present a novel strategy for batch parallelism, dubbed expose-repair,

aimed at addressing such data structures. It centres around first “expos-

ing”, or preparing the structure before each batch of operations, so as to

make sure parallel operations in their respective localised areas do not

affect each other. Then, we “repair” the result after processing the batch

of operations, to re-establish the global metadata or sub-structures.

4.1 Expose-Repair Functor Overview

Similarly to the split-join functor from Chapter 3, for expose-repair we

define two modules signatures, Sequential and Prebatch that need to

be instantiated by the user. For simplicity, we phrase the Sequential in-

terface as a set rather than as a key/value store, i.e., it only stores the

keys of the type kt, following the presentation from the standard text-

book (Cormen et al., 2009, Chapter 20). The key/value map-like func-

tionality can be restored by associating satellite data with the keys. As

the result of this design, the Sequential signature shown in Figure 4.1

offers the mem function instead of search. The signature also features the

predecessor and successor functions, as one of the main selling points

Chapter 4. Batching with Expose-Repair Strategy 24

module type Sequential = sig
type kt
type t
val init : int -> t
val mem : t -> kt -> bool
val insert : t -> kt -> unit
val delete : t -> kt -> unit
val predecessor : t -> kt -> kt option
val successor : t -> kt -> kt option

end

FIGURE 4.1: The Sequential module signature for the
expose-repair functor.

module type Prebatch = sig
module S : Sequential
type dt
val compare : S.kt -> S.kt -> int
val expose :

S.t -> S.kt array -> S.kt array * dt
val repair : S.t -> dt -> unit
val insert_range :

S.t -> S.kt array -> dt -> int * int -> unit
end

FIGURE 4.2: The Prebatch module signature for the
expose-repair functor.

of these fast search structures, such as van Emde Boas tree, the x-fast and

the y-fast tries, is the O(log log u) time complexity for these operations

(where u is the largest integer key that can be stored in the structure).

Just like in the case of split-join strategy, the pure query operations like

mem, predecessor, and successor can be dispatched in parallel in a sepa-

rate stage of the batch processing, without any special preparation.

The signature for the Prebatch module is best explained in parallel

with the implementation of a parallel executor for the effectful operations

that makes use of the Prebatch functions. As a characteristic example,

Chapter 4. Batching with Expose-Repair Strategy 25

1 let par_insert ~pool t inserts =
2 (* omitted: checking if the batch size is
3 larger than seq_threshold *)
4 let n = Array.length inserts / seq_threshold + 1 in
5 (* assume that inserts are randomly ordered *)
6 let pivot_seeds =
7 Array.init n (fun i -> fst inserts.(i)) in
8 sort pivot_seeds;
9 let pivots, dt = expose t pivot_seeds in

10 let sub_batch_ranges = partition pivots inserts in
11 parallel_for pool
12 ~start:0
13 ~finish:(Array.length sub_batch_ranges)
14 ~body:(fun i ->
15 insert_range t inserts dt sub_batch_ranges.(i));
16 repair t dt

FIGURE 4.3: Batch-parallel insertion in the expose-repair
functor.

consider the implementation of parallel insertion via the expose-repair

strategy shown in Figure 4.3.

We start by checking if the number of insert operations in the batch

exceeds the sequential threshold, and if it is below, the operations are

performed sequentially (we omit this part from the listing for brevity);

otherwise, we continue with batch processing. To do so, we first obtain

n sorted random “tentative pivots” from the batch of operations, and we

transform them into pivots we can use to partition our batch of opera-

tions (lines 2-7). Unlike the split-join functor, which takes random ele-

ments from the batch of operations as pivots on which to split the trees

(Section 3.1), in the case of position-based structures we would want piv-

ots that can separate the data structure into logical parts consistent with

their inner layout. For instance, in the case of the van Emde Boas tree,

those pivots would be multiples of the square root of the size of its universe

Chapter 4. Batching with Expose-Repair Strategy 26

(i.e., the set of all possible keys), so that we can divide up a cluster of trees

without dissecting any tree in the middle (see Section 4.2).

Next, we prepare the data structure for batch processing where needed

and partition the batch of operations using the obtained pivots (lines 7-8).

The preparation can take the form of (but is not limited to) pre-initialising

parts of the data structure, or temporarily removing some pointers be-

tween nodes belonging of different sections of the data structure. This

process might both rely on and/or inform the creation of the pivots. The

partitioning (line 8) only depends on the values of the pivots and the ar-

guments of the insert operations, hence is not structure-specific.

