
	

	

	

Modelling and Testing

Composite Byzantine-Fault Tolerant

Consensus Protocols

Daniel Lok

Capstone Final Report for BSc (Honours) in

Mathematical, Computational, and Statistical Sciences

Supervised by: Dr. Ilya Sergey

AY 2018/2019

i

Acknowledgements
This capstone would not have been possible without the support of numer-

ous friends and faculty.

We thank Dr. Ilya Sergey for his invaluable advice on every aspect of this

project, as well as his eagerness in teaching and recommending additional

sources of information. We would also like to thank Dr. Olivier Danvy

for his course Functional Programming and Proving, which provided a rich

foundation on which much of this capstone was built.

Additionally, we would like to thank the residents and ex-residents of

Elm College’s 17th floor for emotional support, and in particular, Yong Kai

Yi and Cephas Tan for their helpful comments and advice on the direction,

structure, and wording of this manuscript.

ii

YALE-NUS COLLEGE

Abstract

B.Sc (Hons)

Modelling and Testing

Composite Byzantine-Fault Tolerant

Consensus Protocols

by Daniel LOK

Implementing distributed systems is a notoriously difficult task. Program-

mers that attempt to build executable versions of published consensus pro-

tocols often run into numerous bugs along the way, in part due to the often

informal nature of the publications.

This project provides a framework to conveniently implement and test

models of distributed consensus protocols, with the intention of assisting

programmers in formulating “correct” system sematics prior to actual im-

plementation. This paper describes the internal workings of the framework,

its API, and how to use it to model complex phenomena such as Byzantine

faults, modular protocol composition, and asynchrony.

Keywords: Distributed Systems, Consensus Protocols, Byzantine-Fault

Tolerance, Simulating, Modelling, Testing

HTTPS://WWW.YALE-NUS.EDU.SG/

iii

Contents

Acknowledgements i

Abstract ii

1 Introduction & Motivation 1

2 Background Information 4

2.1 Introduction to Distributed Systems 4

2.2 Byzantine Fault Tolerance . 6

2.3 Relevant Consensus Protocols 8

2.3.1 Practical Byzantine Fault Tolerance (PBFT) [4] 9

State Machine Replication 9

PBFT Semantics . 9

Request Delivery . 10

Pre-prepare . 11

Prepare . 11

Commit . 12

Reply Delivery . 12

2.3.2 Two-phase Commit (2PC) [2] 13

Atomic Commitment . 13

2PC Semantics . 14

2.3.3 Sharded Byzantine Atomic Commit (SBAC) [1] 15

iv

Sharding . 15

SBAC Architecture . 15

Differences from 2PC . 16

Failure Model . 17

3 Simulator Semantics 19

3.1 Overview . 19

3.2 Simulator Module API . 22

3.2.1 simulate_round . 22

3.2.2 gen_simulator . 24

3.2.3 add_request . 24

4 Modelling & Testing Complex Phenomena 25

4.1 Fault Tolerance . 25

4.2 Modular Composition . 28

4.3 Predicate Checking . 29

4.3.1 Schedule Generation & Execution 30

4.4 Asynchrony . 32

5 SBAC Implementation & Findings 33

5.1 PBFT Module . 33

5.1.1 Simplifications . 33

5.1.2 Node Structure . 35

5.1.3 Request Structure . 36

5.1.4 Reply Structure . 37

5.2 Automated Testing & Findings 38

6 Related Work 41

v

6.1 Formal Methods . 41

6.2 Systematic Testing . 43

6.3 Our Project . 45

7 Conclusion & Future Work 46

Bibliography 47

1

Chapter 1

Introduction & Motivation

Distributed systems are ubiquitous in the modern world. They are the

key enabler of scalability for any internet-based service, and unsurprisingly,

they are notoriously complex [22]. A fundamental problem with distributed

systems is that their operating environment is inherently error-prone. Even

if the computing units run completely bug free software (often not the case),

the computing units themselves could be subject to power failures, hard-

ware faults, or even control by an adversary.

These problems are generally expected to be solved by a fault-tolerant

consensus protocol, but unfortunately, as noted by Rahli et. al., such proto-

cols are mostly only published in pseudocode or otherwise non-executable

formats [18]. As a result, individuals or organizations that wish to use these

protocols are left to formulate their own implementations. Given the com-

plexity of the algorithms, this can often lead to bugs.

Unfortunately, modelling and testing distributed protocols is not a con-

venient task. Current methods include using formal methods to produce

verifiably correct programs (e.g. Disel [21], Velisarios [18], TLA+ [12]), or

employing domain-specific languages to build and test executable models

of the protocol (e.g. P [8], ModP [6]). While these techniques have been used

Chapter 1. Introduction & Motivation 2

to a good degree of success in some companies [8][16], they have not seen

wide-spread industry adoption in general.

This project aims to provide a more accessible framework for modelling

and simulating consensus protocols, with the intention of testing their safety

properties. The framework allows for the simulation of complex phenom-

ena such as Byzantine faults, modular protocol composition, and asynchrony.

Our intention is to provide a tool to help programmers reduce bugs in the

early stages of protocol implemention, by making it easier to formulate and

test node structures and communication semantics.

Additionally, this framework could be used to inform formal models.

As mentioned above, many protocols are only described informally, and

figuring out how to formalize these statements is a crucial first step in the

verification process. Our work aims to ease the proof effort in two ways:

1. Reducing conceptual load. By providing an existing conceptual frame-

work, programmers only need to think of how nodes should be struc-

tured, and how they should respond to messages. This would reduce

the time taken to go from paper to prototype.

2. Reducing implementation time. Since the framework is written in

OCaml, and the user-specified functions have pre-defined type anno-

tations, translating the protocol to Coq for theorem-proving should be

relatively convenient.

To demonstrate the simulator’s capabilities, we provide an example im-

plementation of a composite Byzantine-fault tolerant protocol: Sharded Byzan-

tine Atomic Commit (SBAC) from a recent paper published by Chainspace [1].

The code can be found on GitHub1.
1https://github.com/daniellok/protocol-simulator

Chapter 1. Introduction & Motivation 3

In summary, we present the following contributions:

1. A framework for simulating consensus protocols, which is expressive

enough to model (Chapter 3):

• Byzantine faults

• Asynchrony

• Composite protocols

2. A method for testing protocol invariants (i.e. predicates which are

true at every stage of a protocol’s execution) using the framework (Sec-

tion 4.3).

3. A sample implementation of the SBAC protocol (simplified) in the

framework, which tests the “SBAC Theorem 2” safety property from

the original Chainspace paper [1] (Chapter 5).

4

Chapter 2

Background Information

This chapter assumes that the reader has little to no knowledge of distributed

systems and consensus protocols. We provide a brief introduction to some

relevant concepts, and describe the internal workings of some popular pro-

tocols. In-depth knowledge of these protocols is not strictly required to un-

derstand the structure of our simulation framework, but we do reference

them in some of our later examples.

2.1 Introduction to Distributed Systems

As businesses grow larger and larger, their computational needs increase

in tandem—they require more processing power to handle requests to their

services, and more storage space for their data. To help deal with these

needs, one can choose to upgrade to a more powerful machine (vertical

scaling), or to purchase more machines to distribute the load (horizontal

scaling) [15]. Since there is a limit on how much processing power a single

machine can have, as demand grows arbitrarily large, horizontal scaling is

often the only realistic choice.

Chapter 2. Background Information 5

A system that uses multiple networked processing units in this manner

is known as a distributed system [22], and ensuring that the system is reli-

able is a non-trivial task. Realistic networks can be unreliable, so messages

between individual components of the system may be lost, delayed, or cor-

rupted. On top of this, the computers themselves may be subject to failure in

the form of crashes (benign failures), or control by an adversary (Byzantine

failures) [23].