Then, the sub-batches of operations resulting from partitioning are

run in parallel on the same pre-processed data structure (lines 9-10). It is

done with the assumption that expose has indeed returned the pivots in a

way that split the range of the insertions such that operations in different

sub-batches would not interfere with each other.

Finally, we repair the initial data structure t by, e.g., removing unused

pre-initialised parts, updating metadata, and restoring auxiliary pointers

between its sub-parts (line 11).

The code in Figure 4.3 relies on the following components of the Prebatch

functor from Figure 4.2:

• dt: an abstract type specific for each data structure. It is used to

store supplementary information for batching, if needed (see Sec-

tion 4.2 for a concrete example).

• expose: takes as its input the data structure itself and an array of

“tentative pivots”. Having those, it (a) prepares the data structure

in-place for batch processing and (b) returns an array of the pivot

Chapter 4. Batching with Expose-Repair Strategy 27

values used to partition our batch of operations. We combine these

two procedures, as they can be very much intertwined with one

another.

• repair: repairs the data structure after all updates have finished.

• insert_range: performs a sequence of insertions on the exposed

data structure sequentially. It takes as input the data structure, a

reference to the whole batch of insertions with the range of the sub-

batch (to avoid reallocating a new array for each sub-batch), and

extra information in the form of dt. Note that insert_range takes

the whole data structure as input, since inserting a specific range

of values should keep the effects localised and therefore should not

affect any other instance of insert_range running in parallel.

Supporting parallel deletions using the expose-repair strategy would re-

quire implementation of a function with a signature similar to insert_range,

which we have omitted for the sake of brevity.

4.2 Case Study: van Emde Boas Tree

The van Emde Boas tree (vEB tree for short) represents a priority queue

and was conceived as a way to resolve bottlenecks in in query operations

(e.g., membership, predecessor, successor) for ordered, random access

sets (van Emde Boas, 1977). When implemented as binary trees, such as

RB tree, these operations have O(log n) time complexity. The vEB tree

instead allows for membership, predecessor, and successor queries to

be done in O(log log u) time, where u is the universe size, or the num-

ber of all possible key values the vEB tree might store. This logarithmic

Chapter 4. Batching with Expose-Repair Strategy 28

speedup over balanced binary trees is achieved at the cost of space effi-

ciency, with the vEB tree occupying O(u) space regardless of how many

elements its contains.

4.2.1 Sequential van Emde Boas Tree Overview

4

2

1

1

u
min
max

u min max0 1

cluster summary

2

⊥
⊥

u
min
max

2

0

0

u
min
max

FIGURE 4.4: A vEB tree
containing {0, 1}.

A vEB tree is structured recursively,

with each node containing (1) the uni-

verse size u at that node, (2) the min-

imum value of the tree at that node,

(3) the maximum value of the tree at

that node, (4) an array cluster of
√

u

vEB tree nodes, each of which con-

tains a vEB tree of universe size
√

u so that a vEB tree of some index i

would contain keys in the range [i
√

u, (i + 1)
√

u − 1], and (5) a summary

vEB tree of size
√

u storing the indices of vEB trees in the cluster array

that are non-empty, i.e., have at least one element.

Consider the example vEB tree in Figure 4.4. It has the universe size

of 4, so its possible key values range from 0 to 3. In this case, it only

contains the keys 0 and 1: 0 is stored in the minimum field of the root node

and is thus is not present in the vEB nodes below (the minimum field

of a vEB node is not just metadata, but always contains the key itself).

Conversely, the maximum field of the root vEB node shows 1, but this is

not the key value itself, and is just metadata. Looking down, the left child

node, corresponding to the index 0 of the root cluster, has no cluster, and

both its minimum and the maximum fields store 1. It is a base case vEB

node, whose universe size is 2, and whose maximum field can contain

Chapter 4. Batching with Expose-Repair Strategy 29

the key itself. The vEB node at the root cluster index 1 is empty, as shown

with both its minimum and maximum being ⊥. Finally, the root features

an additional summary vEB node, which just contains 0, meaning that

only the vEB child node at the position 0 of the root cluster is non-empty.

Though it may seem odd in this example to “summarise” a cluster of size

2, for larger clusters it allows one to find the first non-empty cluster in

O(log log u) time, enabling fast predecessor and successor queries. We

omit the detailed descriptions of sequential vEB operations, and refer the

reader to Chapter 20 of the textbook by Cormen et al. (2009).

4.2.2 Batch Parallel van Emde Boas Tree Overview

let expose t pivot_seeds =

let size_cluster =

lower_sqrt t.uni_size in

let pivots =

Array.init

(Array.length arr)

(fun i ->

high t arr.(i) * size_cluster)

(dedup pivots, ())

FIGURE 4.5: The vEB tree expose function.

The vEB tree lends it-

self naturally to batch pro-

cessing. We note that since

there are about
√

u trees

available in the cluster at

the root level, we can have

each domain handle mul-

tiple vEB trees from this

cluster. Since there are al-

ready so many vEB trees at this first level, we will not look further below

for parallelising our batched operations.

The code of the expose function for vEB tree is shown in Figure 4.5.

We will not need any supplementary information, so the type dt is just

unit. We do however need to identify how to create appropriate pivots

from random keys in our batch of insert/delete operations. For this, we

Chapter 4. Batching with Expose-Repair Strategy 30

0

ε

01

1

010 100

10

101

x-fast trie

…

<latexit sha1_base64="dIDJCFC9kg7eihmQj2BwKKODKQA=">AAACJ3icjVBNS8NAEN3Ur1q/oh69BIvgqSQi1ZMUvXisYD+giWWzmbRLN5uwuxFKyL/x4l/xIqiIHv0nbtsctPXgg4HHezPMzPMTRqWy7U+jtLS8srpWXq9sbG5t75i7e20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj64mfucehKQxv1XjBLwIDzgNKcFKS33zwk15AMIXmEDmJkPMVRxl+B/I87ss75tVu2ZPYS0SpyBVVKDZN1/cICZpBFwRhqXsOXaivAwLRQmDvOKmEhJMRngAPU05jkB62fTP3DrSSmCFsdDFlTVVf05kOJJyHPm6M8JqKOe9ifiX10tVeO5llCepAk5mi8KUWSq2JqFZARVAFBtrgomg+laLDLHOTOloKzoEZ/7lRdI+qTn1Wv3mtNq4LOIoowN0iI6Rg85QA12jJmohgh7QE3pFb8aj8Wy8Gx+z1pJRzOyjXzC+vgHyBafW</latexit>| {z }
red-black trees

(A) The x-fast trie

0

ε

01

1

010 100

10

101

x-fast trie

…

<latexit sha1_base64="dIDJCFC9kg7eihmQj2BwKKODKQA=">AAACJ3icjVBNS8NAEN3Ur1q/oh69BIvgqSQi1ZMUvXisYD+giWWzmbRLN5uwuxFKyL/x4l/xIqiIHv0nbtsctPXgg4HHezPMzPMTRqWy7U+jtLS8srpWXq9sbG5t75i7e20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj64mfucehKQxv1XjBLwIDzgNKcFKS33zwk15AMIXmEDmJkPMVRxl+B/I87ss75tVu2ZPYS0SpyBVVKDZN1/cICZpBFwRhqXsOXaivAwLRQmDvOKmEhJMRngAPU05jkB62fTP3DrSSmCFsdDFlTVVf05kOJJyHPm6M8JqKOe9ifiX10tVeO5llCepAk5mi8KUWSq2JqFZARVAFBtrgomg+laLDLHOTOloKzoEZ/7lRdI+qTn1Wv3mtNq4LOIoowN0iI6Rg85QA12jJmohgh7QE3pFb8aj8Wy8Gx+z1pJRzOyjXzC+vgHyBafW</latexit>| {z }
red-black trees

(B) The y-fast trie

FIGURE 4.6: X-fast trie and Y-fast tries. For the x-fast trie
in Figure 4.6a, solid double arrows indicate pointers from
each leaf to the previous and the next leaf, while dashed

single arrows indicate descendant pointers.

simply transform each pivot key into the minimum possible key for its

target sub-vEB tree in the root-level cluster. This ensures that keys in dif-

ferent sub-batches are never inserted in the same vEB tree. At the end,

we deduplicate the final list of pivots, as two different keys going to the

same vEB tree will yield the same pivot. For each key k to be inserted

in the sub-batch of operations defined by the input range, insert_range

invokes the sequential insertion procedure, but does not update the sum-

mary node, the minimum, or the maximum at the root level. This last

update is exactly what is done by the repair function.

4.3 Other Expose-Repair Data Structures

In addition to the vEB tree, we have instantiated the expose-repair func-

tor for two more position-based search structures: the x-fast and y-fast

trie by Willard (1983). Both these structures were designed to preserve

the query time complexity of the vEB while only using O(n log u) and

O(n) space respectively, where n is the number of elements in the trie.