Due to the various problems that can arise, any implementation of a dis-

tributed system must include some sort of consensus mechanism [3]. This

mechanism is expected to guarantee that the internal state of each compo-

nent in the system is consistent, or at least that it will eventually be consistent,

even in the face of failures.

As an example of why consensus is important, one can imagine a dis-

tributed database composed of three machines: one acting as a “leader”

from which clients can read and write, and the other two acting as “follow-

ers”, from which clients can only read. When a client writes to the leader,

the leader propagates the result to the followers, which update their local

copy of the database. Now consider the following sequence of events:

1. Suppose all three machines track a value n, initially equal to 1.

2. A client writes n = 2 to the leader.

3. Before the leader can propagate the result, one follower crashes.

4. The leader propagates n = 2 to remaining follower.

When the crashed follower comes back online, it will still have the value

n = 1, while the rest of the machines will have n = 2. Without a consensus

mechanism to prevent this sort of inconsistency from occuring, clients may

Chapter 2. Background Information 6

receive different values when they read n from the system. This is an exam-

ple of a crash-recovery failure, and several popular protocols (e.g. Paxos [11],

Raft [17]) exist to address it. However, it is still considered relatively benign,

since components of the system fail in a fixed way.

Such a failure model is sufficient for closed networks (e.g. internal servers

in a company), but consider if the distributed system is meant to allow pub-

lic participation. The Bitcoin network is a popular example of such a sys-

tem, since anyone can join and (attempt to) contribute blocks to the Bitcoin

ledger. In this case, failures may take an arbitrary form, since a malicious

participant may attempt to subvert the system in any number of ways.

2.2 Byzantine Fault Tolerance

Failures in which nodes exhibit arbitrary behavior are known as Byzantine

faults. The name stems from the “Byzantine Generals Problem”, an allegory

from a paper written by Lamport et. al. in 1982 [14]. The paper describes

a hypothetical situation in which a commanding general must disseminate

instructions to multiple lieutenant generals. However, there is a twist—

some of the generals (of either type) could be traitors. The end goal, as

stated in the original paper, is as follows:

Byzantine Generals Problem. A commanding general must send

an order to his n � 1 lieutenant generals such that:

IC1. All loyal lieutenants obey the same order.

IC2. If the commanding general is loyal, then every loyal lieu-

tenant obeys the order he sends.

Chapter 2. Background Information 7

The fact that the commander might not be loyal is what makes the Byzan-

tine Generals Problem difficult. If the commander were always loyal, then

IC1 and IC2 could be satisfied trivially—a loyal commander would send the

same order to all lieutenants, so the loyal lieutenants only need to follow the

order. However, since the commander is not guaranteed to be loyal, they

could send different orders to each lieutenant. In such a situation, the loyal

lieutenants must find some way to collectively achieve IC1. For example,

they might communicate amongst themselves and devise a fallback plan

if they received different orders (this is tricky, since traitorous lieutenants

might relay incorrect information as in Fig. 2.1).

One important result from the paper is a proof that the Byzantine Gen-

erals Problem is unsolvable if traitors make up at least one third of the to-

tal population. Thus, Byzantine consensus algorithms in general have the

assumption that the total number of nodes in the system must be at least

3 f + 1, where f is the maximum number of faulty nodes the system can tol-

erate. Such algorithms usually achieve consensus by performing a majority

vote after having all nodes compute their outputs independently.

Ultimately, the problem is meant to be an analogy for achieving consen-

sus in an adversarial environment. The commanding general represents an

information source, while the lieutenant generals represent processing units

which rely on said information. The notion of being a “traitor” corresponds

to nodes being faulty in an unpredictable manner.

Chapter 2. Background Information 8

FIGURE 2.1: Example of an unsolvable configuration from the
original paper [14]. Both situations look the same from the

view of Lieutenant 1.

2.3 Relevant Consensus Protocols

As mentioned in the Introduction section, we provide a sample implemen-

tation of the Sharded Byzantine Atomic Commit (SBAC) protocol. This pro-

tocol is interesting because it is a composition of two others—the Practical

Byzantine Fault Tolerance (PBFT) and Two-phase Commit (2PC) protocols.

In this section, we will briefly describe the semantics of all three, and intro-

duce relevant concepts that will be referenced in the rest of this project.

Chapter 2. Background Information 9

2.3.1 Practical Byzantine Fault Tolerance (PBFT) [4]

State Machine Replication

PBFT is a Byzantine-fault tolerant consensus algorithm for state machine

replication. From a high level, a state machine can be thought of as a con-

struction which has [13]:

1. a set S of user-defined states

2. a set C of user-defined commands

3. a set R of user-defined responses

4. a mapping e from (C, S) ! (R, S0). In other words, a transition func-

tion. As Lamport writes, “the relation e(C, S) = (R, S0) means that

executing the command C with the [state machine] in state S produces

the response R and changes the [state machine] to state S0”. It is worth

noting that this mapping must be deterministic, i.e. given the same C

and S, the same R and S0 will be generated.

State machine replication, as the name implies, is simply the process of

making multiple copies (replicas) of an original state machine. This is use-

ful for applications such as the distributed database example in Section 2.1,

where we may want to store the same information on multiple computing

units.

PBFT Semantics

In PBFT, membership of nodes is fixed, meaning that the protocol does not

support arbitrary addition and removal of nodes, and every replica knows

the address of every other replica. These replicas move through a series of

configurations known as views. In a single view, one replica is designated

Chapter 2. Background Information 10

the primary (i.e. the leader), and the rest are backups (followers). The pri-

mary has a few distinct responsibilities, such as receiving, ordering, and

relaying requests from external clients. However, since the algorithm oper-

ates under a Byzantine failure model, it is possible that the primary is faulty

or malicious. To deal with this situation, PBFT has two modes:

1. Normal-case (when the primary is not faulty)

2. View change (when the primary is suspected to be faulty)

For this project, only the normal-case operation has been implemented,

so this section will omit details of the view change algorithm. Hence, for

all phases below, we assume that the primary is not faulty. Additionally,

the algorithm makes use of cryptographic primitives (e.g. hash functions,

authentication, signatures) to ensure message integrity and unforgeability.

However, for simplicity, we will omit details here as well.

During normal-case operation, replicas go through five stages of message-

passing in order to process client requests: request delivery, pre-prepare,

prepare, commit, and finally, reply delivery. In the following sections, we

will briefly explain each phase.

Request Delivery

A request to a system running the PBFT protocol takes the form Request(o, t, c),

where o is the operation to perform, t is the timestamp at which the request

was sent, and c is the client’s identifier or address.

When a client wants to make a request to the system, they send a mes-

sage of the above form to the primary. If they do not know which replica is

Chapter 2. Background Information 11

the primary, or if the primary has recently changed, then they can alterna-

tively send the message to multiple replicas. Non-faulty replicas will then

relay the request to the primary.

Pre-prepare

Once the primary has received the request m, the request is assigned with

a sequence number n. Sequence numbers are used to enforce a total order

on the execution of operations. This is important because the network is

assumed to be asynchronous, so different replicas may receive requests in

different orders.

After this is done, the primary will send a “pre-prepare” message of the

form Pre-prepare(n, m)1 to every other replica. The primary also adds

this message to its internal log—a list of all messages it has received. This

log is used to check some predicates which will be introduced later on.

Prepare

When a replica i receives the pre-prepare message, it begins the next phase

by sending a “prepare” message to all other replicas. This message has the

form Prepare(n, m, i)1, where n and m are taken from the pre-prepare. The

replica then adds both messages (the pre-prepare and the prepare) to its log.