Chapter 4. Batching with Expose-Repair Strategy 31

In an x-fast trie (Figure 4.6a), all full unsigned integer keys are stored

at the same leaf level, with there being as many intermediate layers as

there are bits representing these integers. Each leaf node points to its

successor and/or predecessor leaf node. Each internal node with no left

child contains a pointer to the smallest leaf in its right subtree, similarly,

each internals node with no right child contains a pointer to the largest

leaf in its left subtree; in both cases those are referred to as descendant

pointers. At each layer, there is a hash table to accelerate queries. Un-

fortunately, this last point complicates batch-parallelising, as it would re-

quire a concurrent hash table. As a proof of concept, our implementation

uses arrays, which worsens the worst-case x-fast trie’s space complex-

ity, but allows for a relatively simple expose-repair implementation: we

expose the sub-trie by removing pointers and adding intermediate nodes

up until the layer determined by the number of pivots, and partition our

operations among the nodes at that layer.

To turn the x-fast trie into a y-fast trie (Figure 4.6b), we replace the x-

fast trie’s leaf nodes with a forest of red-black (RB) trees. The size of each

RB tree has an expected size of log u, and it is split as needed to maintain

that size. Implementing a batch-parallel version of the y-fast trie using

the expose-repair functor is not very complicated either. For insertions,

expose determines the ranges for the keys to be inserted and RB trees that

each parallel task should cover based on random pivots from the batch of

operations. Operations within each range are dispatched sequentially by

insert_range. Finally, repair checks the size of each resulting RB tree,

splitting where needed to maintain the size bound.

32

Chapter 5

Experiments

In this section, we provide an extensive evaluation of the throughput (op-

erations per second) trends of the 6 batch-parallel search data structures

presented thus far. The goal of our experiments is not to claim the max-

imum performance, which still requires carefully crafted concurrency;

instead, we aim to show that our approach provides reasonable perfor-

mance and scaling with less work.

All the reported benchmark results were obtained by running the ex-

periments on an AWS EC2 c7i.12xlarge server instance equipped with

an Intel® Xeon® Scalable (Sapphire Rapids) processor with 24 physical

cores and 96 GB of memory, and running Ubuntu 22.02 with OCaml 5.1.1.

We evaluate the throughput for all 6 search structures (RB tree, AVL

tree, treap, van Emde Boas tree, x-fast and y-fast tries) on the same set of

benchmarks. For each benchmark, we fix the number of initial elements

in the data structure at 2,000,000 and the workload size to be 1,000,000

operations. We experiment with four different workload setups: inserts

only, searches only, 50%/50% and 90%/10% search/insert split. Each

operation of the workload is submitted to Domainslib’s thread pool as a

separate concurrent task. Each data point takes the average of five runs,

Chapter 5. Experiments 33

performed after five warm-up runs. We compare the performance of our

batch-parallel implementations with their respective coarse-grained and

sequential implementations. We summarise our observations from these

experiments in this chapter, and refer the reader to Appendix A for the

benchmark results.

5.1 General Performance Trends

First, we observe that in nearly every benchmark, our batch parallel gen-

erated search structures outperform their coarse-grained counterparts by

a significant margin starting from two domains, with the gap widening

as we increase the number of domains. The gap is particularly evident

for insertion-heavy benchmarks, where we see the batched implementa-

tions match or even outperform the sequential ones when more domains

are available. Fully sequential executions typically outperform the batch-

parallel ones for searches, even for higher domains and by a significant

margin. This is likely due to the efficiency of searches (even when done

sequentially), combined with the comparatively large overheads for cre-

ating/managing parallel tasks.

Second, we observe that in nearly all cases, in the case of a single do-

main, a batch-parallel implementation shows a lower throughput than

the coarse-grained one. This is because with a single domain, the batch-

processing routine is launched for every submitted operation after the

waiting period between batches in the try_launch function (Chapter 2),

due to not meeting the minimum batch size—as there are no other threads

contributing operations. We conclude that, without further optimization,

batch parallelism only pays off in strictly multi-threaded scenarios.

Chapter 5. Experiments 34

Third, we observe that our x-fast and y-fast tries are in general less

performant than our binary trees (AVL and RB), despite their superior

asymptotic time complexity, even when considering only the sequential

implementations. We conjecture that this is due to their much heavier

memory use than that of the binary trees, since each key requires multiple

nodes to represent, and so adding nodes would take more time putting

additional stress on OCaml’s concurrent memory allocator.