The predicate prepared(n, m, i) is defined to be true when replica i has

the following in its log:

1. One Pre-prepare(n, m) message.

2. At least 2 f different Prepare(n, m, _) messages from other backups.
1 This is a simplification of the original message from the paper, omitting details relat-

ing to view change and low-level memory/network optimization (e.g. hashing, message
piggybacking).

Chapter 2. Background Information 12

Commit

Once prepared(n, m, i) becomes true, replica i sends a “commit” message

to all other replicas. This message takes the form Commit(n, m, i)2 (same

variables as in the Prepare). Much like the in previous phase, the predicate

committed-local(n, m, i) is defined to be true when:

1. Replica i’s log contains 2 f + 1 Commit messages from different repli-

cas.

2. Replica i has executed all previous requests. More formally, all re-

quests from pre-prepares with sequence numbers n0 < n.

Once committed-local(n, m, i) becomes true, replica i executes the

operation o contained in m. Note that because of Condition 2 above, re-

quests can be committed out of order, since they will only be executed (by

non-faulty replicas) in the order dictated by the sequence numbers.

Reply Delivery

After the non-faulty replicas have finished executing the operation, they

individually send some reply to the client, c. This reply is of the form

Reply(t, c, i, r)2, where t is the timestamp from m, c is the client’s address

or identifier, i is the index of the replica, and r is the result of the operation.

The client must wait for f + 1 replies from different replicas with the

same t and r before accepting the result. Since at most f replicas are faulty,

the client can be sure that the reply is valid.

2 See footnote on previous page

Chapter 2. Background Information 13

2.3.2 Two-phase Commit (2PC) [2]

Atomic Commitment

2PC is an atomic commitment protocol (ACP). This class of protocols allows

a set of nodes to either unanimously commit (execute) or abort a transaction.

In other words, if any node decides that the transaction cannot be commit-

ted, then no node will execute it. Nodes communicate their decisions by

voting—they can either vote Yes or No when presented with a transaction.

ACPs are generally not Byzantine fault tolerant, since they do not aim to

handle arbitrary failures.

In Concurrency Control and Recovery in Database Systems [2], Bernstein et.

al. lay down the following properties that are expected of ACPs:

1. All processes that reach a decision reach the same one.

2. A process cannot reverse its decision after it has reached one.

3. The Commit decision can only be reached if all processes voted Yes.

4. If there are no failures and all processes voted Yes, then the decision

will be to Commit.

5. Consider any execution containing only failures that the algorithm is

designed to tolerate. At any point in this execution, if all existing fail-

ures are repaired and no new failures occur for sufficiently long, then

all processes will eventually reach a decision.

In order to satisfy Property 5 for benign failures, the usual version of

2PC defines timeout actions and a recovery protocol. Timeout actions are

default procedures that nodes perform if a set amount of time has passed

without making progress on a transaction. A recovery protocol is a set of

Chapter 2. Background Information 14

instructions that enable a node to “catch up” with the decisions it has missed

during a crash.

For the purposes of this project, we need only concern ourselves with

Properties 1-4. This is because the variant of 2PC used in the SBAC protocol

effectively assumes no node failures. Thus, we will not describe the timeout

actions and recovery protocol below.

2PC Semantics

Like PBFT, the nodes in 2PC are set up in a leader-follower fashion. One

node is designated the coordinator, and the rest are participants. The coor-

dinator is in charge of collating votes from (and relaying the final decision

to) all participants. Step-by-step, the algorithm is:

1. For a given transaction, the coordinator requests votes from the partic-

ipants by sending the VOTE-REQ message. This assumes that partici-

pants know what the transaction is, which can be achieved practically

by including the transaction in the message.

2. Upon receiving the VOTE-REQ message, a participant decides inter-

nally whether or not it can commit the transaction. If so, it sends YES

to the coordinator. If not, it sends NO. If its vote is NO, it no longer needs

to listen to messages from the coordinator, since the final decision will

be to abort.

3. Once the coordinator receives all votes, it can make a decision. As

mentioned above, if all votes are YES, then it decides to commit, and

sends the COMMIT message to all participants. Otherwise, if there is

at least one NO, it sends ABORT. At this point, the coordinator’s job is

done.

Chapter 2. Background Information 15

4. If a participant receives the COMMITmessage, then it executes the trans-

action and updates its state to reflect its execution. Otherwise, it aborts.

At this point, the protocol is complete.

2.3.3 Sharded Byzantine Atomic Commit (SBAC) [1]

Sharding

SBAC is a sharding protocol. As opposed to state machine replication, in

which all nodes share the same state, each node in a sharded system (hereby

referred to as a shard) possesses a disjoint subset of the data. This method

of partitioning is useful in applications where the amount of data is large

enough to make storage on a single machine inefficient.

When we shard a system, we also need a way to determine which data

belongs to which shard. Naturally, we’d prefer that each shard has about

an equal amount of data—if the subsets are imbalanced, then the perfor-

mance gains of sharding would be diminished. Solutions to this problem

are generally left as individual design decisions, but most involve taking

the cryptographic hash of some part of the data, and using that as a key to

determine the shard.

SBAC Architecture

Shards in the SBAC protocol are groups of nodes which maintain a common

state through PBFT (see Fig. 2.2). In typical sharding fashion, each of these

groups contains a different subset of data. This data is a list of “objects”—

the exact structure of which would be implementation-specific. The pur-

pose of these objects is to be consumed and created through user-supplied

Chapter 2. Background Information 16

“transactions”. The general flow of a transaction through the SBAC protocol

is as follows:

1. Before sending the transaction to the system, the user computes the

expected outputs locally.

2. The transaction T (which contains a list of the necessary input objects,

the procedures to be performed on those objects, and the expected list

of output objects) is sent to all concerned shards in the SBAC system.

Concerned shards are simply shards which are in charge of any objects

involved in the transaction.

3. Within each concerned shard, the transaction is validated indepen-

dently (we will omit details here for simplicity). If it is deemed accept-

able by all shards, and if all input objects are in the “active” state, then

the input objects will be consumed (i.e. rendered inactive such that

no further transactions may use them), and the output objects will be

created. If even one shard finds it unacceptable, then the transaction

is aborted.

4. Each shard informs the user of the status of the transaction.

Differences from 2PC

As it was implied above, the shards process transactions through a variant

of the 2PC protocol. There are a few key differences between SBAC’s atomic

commit protocol and 2PC:

1. There is no centralized coordinator. The user/client initiates a trans-

action T by sending a Prepare(T) message to all concerned shards.

This replaces the VOTE-REQ message.

Chapter 2. Background Information 17

FIGURE 2.2: SBAC system architecture

2. As a consequence of 1., shards send their votes to all other concerned

shards through the Prepared(commit/abort, T) message. This re-

places the YES/NO messages.

3. Once shards receive all votes from all other concerned shards, they

either commit T if all votes were commit, or abort if there was at least

one abort.

Failure Model

Up to this point, we have not defined the failure model for SBAC—if it is

to be Byzantine fault tolerant, why would we use a non-Byzantine fault

tolerant protocol for inter-shard communication? In the original paper, the

authors address this concern by defining two separate fault models:

1. Honest Shards. Under the Honest Shards failure model, at most f

nodes in each shard can be faulty. Since each shard is of size 3 f + 1,

we can effectively consider all shards to be non-faulty.

Chapter 2. Background Information 18

2. Dishonest Shards. Under the Dishonest Shards failure model, more

than f nodes can be faulty (i.e. shards may not work properly). In

this case, SBAC cannot guarantee correctness. However, the authors

describe methods through which faulty nodes can be identified and

banned/blacklisted from participating in the protocol.