Finally, we note that almost all the batch-parallel data structures show

reasonable speed-ups: the throughput increases with the number of do-

mains, up through approximately 8 domains. From that point onwards,

throughput grows more slowly with the number of domains. This slow-

ing growth at larger numbers of domains presumably stems from the

increased synchronisation overhead.

5.2 Concurrent Searching in an X-Fast Trie

The x-fast trie search-only and 90/10 search-insert split benchmarks are

the only scenarios in our suite where our batched implementation strug-

gles to even match the coarse-grained implementation. This is the only

data structure where search time is O(1). Indeed, the sequential bench-

mark throughput for searching in an x-fast trie is orders of magnitude

higher than of the other data structures, exhibiting around 22 · 106 op/sec

in the search-only benchmark, and around 2.8 · 106 op/sec for the 90/10

search-insert split benchmark. We surmise that this is a rare case where

the underlying operation is so fast that the lock contention imposes a

smaller overall overhead than starting a batch.

Chapter 5. Experiments 35

5.3 Comparison With a Fine-Grained Skip List

We end our evaluation with a quick discussion of the batch parallel skip

list’s performance versus that of the fine-grained skip list. Lee (2023) pre-

viously ported an implementation the fine-grained skip list by Herlihy et

al. (2007) from Java to OCaml for their initial work on OBatcher. Here, we

benchmark it once more in Figure A.7 against Lee (2023)’s batch-parallel

implementation of the skip list, using the same setup as above. Sadly,

our results clearly indicate the growing performance gap between the

fine-grained and the batch-parallel implementation.

We note however that the fine-grained implementation is significantly

more intricate than the batch-parallel version (Lee, 2023), hence we are

making a trade-off between performance and design complexity. Fur-

thermore, we note that the current batch-parallel skip list does not make

use of the split-join functor nor the expose-repair functor, but is rather

implemented in an ad-hoc manner directly on top of OBatcher’s batching

interface. Further work can be done with regards to either batch the skip

list in such a way that it follows these batching patterns, or to further

generalise the split-join and/or expose-repair functors to accomodate a

batch-parallel skip list. Doing so would significantly lighten the burden

of designing a concurrent skip list.

36

Chapter 6

Discussion and Future Work

6.1 Bechmarking Matters

Overall, our benchmark results showed that there is much to be gained by

using OBatcher along with either the split-join or the expose-repair func-

tors for generating concurrent data structures. The performance scaling

is not very good for higher core counts beyond 8. It is worth pointing

out here a quirk with how we engineered the benchmarks. While op-

erations are simply run one after another in the sequential benchmark,

they are submitted as individual tasks to the Domainslib task queue for

the batch-parallel benchmark. This means that threads must each con-

currently dequeue one operation, then submit it to the batch, then re-

peat until all operations are submitted. This adds significant overhead

and puts the batch-parallel data structures at a disadvantage relative to

their sequential counterparts for the benchmark - meaning that it is all

the more impressive how for some workloads and data structures, the

batch-parallel implementation actually matches or even outperform the

sequential implementation. Therefore, looking into more benchmarking

Chapter 6. Discussion and Future Work 37

methods or using closer-to-real-world workloads may prove to be fruit-

ful in showcasing the full potential of batch-parallel data structures.

6.2 Split-Join and Expose-Repair Functors

There is potential for more functionality and performance within the split-

join and expose-repair functors.

As presented, our functors currently lack some functionalities, such as

support for batched delete operations. However, these should be fairly

trivial to implement following the model of how batched inserts are han-

dled. The expose-repair functor can also be expanded to support storing

key-value pairs - this feature was ommitted since the van Emde Boas tree,

the x-fast trie, and the y-fast trie do not traditionally support it.

We also do not make any claim about whether the batch processing

methods that we used for the data structures are optimal. For instance,

in the split-join functor, we opted for splitting the data structure all at

once in the beginning to obtain an array of split data structures. Another

approach that we experimented with was breaking apart the root node,

and spawning two parallel tasks that do the same for the sub-trees in a

recursive manner until a certain level is reached. Though we ultimately

went with the approach described in Chapter 3 thanks to it being poten-

tially generalisable to more than just binary trees (e.g. it does not rely on

there being a node exposed to the client), it is far from the only way to

parallelise a batch of operations. Finding better ways to process a batch

may be a topic for future research.