For simplicity, we will only be considering the Honest Shards threat model

in this project. Hence, we omit all details related to identifying and remov-

ing faulty shards.

19

Chapter 3

Simulator Semantics

In this chapter, we provide a detailed rundown of our simulation frame-

work’s internals. We describe the high-level architecture, what is required

of the user, and how to perform a simulation run.

3.1 Overview

Our simulator’s implementation takes the form of a module which is sep-

arately defined for each protocol we want to model (since every protocol

will have different notions of nodes and messages). In OCaml, this can be

achieved cleanly by declaring a module type (see Sim_type in Fig. 3.1),

and using it to parameterize a module (see Sim in Fig. 3.1). This type of

parameterized module is also known as a functor. The user does not need

to modify the functor itself—only the module type.

There are four types, and four functions that a user needs to define in

order to begin simulating a protocol. The types are:

1. _node : The structure of a node in the network

2. _request : Client-to-system request messages (e.g. Request in PBFT)

3. _internal : Internal node-to-node messages (e.g. votes in 2PC)

Chapter 3. Simulator Semantics 20

FIGURE 3.1: High-level overview of the framework. User-
defined elements are indicated with red dashed lines. The ar-
rows indicate dependency; e.g. the module Sim is dependent

on the Sim_type.

4. _reply : System-to-client reply messages (e.g. Reply in PBFT)

And the functions (refer to Fig. 3.1 for explicit type annotations):

1. gen_nodes : A function to generate a list of nodes in their initial states

(i.e. before any interactions have taken place).

Chapter 3. Simulator Semantics 21

2. deliver_request : How a node responds to a client request. Prac-

tically, this means that the function takes a request and a node, and

returns a response (optional), a client reply (optional; only if the pro-

tocol has finished its last stage), and the updated node.

3. deliver_internal : How a node responds to an internal message—

similar to 2.

4. extra_round_actions : A function to perform arbitrary actions at

the end of a round. We use this function to execute state updates which

do not cleanly fit into the message-response framework. For example,

one rule in PBFT is that a node is only allowed to execute an operation

after all operations with lower sequence numbers have been executed.

To capture this behavior, we could use this function to check for, and

execute, any pending commits in our nodes. This particular behav-

ior could be baked into the deliver_internal function as well, but

sometimes we might want to manipulate the simulator itself (rather

than the nodes), in which case we have no alternative but to use this

function.

Once the user defines these types and functions, they can instantiate the

Sim_type module signature, and use it to define a Sim module for their

protocol (see Fig. 3.2 for an example).

Chapter 3. Simulator Semantics 22

module PBFT_type : (Sim_type

with type _node = replica

and type _request = pbft_request

and type _internal = pbft_internal

and type _reply = pbft_reply) =

struct
...

end;;

module PBFT_simulator = Sim (PBFT_type);;

FIGURE 3.2: Example instantiation of Sim_type and the Sim
module for a PBFT simulator (truncated for brevity).

3.2 Simulator Module API

At this point, we have described how the simulator is structured, but not

how it works—what exactly does a simulation run look like? In this sec-

tion, we describe the internal logic of the Sim module, and explain the three

methods which are relevant for users. Note that in the following sections,

the word “simulator” refers to an instance of a Sim_type._simulator

record. This structure encapsulates the system’s state throughout a simula-

tion run.

3.2.1 simulate_round

Nodes in a distributed system communicate via a network, but our frame-

work is meant to run locally. Hence, we have chosen to simulate the net-

work via synchronous “rounds” of message passing, much like in Charron-

Bost and Schiper’s Heard-Of model [5].

At each “round”, the simulator delivers a set of messages to all nodes,

Chapter 3. Simulator Semantics 23

approximating a one-to-all multicast. These messages might be client re-

quests, or internal messages generated by nodes in the previous round. For

simplicity’s sake, if a node is not meant to receive a message, it simply ig-

nores it. Otherwise, the node immediately generates a response according

to the simulated protocol’s rules (i.e. the user-defined deliver_request

and deliver_internal functions). These responses are collected, and

will be delivered in the next round. In the case where the response is meant

to be delivered to the client, it is put in a separate list (client_responses)

where it can be handled appropriately.

This series of actions is performed by the simulate_round method

contained in the Simmodule. The argument to this function is a _simulator

record, which we shall name sim (with a lowercase “s” to distinguish it

from the module). To simulate one round, the function does a few things:

1. For every request r in sim.client_requests, and for every node

n in sim.nodes, call the user-defined deliver_request function

using r and n as arguments.

2. For each r and n, the deliver_request function will output a triple

of:

i. An optional _internal message (a response)

ii. An optional _reply message (an update for the client)

iii. A mandatory _node (the node’s updated state after processing r)

3. For the outputs above, do:

i. Append the response (if it exists) to sim.next_message_queue

ii. Append the reply (if it exists) to sim.client_replies

iii. Replace n in sim.nodes with the updated node

Chapter 3. Simulator Semantics 24

4. Repeat 1-3, but with sim.message_queue and deliver_internal

instead of sim.client_requests and deliver_request.

5. Once all requests and messages have been delivered, prepare for the

next round by setting:

i. sim.message_queue = sim.next_message_queue

ii. sim.next_message_queue = []

6. Call extra_round_actions on sim to obtain an updated simulator.

7. Increment the sim.timestep field, indicating that the round has ended.

3.2.2 gen_simulator

Naturally, before we can begin simulating rounds, we need to have an initial

value for sim. To obtain this initial value, we simply call the gen_simulator

function with an integer n (the number of desired nodes) as an argument.

Internally, it uses the user-defined function gen_nodes to produce a list of

nodes as an initial value for sim.nodes. All other fields in the simulator

are initialized as the empty list, and sim.timestep begins at 0.

3.2.3 add_request

In order to keep the simulated protocol separate from its potential applica-

tions, we do not include the external client as part of the model. Instead, the

user is free to add requests at any timestep via the add_request function.

This function takes a _simulator and a _request, and adds the request

to the simulator’s client_requests field.

By separating the client from the protocol, the user can use sim as a

“black box”—interacting with it only by adding requests, simulating rounds,

and periodically inspecting sim.client_replies for status updates.

25

Chapter 4

Modelling & Testing Complex

Phenomena

Now that we have introduced our simulator’s internal mechanisms, we can

demonstrate how it can be used to model more complex phenomena such

as benign/Byzantine faults, composite protocols, and asynchrony. Further-

more, we describe a way to test protocol invariants by performing predicate-

checking on randomized simulation runs.

4.1 Fault Tolerance

Fault-tolerance is one of the central concerns of distributed computing, and

so any model of a consensus protocol must be able to simulate the notion

of failures. In our model, this can be achieved in multiple ways, but per-

haps the most convenient method is to add an is_faulty field to the node

structure (see Fig. 4.1).

Chapter 4. Modelling & Testing Complex Phenomena 26

type replica = {

id : int;

... (* transaction-specific data types *) ...

log : pbft_internal list;

seq_num : int;

last_exec : int;

primary : bool;

is_faulty : bool;

};;

FIGURE 4.1: An example structure for a PBFT replica

The value of this field can be checked in the deliver functions, and

cause the functions to follow different execution paths. For example, simu-

lating a crashed node could look like:

let deliver_internal (m : _internal) (n : _node) =

if n.is_faulty

then (None, None, n) (* no responses, no updates *)

else (...);; (* perform appropriate actions *)

FIGURE 4.2: Example deliver_internal function simulat-
ing a crash failure

Byzantine failures can be modelled in a similar fashion, except instead

of returning Nones, the functions could be made to return random or in-

tentionally confusing messages. However, this alone would not be enough

freedom for a Byzantine adversary—recall that a key aspect of a Byzantine

node is the ability to send different messages to different nodes. Therefore,

to model a Byzantine node, we need two things:

1. The ability to send messages to specific nodes (since messages are mul-

ticasted to all nodes by default).

Chapter 4. Modelling & Testing Complex Phenomena 27

2. The ability to send multiple messages per round (since the deliver

functions only return a single message option).

Fortunately, our framework is extensible enough to allow such behaviors

(see Fig. 4.3 for a concrete example). For the concerns above, we could:

1. Declare a message sub-type which includes a list of recipients.

2. Specify _internal as a list of the messages declared in 1.

type order =

| Attack

| Retreat;;

(* message sub-type *)

type message =

| Command of id list * order (* sent by Commander *)

| Relay of id list * order;; (* sent by Lieutenants *)

(* to be used as _internal in the simulator *)

type internal = message list;;

FIGURE 4.3: Example message structure that could be used
in a model of the Byzantine Generals Problem (see Fig. 2.1).
The id list type would be used to indicate the IDs of the

message’s intended recipients.

From here, we can modify the deliver function much like we did in the

benign case. For every message m contained in the _internal, if a node

n’s ID is not in the list of m’s intended recipients, we simply move on to the

next message without performing any state updates on n.

Chapter 4. Modelling & Testing Complex Phenomena 28

4.2 Modular Composition

A powerful feature of our framework the ability to nest simulators. This

functionality can be used to model composite protocols in a modular man-

ner. For example, to build our model of the SBAC protocol, we first built a

standalone PBFT simulator (see Fig. 3.2 for the truncated definition). Then,

we included the PBFT simulator type in the specification of an SBAC node:

type shard = {

id : int;

log : internal list;

pbft_nodes : PBFT_type._simulator;

};;

FIGURE 4.4: The structure of an SBAC node (a shard). The
PBFT_type module type is independently defined.

In the parent shard structure, the pbft_nodes field represents the col-

lection of PBFT replicas which make up the shard (see Fig. 2.2). Whenever

the shard needs to make a decision or execute a transaction, it does so by

initiating requests to the PBFT subsystem. Effectively, the shard acts as the

client to its internal pbft_nodes.

Consequently, this means that we need to synchronize the larger SBAC

simulator with the internal PBFT simulators—when we simulate a round

of message-passing between shards, we should also simulate a round within

the shards. Fortunately, this can be done conveniently in our framework by

using the extra_round_actions function. At every round, we simply

call PBFT_sim.simulate_round on the internal PBFT simulators in the

shards, and possibly handle any replies that might appear. A sample in

OCaml might look like:

Chapter 4. Modelling & Testing Complex Phenomena 29

let advance_shard (sd : shard) : shard =

let new_nodes = PBFT_sim.simulate_round sd.pbft_nodes in
... (* checking for replies in PBFT simulator *) ...

{ sd with pbft_nodes = new_nodes;

... (* other updates *) ... }

(* to be used in the Sim_type module definition *)

let extra_round_actions (sim : _simulator) : _simulator =

let new_shards = List.map advance_shard sim.nodes in
{ sim with nodes = new_shards;

... (* other updates *) ... }

FIGURE 4.5: Advancing the internal PBFT simulators

Note that this deviates slightly from the real-world implementation—

the model treats shards as a separate entity, when actually the shard.id

and shard.log fields would be baked into each individual PBFT replica.

However, separating the components as we have done allows us to build

and test components of the system independently, which would be particu-

larly important for large, complex protocols.

4.3 Predicate Checking

Ultimately, the goal of modelling and simulating protocols is to verify that

they work. Therefore, we should be able to define and test notions of what it

means to be “correct”. Such a notion could come in the form of a statement

describing some guarantee of the system. For example, the authors of the

Chainspace paper state the following of SBAC (SBAC Theorem 2):

Under the ‘honest shards’ threat model, no two conflicting trans-

actions, namely transactions sharing the same input will be com-

mitted. [1]

Chapter 4. Modelling & Testing Complex Phenomena 30

This is an example of a safety property—a guarantee that a certain event

will never happen (committing two conflicting transactions). In addition to

safety properties, protocol designers are also interested in liveness proper-

ties—guarantees that an event will eventually happen (e.g. that some trans-

action will be committed).

Safety properties can be formulated as predicates on the system’s state—

for example, “for all committed transactions in sim.client_replies, no

two transactions share any inputs (no conflicts)”. This is a statement whose

truth we can programmatically assert at every round of a simulation run. To

produce a negative test run, we might manually add two conflicting trans-

actions to the system, and verify that only one of them gets committed after

a certain number of rounds.

Unfortunately, liveness is a bit more complicated to model, since tempo-

rary violations of a predicate can be tolerated as long as it will hold at some

point in the future. Taking the example above, it would be acceptable that

no transactions are currently committed, as long as some will be committed

in the future. As of now, our framework only supports modelling safety

properties, and the sections below will describe how it might be done.

4.3.1 Schedule Generation & Execution

While manually constructing test cases might work for small sanity checks,

we would eventually want to scale up and test that the predicates still hold

for a series of random conflicting and non-conflicting transactions. In or-

der to do this, we need to build a randomized “schedule”—a list-of-lists of

instructions for the simulator to perform:

Chapter 4. Modelling & Testing Complex Phenomena 31

type instruction =

| Add_transaction of transaction

| ... (* other instructions *) ...;;

type schedule = (instruction list) list;;

FIGURE 4.6: Type definition of a schedule

These instructions can be anything—for example, one could have in-

structions to add transactions, drop messages, or even to crash/revive nodes.

The programmer simply needs to define a execute_instruction func-

tion, which describes how to modify a _simulator given an instruction.

Executing a schedule involves the following:

1. Before round i, execute all the instructions (if any) contained in the i-th

schedule element. For example, if the instruction is Add_transaction

t, then before the round starts, we would construct a request to process

t, and add it to sim.client_requests.

2. Call the simulate_round function on the simulator. This brings us

to round i + 1.

3. For all predicates we want to test, check that they hold.

4. Repeat 1-3 with i = i + 1, until all elements in the schedule have been

executed.

Using a random transaction/instruction generator, one can generate a

schedule of arbitrary length, which would allow for complex execution flows

that would be difficult to create manually.

Chapter 4. Modelling & Testing Complex Phenomena 32

4.4 Asynchrony

Asynchrony is one of the main confounding factors of a distributed proto-

col. Therefore, having fully synchronous rounds in the simulator may not

be desirable, as certain behaviors would never be simulated (e.g. transac-

tions being committed out of order, timeouts). However, asynchrony can be

built into the framework in a few ways:

1. Dropping messages. In the extra_round_actions function, ran-

domly delete some messages from the queue. This could also be done

by adding a Drop_messages instruction to the schedule.

2. Delaying messages. In the extra_round_actions function, ran-

domly move a subset of messages from sim.message_queue to sim.

next_message_queue. This could also be done by adding a Delay_

messages instruction to the schedule.

Of course, moving from a synchronous model to an asynchronous model

means that we have to include some notion of time tracking in order for the

nodes to execute timeout actions. One convenient method might be to add

a “timeout counters” field to the node structure. This field could be defined

as a (int * transaction_id) list, where the integer represents the

number of elapsed rounds since a relevant message was received for the

associated transaction.

At every round, this integer would be incremented, or reset to 0 if a rele-

vant message was received. If the counter grows too large (i.e. the node has

been waiting for too long), then a timeout action can be executed. Other-

wise, if the transaction is committed or aborted, then we can simply remove

the tuple from the list.