38

Chapter 7

Conclusion

To conclude, we have shown in this paper that some data structures can

be easily batch-parallelised following two patterns: split-join and expose-

repair. We have implemented these patterns as OCaml functors for the

OBatcher library, and demonstrated their use by implementing a host of

data structures: the red-black tree, the AVL tree, the treap, the van Emde

Boas tree, the x-fast trie, and the y-fast trie. We have also demonstrated

through benchmarks that our implementations exhibit reasonable perfor-

mance relative to coarse-grained implementations, and is even competi-

tive under certain circumstances with sequential implementations.

39

Bibliography

Adams, Stephen (1993). “Functional Pearls Efficient sets—a balancing

act”. In: Journal of Functional Programming 3.4, 553–561. DOI: 10.1017/

S0956796800000885.

Adelson-Velsky, Georgy and Evgenii Landis (1962). “An algorithm for

the organization of information”. In: Proc. of the USSR Academy of Sci-

ences 145. In Russian, English translation by Myron J. Ricci in Soviet

Doklady, 3:1259-1263, 1962, 263–266.

Agrawal, Kunal, Jeremy T. Fineman, Brendan Sheridan, Jim Sukha, and

Robert Utterback (2014). “Provably Good Scheduling for Parallel Pro-

grams that Use Data Structures through Implicit Batching”. In: PPoPP.

ACM, pp. 389–390. DOI: 10 . 1145 / 2555243 . 2555284. URL: https :

//doi.org/10.1145/2555243.2555284.

Akhremtsev, Yaroslav and Peter Sanders (2016). “Fast Parallel Operations

on Search Trees”. In: 2016 IEEE 23rd International Conference on High

Performance Computing (HiPC), pp. 291–300. DOI: 10.1109/HiPC.2016.

042.

Bayer, Rudolf (1972). “Symmetric Binary B-Trees: Data Structure and Main-

tenance Algorithms”. In: Acta Informatica 1, pp. 290–306. DOI: 10 .

1007/BF00289509. URL: https://doi.org/10.1007/BF00289509.

https://doi.org/10.1017/S0956796800000885
https://doi.org/10.1017/S0956796800000885
https://doi.org/10.1145/2555243.2555284
https://doi.org/10.1145/2555243.2555284
https://doi.org/10.1145/2555243.2555284
https://doi.org/10.1109/HiPC.2016.042
https://doi.org/10.1109/HiPC.2016.042
https://doi.org/10.1007/BF00289509
https://doi.org/10.1007/BF00289509
https://doi.org/10.1007/BF00289509

Bibliography 40

Blelloch, Guy E., Daniel Ferizovic, and Yihan Sun (2016). “Just Join for

Parallel Ordered Sets”. In: SPAA. ACM, pp. 253–264. DOI: 10.1145/

2935764.2935768. URL: https://doi.org/10.1145/2935764.2935768.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein (2009). Introduction to Algorithms, 3rd Edition. MIT Press.

Ellis, Carla Schlatter (1980a). “Concurrent search and insertion in 2—3

trees”. In: Acta Inf. 14.1, 63–86. ISSN: 0001-5903. DOI: 10.1007/BF00289064.

URL: https://doi.org/10.1007/BF00289064.

— (1980b). “Concurrent Search and Insertion in AVL Trees”. In: IEEE

Trans. Computers 29.9, pp. 811–817. DOI: 10.1109/TC.1980.1675680.

URL: https://doi.org/10.1109/TC.1980.1675680.

Gu, Yan, Ziyang Men, Zheqi Shen, Yihan Sun, and Zijin Wan (2023). “Par-

allel Longest Increasing Subsequence and van Emde Boas Trees”. In:

SPAA. ACM, pp. 327–340. DOI: 10 . 1145 / 3558481 . 3591069. URL:

https://doi.org/10.1145/3558481.3591069.

Herlihy, Maurice, Yossi Lev, Victor Luchangco, and Nir Shavit (2007).

“A Simple Optimistic Skiplist Algorithm”. In: SIROCCO. Vol. 4474.

LNCS. Springer, pp. 124–138. DOI: 10.1007/978-3-540-72951-8_11.

Herlihy, Maurice and Nir Shavit (2008). The Art of Multiprocessor Program-

ming. Morgan Kaufmann. ISBN: 978-0-12-370591-4.

Herlihy, Maurice and Jeannette M. Wing (1990). “Linearizability: A Cor-

rectness Condition for Concurrent Objects”. In: ACM Trans. Program.