33

Chapter 5

SBAC Implementation & Findings

As mentioned in the introduction, we have built a simplified implementa-

tion of the SBAC protocol using our framework. In this chapter, we explain

how the instantiation was done for the PBFT module (the SBAC module is

relatively simple, and is more or less covered through Section 4.2 and Fig.

5.1). We also describe our findings from performing automated random

testing of a safety property from the Chainspace paper.

5.1 PBFT Module

Each shard in the SBAC system uses a collection of PBFT nodes in order to

maintain its state. In this section, we detail the implementation of the PBFT

module, and how it is used to support SBAC’s transaction framework.

5.1.1 Simplifications

In this sub-section, we detail the assumptions made in our implementation

of PBFT in order to simplify the protocol to a manageable level. These as-

sumptions can be addressed in future improvements to the work.

Chapter 5. SBAC Implementation & Findings 34

FIGURE 5.1: Flow of an SBAC transaction. Dashed outlines
are actions that occur within the PBFT nodes. Solid outlines

are actions that occur in the SBAC shards.

1. Only normal-case operation. We do not implement PBFT’s “view-

change” algorithm, which means in particular that leaders cannot be

faulty.

2. Byzantine nodes behave randomly. We do not implement “smart”

Chapter 5. SBAC Implementation & Findings 35

Byzantine behavior in the nodes, so a Byzantine node will simply send

out random messages.

5.1.2 Node Structure

Figure 4.1 has a sketch of a PBFT replica’s structure, but with the transaction-

specific data types omitted. This subsection will fill that gap, and describe

exactly what fields are necessary for an SBAC transaction. In SBAC, trans-

actions are defined over objects, which we define arbitrarily like so:

type obj = {

id : id;

owner : id;

value : int;

};;

FIGURE 5.2: Object type definition. The owner and value

fields are arbitrary, and do not have an impact in our imple-
mentation. However, in a real system, such fields might be

used for transaction validation.

Additionally, to prevent transactions from using the same objects, we

must introduce the notion of locks. Once a shard begins processing a trans-

action, it places a lock on the transaction’s input objects. If another transac-

tion wishes to use a locked object, it is immediately rejected. These locks are

held until the transaction is either committed or aborted. In our implemen-

tation, we define a lock as:

Chapter 5. SBAC Implementation & Findings 36

type lock = {

obj_id : int;

tx_id : int;

};;

FIGURE 5.3: Lock type definition. The obj_id field refers to
the ID of the locked object, while the tx_id field refers to the

ID of the transaction that is currently holding the lock.

Putting the two together, the transaction-specific data types that we need

are simply a list of objects, and a list of locks!

type replica = {

id : int;

objects : obj list; (* active objects *)

locks : lock list; (* locks held *)

... (* See Fig. 4.1 *) ...

};;

FIGURE 5.4: Transaction-specific data types for a PBFT node
in an SBAC system

5.1.3 Request Structure

The PBFT module is responsible for the heavy lifting when it comes to ex-

ecuting SBAC transactions. In other words, an SBAC shard relies upon its

internal PBFT subsystem to check whether a transaction is possible, and if

so, to execute it.

As such, we have defined a few procedures that the replicas can per-

form. When the client (i.e. the SBAC shard) makes a request to the PBFT

system, it can either ask the replicas to decide if a procedure is possible, or

to actually execute the procedure.

The procedures and actions involved to execute them are as follows:

Chapter 5. SBAC Implementation & Findings 37

type pbft_procedure =

| Consume of obj list (* consume inputs *)

| Create of obj list (* create outputs *)

| Release of obj list;; (* release locks on objs *)

type operation =

| Decide of pbft_procedure

| Execute of pbft_procedure;;

type pbft_request =

| Request of (id * operation);; (* tx_id * operation *)

FIGURE 5.5: PBFT request structure. The id in the Request
type refers to the ID of the transaction in progress. Refer to

Fig. 5.1 to see how these actions fit together.

1. Consume(inputs). Replica removes inputs from its list of objects.

2. Create(outputs). Replica adds outputs to its list of objects.

3. Release(objs). Replica removes all locks which contain objs from

its list of locks, but only if the tx_id from the request matches the

tx_id holding the lock.

5.1.4 Reply Structure

The replies that the PBFT nodes provide are quite straightforward. If the

request was to decide whether a procedure is possible, then the nodes re-

spond with a decision (either Commit or Abort). If it was to execute a pro-

cedure, then the nodes reply with their updated state after the procedure

has been completed (either New_values if the object list was modified, or

New_locks if the lock list was modified).

In accordance with PBFT’s specification, the client waits for a super-

majority of nodes to emit the same reply before accepting the result as valid.

Chapter 5. SBAC Implementation & Findings 38

type decision =

| Commit

| Abort;;

type pbft_status =

| Decision of decision

| New_values of obj list

| New_locks of lock list;;

type pbft_reply =

(* replica id * tx_id * status *)

| Reply of (id * id * pbft_status);;

FIGURE 5.6: PBFT reply structure.

5.2 Automated Testing & Findings

As mentioned in the previous chapter, the authors of the SBAC protocol

state that under the “honest shards” threat model, no two committed trans-

actions will share any input objects (SBAC Theorem 2 [1]). We have en-

coded this notion as a predicate on the handled_replies field of the

SBAC simulator (this is where transactions go after they have been com-

mitted/aborted).

In order to check the predicate, we traverse the list of transactions con-

tained in handled_replies, maintaining a list of “seen” input objects as

we go (we name this list objs). For all transactions tx with the status

Committed, we assert that tx.inputs and objs are disjoint. If this as-

sertion succeeds, then we set objs = objs @ tx.inputs, and continue

traversing the list of handled replies. If it fails, then the predicate does not

hold, and we can stop execution early.

Chapter 5. SBAC Implementation & Findings 39

In order to automate test runs of the protocol, we generate a schedule

(see Chapter 4.3.1). The schedule has only one instruction: add_transaction.

However, due to the nature of the SBAC system, adding randomly-generated

transactions results in very few actual commitments. This is because in its

initial state, the system has no active objects—hence, any transaction that

requires inputs will be rejected.

To solve this problem, we either need to initialize the system with a set

of active objects, or we need to have a notion of genesis transactions—

transactions which produce outputs without any inputs. We have chosen

to take the latter approach, as it seemed to be the more flexible option.

When generating a schedule of length n, we define three phases:

1. Genesis. The first 10% of elements in our schedule consist only of

genesis transactions. These serve to give the SBAC system an initial

population of active objects, which results in more successful transac-

tions being committed down the line. In order to know what object

IDs exist in the system (and to ensure they are unique), we maintain

an integer reference obj_id which we increment with every output

object generated.

2. Settling. The next 10-12 elements of the schedule are just the empty

list. This phase is intended to allow all transactions from Phase 1 to

finish committing, as 10-12 is the amount of rounds necessary for the

system to finish processing a transaction.

3. Normal operation. The rest of the schedule is composed of random

transactions. We define a maximum of three add_transaction in-

structions per schedule element. In each of the transactions, the list

Chapter 5. SBAC Implementation & Findings 40

of input object IDs is sampled uniformly from the range [0,obj_id].

The output objects are generated as in the genesis transactions.

In 50 independent executions of randomly generated schedules (of length

1000), we found no violations of the above predicate. This gives us confi-

dence that under the “honest shards” threat model, the safety property as

laid out by the Chainspace authors does indeed hold.

For further research, it would have also been interesting to investigate

the property under the “dishonest shards” threat model to verify that the

property does not hold. However, demonstrating this would likely require

an implementation of “smart” Byzantine behavior, which would have been

slightly out of scope for this project.