Lang. Syst. 12.3, pp. 463–492. DOI: 10.1145/78969.78972.

Lee, Koon Wen (2023). “Concurrent Structures and Effect Handlers: A

Batch Made in Heaven”. Bachelor’s (Hons.) Thesis. Yale-NUS College.

https://doi.org/10.1145/2935764.2935768
https://doi.org/10.1145/2935764.2935768
https://doi.org/10.1145/2935764.2935768
https://doi.org/10.1007/BF00289064
https://doi.org/10.1007/BF00289064
https://doi.org/10.1109/TC.1980.1675680
https://doi.org/10.1109/TC.1980.1675680
https://doi.org/10.1145/3558481.3591069
https://doi.org/10.1145/3558481.3591069
https://doi.org/10.1007/978-3-540-72951-8_11
https://doi.org/10.1145/78969.78972

Bibliography 41

URL: https://ilyasergey.net/assets/pdf/papers/Koon-Wen-Lee-

Capstone.pdf.

Oshman, Rotem and Nir Shavit (2013). “The SkipTrie: low-depth con-

current search without rebalancing”. In: PODC. Ed. by Panagiota Fa-

tourou and Gadi Taubenfeld. ACM, pp. 23–32. DOI: 10.1145/2484239.

2484270. URL: https://doi.org/10.1145/2484239.2484270.

Sanders, Peter, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman De-

mentiev (2019). “Sorted Sequences”. In: Sequential and Parallel Algo-

rithms and Data Structures: The Basic Toolbox. Cham: Springer Interna-

tional Publishing, pp. 233–258. ISBN: 978-3-030-25209-0. DOI: 10.1007/

978-3-030-25209-0_7. URL: https://doi.org/10.1007/978-3-030-

25209-0_7.

Seidel, Raimund and Cecilia R. Aragon (1996). “Randomized Search Trees”.

In: Algorithmica 16.4/5, pp. 464–497. DOI: 10.1007/BF01940876. URL:

https://doi.org/10.1007/BF01940876.

Treiber, R. Kent (1986). Systems programming: coping with parallelism. Tech.

rep. RJ 5118. IBM Almaden Research Center.

van Emde Boas, Peter (1977). “Preserving order in a forest in less than

logarithmic time and linear space”. In: Information Processing Letters

6.3, pp. 80–82. ISSN: 0020-0190. DOI: https://doi.org/10.1016/0020-

0190(77)90031-X. URL: https://www.sciencedirect.com/science/

article/pii/002001907790031X.

Willard, Dan E. (1983). “Log-logarithmic worst-case range queries are

possible in space O(N)”. In: Information Processing Letters 17.2, pp. 81–

84. ISSN: 0020-0190. DOI: https://doi.org/10.1016/0020-0190(83)

90075-3.

https://ilyasergey.net/assets/pdf/papers/Koon-Wen-Lee-Capstone.pdf
https://ilyasergey.net/assets/pdf/papers/Koon-Wen-Lee-Capstone.pdf
https://doi.org/10.1145/2484239.2484270
https://doi.org/10.1145/2484239.2484270
https://doi.org/10.1145/2484239.2484270
https://doi.org/10.1007/978-3-030-25209-0_7
https://doi.org/10.1007/978-3-030-25209-0_7
https://doi.org/10.1007/978-3-030-25209-0_7
https://doi.org/10.1007/978-3-030-25209-0_7
https://doi.org/10.1007/BF01940876
https://doi.org/10.1007/BF01940876
https://doi.org/https://doi.org/10.1016/0020-0190(77)90031-X
https://doi.org/https://doi.org/10.1016/0020-0190(77)90031-X
https://www.sciencedirect.com/science/article/pii/002001907790031X
https://www.sciencedirect.com/science/article/pii/002001907790031X
https://doi.org/https://doi.org/10.1016/0020-0190(83)90075-3
https://doi.org/https://doi.org/10.1016/0020-0190(83)90075-3

42

Appendix A

Benchmark Results for Batch

Parallel Data Structures

0 5 10 15
0

0.4

0.8

1.2

·106

Th
ro

ug
hp

ut
(o

ps
/s

)

Inserts only

0 5 10 15
0

0.4

0.8

1.2

·106 Searches only

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

Th
ro

ug
hp

ut
(o

ps
/s

)

(50/50) Searches/Inserts

Sequential Batched Coarse-grained

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

(90/10) Searches/Inserts

FIGURE A.1: Throughput comparison for the batch-parallel
red-black tree from Chapter 3.