41

Chapter 6

Related Work

This chapter will focus on how our project relates to existing work done

on modelling, simulating, and validating distributed systems. Generally,

work done in this field follows one of two methodologies: formal methods,

and systematic testing [6]. Our framework falls into the latter category, but

below, we will provide some context for both.

6.1 Formal Methods

Formal methods are an active area of research which employ mathematical

methods to prove properties about computer programs [19]. To formalize

and verify a program is to construct a mathematical model of it (i.e. devise

a formal specification), and prove that it exhibits some desired properties.

This is quite an involved process, but proof assistants such as Coq [24] exist

to help to ease the burden by mechanizing some steps of the proofs.

However, the authors of Verdi [25] note that there is usually a significant

difference between programs and their formalizations. While specifications

may aid in designing systems, their practical construction often differs from

what was planned. Furthermore, protocols which have been designed and

Chapter 6. Related Work 42

published in specific ways are often tweaked to fit an application’s individ-

ual needs.

To help bridge this gap, the authors have used Coq to develop a frame-

work which allows programmers to produce specifications and proofs about ex-

ecutable distributed algorithms. An implementation of a distributed pro-

gram using Verdi reduces the necessary verification effort by allowing the

developer to reason separately about the correctness of their application,

and the fault model under which it operates.

Another recent development in the space of verified distributed sys-

tems is Disel [21], a framework for compositionally reasoning about appli-

cations. In software development, large programs are typically composed of

many independent modules which interact with each other. Keeping a large

project modular is a good way to separate concerns and reduce the burden

of knowledge on developers, who only need to know what a module does,

without worrying about the how.

However, as the authors of Disel describe, efforts in formal verification

rarely possess the modularity of large software projects. This is a problem

because two systems which rely on the same protocol would likely have to

be verified independently, even though the verification effort should ide-

ally only be focused on what was built on top of the shared protocol. Disel

addresses this problem, and using their framework, programmers can im-

plement and verify primitive constructs such as distributed protocols, and

proceed to build applications on top of them (as long as they satisfy certain

specifications).

The projects above have made invaluable contributions toward reason-

ing about protocols that handle benign failures. However, the focus of this

Chapter 6. Related Work 43

project is on Byzantine fault tolerant protocols. In this space, the authors of

Velisarios [18] have produced a verified implementation of the PBFT proto-

col [4], along with a framework to aid in reasoning about arbitrary faults.

6.2 Systematic Testing

Systematic testing generally refers to the act of executing of a program in or-

der to find bugs. Since programs often have complicated control flows, the

goal is to generate test cases which validate as many execution paths as pos-

sible. If a suite of test cases can reach a large percentage of branches in the

code, then it is said to have good code coverage. For small programs, good

tests can be generated manually. However, as programs grow larger and

more complex, the number of branches in the execution tree grows expo-

nentially. In order to feasibly verify complicated systems, automated testing

is a necessity.

One method to automatically generate test cases is, of course, to simply

generate them at random. However, this naturally results in many redun-

dant tests, since we are likely to generate inputs for which the execution

paths are exactly the same [7][20]. Since at least 1976, work has been done

on generating smarter test cases through a technique called symbolic exe-

cution [10]. Rather than executing the program with real inputs (concrete

execution), the symbolic interpreter leaves the inputs as variables (symbols),

and keeps track of all the different branching conditions and constraints. At

the end, it is possible to determine real values for the symbols (i.e. construct

a test case that leads to a specific branch of code) by solving equations de-

rived from the constraints.

Chapter 6. Related Work 44

While this was a large advancement in automated testing, it is often

computationally intractable to analyze the entire control flow for large pro-

grams. Additionally, distributed systems give rise to a whole host of other

complications, such as non-deterministic outputs, deadlocks, and liveness

issues. Thus, researchers have been actively exploring ways to build the

execution tree for testing distributed systems, and one of the better-known

projects in this area is the SPIN model checker [9]. In order to deal with the

extremely large set of potential system states, SPIN uses many optimiza-

tions such as partial order reduction and on-the-fly checking to reduce the

problem’s complexity.

More recently, there has been the P programming language [8], and the

ModP system [6] built on top of it (and from which our project draws inspi-

ration). P is a language for programmers to implement and test distributed

systems code. From the original paper:

A P program is a collection of machines. Machines communicate

with each other asynchronously through events.

In order to implement a protocol, the programmer must specify the struc-

ture of the machines and events. P programs can be verified via the built-in

PTester, or compiled to C as an executable. ModP is an extension of P, which

allows for more complex programs to be built. In ModP, users can imple-

ment systems as individual modules, and have them interact as a larger

whole.

Chapter 6. Related Work 45

6.3 Our Project

The intent of our framework is to provide a tool to support rapid prototyp-

ing of protocol implementations. As compared to the work above, it is not

as powerful nor as fully-featured. However, we have endeavored to make it

accessible and intuitive—asking little of the programmer, while still allow-

ing for a large degree of expressivity.

46

Chapter 7

Conclusion & Future Work

As distributed systems become more and more critical in our day-to-day

lives, the ability to be sure about what they do becomes necessary. This

project was created to assist programmers in their pursuit of that goal.

While our framework provides neither the ability to produce full for-

malizations nor executable code, we believe that it will be useful for those

who want to prototype and test ideas quickly, without the learning curve

associated with some of the more established works we have described.

We see this tool as a good fit for programmers who are in the ideation

phase, prior to the actual implementation or formal verification of a proto-

col. The framework’s ability to test protocol invariants makes it useful for

quickly identifying errors in the early stages of experimentation.

Further work on this project would be focused around finding a way to

automatically translate the simulator’s semantics into Coq, which would be

a large step toward building formally verified distributed systems conve-

niently. Additionally, we could investigate ways to model and test liveness

properties, which would add a great deal of value even falling short of for-

mal verification.

47

Bibliography

[1] Mustafa Al-Bassam, Alberto Sonnino, et al. “Chainspace: A Sharded

Smart Contracts Platform”. In: CoRR abs/1708.03778 (2017). arXiv:

1708.03778. URL: http://arxiv.org/abs/1708.03778.

[2] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Con-

currency Control and Recovery in Database Systems. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 1987. Chap. 7, pp. 226–

240. ISBN: 0-201-10715-5.

[3] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduction

to Reliable and Secure Distributed Programming. 2nd. Springer Publish-

ing Company, Incorporated, 2014. ISBN: 3642423272, 9783642423277.

[4] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tol-

erance”. In: Proceedings of the Third Symposium on Operating Systems

Design and Implementation. OSDI ’99. New Orleans, Louisiana, USA:

USENIX Association, 1999, pp. 173–186. ISBN: 1-880446-39-1. URL: http:

//dl.acm.org/citation.cfm?id=296806.296824.

[5] Bernadette Charron-Bost and André Schiper. “The Heard-Of model:

computing in distributed systems with benign faults”. In: Distributed

Computing 22.1 (2009), pp. 49–71. ISSN: 1432-0452. DOI: 10.1007/

s00446- 009- 0084- 6. URL: https://doi.org/10.1007/

s00446-009-0084-6.

http://arxiv.org/abs/1708.03778
http://arxiv.org/abs/1708.03778
http://dl.acm.org/citation.cfm?id=296806.296824
http://dl.acm.org/citation.cfm?id=296806.296824
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6

BIBLIOGRAPHY 48

[6] Ankush Desai et al. Compositional Programming and Testing of Dynamic

Distributed Systems. Tech. rep. UCB/EECS-2018-95. EECS Department,

University of California, Berkeley, 2018. URL: http://www2.eecs.

berkeley.edu/Pubs/TechRpts/2018/EECS-2018-95.html.

[7] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed

Automated Random Testing”. In: Proceedings of the 2005 ACM SIG-

PLAN Conference on Programming Language Design and Implementation.

PLDI ’05. Chicago, IL, USA: ACM, 2005, pp. 213–223. ISBN: 1-59593-

056-6. DOI: 10.1145/1065010.1065036. URL: http://doi.acm.

org/10.1145/1065010.1065036.

[8] Vivek Gupta et al. P: Safe Asynchronous Event-Driven Programming.

Tech. rep. 2012. URL: https://www.microsoft.com/en-us/

research / publication / p - safe - asynchronous - event -

driven-programming/.

[9] Gerard J. Holzmann. “The Model Checker SPIN”. In: IEEE Trans. Softw.

Eng. 23.5 (May 1997), pp. 279–295. ISSN: 0098-5589. DOI: 10.1109/

32.588521. URL: https://doi.org/10.1109/32.588521.

[10] James C. King. “Symbolic Execution and Program Testing”. In: Com-

mun. ACM 19.7 (July 1976), pp. 385–394. ISSN: 0001-0782. DOI: 10.

1145/360248.360252. URL: http://doi.acm.org/10.1145/

360248.360252.

[11] Leslie Lamport. “Paxos Made Simple”. In: ACM SIGACT News (Dis-

tributed Computing Column) 32, 4 (Whole Number 121, December 2001)

(2001), pp. 51–58. URL: https://www.microsoft.com/en-us/

research/publication/paxos-made-simple/.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-95.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-95.html
https://doi.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1065010.1065036
http://doi.acm.org/10.1145/1065010.1065036
https://www.microsoft.com/en-us/research/publication/p-safe-asynchronous-event-driven-programming/
https://www.microsoft.com/en-us/research/publication/p-safe-asynchronous-event-driven-programming/
https://www.microsoft.com/en-us/research/publication/p-safe-asynchronous-event-driven-programming/
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/

BIBLIOGRAPHY 49

[12] Leslie Lamport. “Specifying Concurrent Systems with TLA+”. In: (1999),

pp. 183–247. URL: https://www.microsoft.com/en-us/research/

publication/specifying-concurrent-systems-tla/.

[13] Leslie Lamport. “The Implementation of Reliable Distributed Multi-

process Systems”. In: Computer Networks 2 (1978), pp. 95–114. URL:

https://www.microsoft.com/en-us/research/publication/

implementation- reliable- distributed- multiprocess-

systems/.

[14] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine

Generals Problem”. In: ACM Transactions on Programming Languages

and Systems (1982), pp. 382–401. URL: https://www.microsoft.

com/en-us/research/publication/byzantine-generals-

problem/.

[15] M. Michael et al. “Scale-up x Scale-out: A Case Study using Nutch/Lucene”.

In: 2007 IEEE International Parallel and Distributed Processing Sympo-

sium. 2007, pp. 1–8. DOI: 10.1109/IPDPS.2007.370631.

[16] Chris Newcombe, Tim Rath, et al. “Use of Formal Methods at Amazon

Web Services”. In: (2014). URL: http://lamport.azurewebsites.

net/tla/formal-methods-amazon.pdf.

[17] Diego Ongaro and John Ousterhout. “In search of an understandable

consensus algorithm”. In: 2014 {USENIX} Annual Technical Conference

({USENIX}{ATC} 14). 2014, pp. 305–319.

[18] Vincent Rahli, Ivana Vukotic, et al. “Velisarios: Byzantine Fault-Tolerant

Protocols Powered by Coq”. In: Programming Languages and Systems.

https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://www.microsoft.com/en-us/research/publication/implementation-reliable-distributed-multiprocess-systems/
https://www.microsoft.com/en-us/research/publication/implementation-reliable-distributed-multiprocess-systems/
https://www.microsoft.com/en-us/research/publication/implementation-reliable-distributed-multiprocess-systems/
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://doi.org/10.1109/IPDPS.2007.370631
http://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
http://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf

BIBLIOGRAPHY 50

Cham: Springer International Publishing, 2018, pp. 619–650. ISBN: 978-

3-319-89884-1.

[19] John Rushby. Formal Methods and the Certification of Critical Systems.

Tech. rep. SRI-CSL-93-7. Also issued under the title Formal Methods

and Digital Systems Validation for Airborne Systems as NASA Contrac-

tor Report 4551, December 1993. Menlo Park, CA: Computer Science

Laboratory, SRI International, 1993.

[20] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit

Testing Engine for C”. In: SIGSOFT Softw. Eng. Notes 30.5 (Sept. 2005),

pp. 263–272. ISSN: 0163-5948. DOI: 10.1145/1095430.1081750.

URL: http://doi.acm.org/10.1145/1095430.1081750.

[21] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. “Programming

and Proving with Distributed Protocols”. In: Proc. ACM Program. Lang.

2.POPL (Dec. 2017), 28:1–28:30. ISSN: 2475-1421. DOI: 10.1145/3158116.

URL: http://doi.acm.org/10.1145/3158116.

[22] Maarten van Steen and Andrew S. Tanenbaum. “A Brief Introduc-

tion to Distributed Systems”. In: Computing 98.10 (2016), pp. 967–1009.

ISSN: 1436-5057. DOI: 10.1007/s00607-016-0508-7. URL: https:

//doi.org/10.1007/s00607-016-0508-7".

[23] Andrew S Tanenbaum and Maarten Van Steen. Distributed Systems:

Principles and Paradigms. Prentice-Hall, 2007. Chap. 8.

[24] The Coq Development Team. The Coq Proof Assistant, version 8.8.0. Apr.

2018. DOI: 10.5281/zenodo.1219885. URL: https://doi.org/

10.5281/zenodo.1219885.

https://doi.org/10.1145/1095430.1081750
http://doi.acm.org/10.1145/1095430.1081750
https://doi.org/10.1145/3158116
http://doi.acm.org/10.1145/3158116
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.5281/zenodo.1219885

BIBLIOGRAPHY 51

[25] James R. Wilcox, Doug Woos, et al. “Verdi: A Framework for Imple-

menting and Formally Verifying Distributed Systems”. In: SIGPLAN

Not. 50.6 (June 2015), pp. 357–368. ISSN: 0362-1340. DOI: 10.1145/

2813885.2737958. URL: http://doi.acm.org/10.1145/

2813885.2737958.

https://doi.org/10.1145/2813885.2737958
https://doi.org/10.1145/2813885.2737958
http://doi.acm.org/10.1145/2813885.2737958
http://doi.acm.org/10.1145/2813885.2737958

	Acknowledgements
	Abstract
	Introduction & Motivation
	Background Information
	Introduction to Distributed Systems
	Byzantine Fault Tolerance
	Relevant Consensus Protocols
	Practical Byzantine Fault Tolerance (PBFT) pbft
	State Machine Replication
	PBFT Semantics
	Request Delivery
	Pre-prepare
	Prepare
	Commit
	Reply Delivery

	Two-phase Commit (2PC) 2pc
	Atomic Commitment
	2PC Semantics

	Sharded Byzantine Atomic Commit (SBAC) chainspace
	Sharding
	SBAC Architecture
	Differences from 2PC
	Failure Model

	Simulator Semantics
	Overview
	Simulator Module API
	simulate_round
	gen_simulator
	add_request

	Modelling & Testing Complex Phenomena
	Fault Tolerance
	Modular Composition
	Predicate Checking
	Schedule Generation & Execution

	Asynchrony

	SBAC Implementation & Findings
	PBFT Module
	Simplifications
	Node Structure
	Request Structure
	Reply Structure

	Automated Testing & Findings

	Related Work
	Formal Methods
	Systematic Testing
	Our Project

	Conclusion & Future Work
	Bibliography