Appendix A. Benchmark Results for Batch Parallel Data Structures 43

0 5 10 15
0

0.4

0.8

1.2

·106
T

hr
ou

gh
pu

t(
op

s/
s)

Inserts only

0 5 10 15
0

0.4

0.8

1.2

·106 Searches only

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

Th
ro

ug
hp

ut
(o

ps
/s

)

(50/50) Searches/Inserts

Sequential Batched Coarse-grained

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

(90/10) Searches/Inserts

FIGURE A.2: Throughput comparison for the batch-parallel
AVL tree from Chapter 3.

0 5 10 15
0

0.4

0.8

1.2

·106

Th
ro

ug
hp

ut
(o

ps
/s

)

Inserts only

0 5 10 15
0

0.4

0.8

1.2

·106 Searches only

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

Th
ro

ug
hp

ut
(o

ps
/s

)

(50/50) Searches/Inserts

Sequential Batched Coarse-grained

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

(90/10) Searches/Inserts

FIGURE A.3: Throughput comparison for the batch-parallel
treap from Chapter 3.

Appendix A. Benchmark Results for Batch Parallel Data Structures 44

0 5 10 15
0

0.4

0.8

1.2

·106
T

hr
ou

gh
pu

t(
op

s/
s)

Inserts only

0 5 10 15
0

0.4

0.8

1.2

·106 Searches only

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

Th
ro

ug
hp

ut
(o

ps
/s

)

(50/50) Searches/Inserts

Sequential Batched Coarse-grained

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

(90/10) Searches/Inserts

FIGURE A.4: Throughput comparison for the batch-parallel
van Emde Boas tree from Chapter 4.

0 5 10 15
0

0.4

0.8

1.2

·106

Th
ro

ug
hp

ut
(o

ps
/s

)

Inserts only

0 5 10 15
0

0.4

0.8

1.2

·106 Searches only

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

Th
ro

ug
hp

ut
(o

ps
/s

)

(50/50) Searches/Inserts

Sequential Batched Coarse-grained

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

(90/10) Searches/Inserts

FIGURE A.5: Throughput comparison for the batch-parallel
x-fast trie from Chapter 4.

Appendix A. Benchmark Results for Batch Parallel Data Structures 45

0 5 10 15
0

0.4

0.8

1.2

·106
T

hr
ou

gh
pu

t(
op

s/
s)

Inserts only

0 5 10 15
0

0.4

0.8

1.2

·106 Searches only

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

Th
ro

ug
hp

ut
(o

ps
/s

)

(50/50) Searches/Inserts

Sequential Batched Coarse-grained

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

(90/10) Searches/Inserts

FIGURE A.6: Throughput comparison for the batch-parallel
y-fast trie from Chapter 4.

0 5 10 15
0

0.4

0.8

1.2

·106

Th
ro

ug
hp

ut
(o

ps
/s

)

Inserts only

0 5 10 15
0

0.4

0.8

1.2

·106 Searches only

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

Th
ro

ug
hp

ut
(o

ps
/s

)

(50/50) Searches/Inserts

Sequential Batched Coarse-grained Fine-grained

0 5 10 15
0

0.4

0.8

1.2

·106

Domains

(90/10) Searches/Inserts

FIGURE A.7: Throughput comparison for the batch-parallel
skip list.

	Acknowledgements
	Abstract
	Introduction
	Concurrent Data Structures are Hard
	Batch Parallelism to the Rescue
	Contributions

	Background
	A Quick Introduction to OBatcher
	Improving OBatcher
	A Better Container
	Minimum Batch Size and Timer
	Waiting for Batch Processing

	Concurrent Data Structures at a Glance

	Batching with Split-Join Strategy
	A Functor for Split-Join Batching
	Case Study: Red-Black Tree
	Sequential Red-Black Tree Overview
	Batch Parallel Red-Black Tree Overview

	Other Split-Join Data Structures

	Batching with Expose-Repair Strategy
	Expose-Repair Functor Overview
	Case Study: van Emde Boas Tree
	Sequential van Emde Boas Tree Overview
	Batch Parallel van Emde Boas Tree Overview

	Other Expose-Repair Data Structures

	Experiments
	General Performance Trends
	Concurrent Searching in an X-Fast Trie
	Comparison With a Fine-Grained Skip List

	Discussion and Future Work
	Bechmarking Matters
	Split-Join and Expose-Repair Functors

	Conclusion
	Bibliography
	Benchmark Results for Batch Parallel Data Structures

