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Automating Musical Harmony Using Equality Graphs

by Juwon LEE

Harmonization is an important building block of musical composition and

performance. Over the past few decades, the process of harmonization has

been automated through various programming language techniques based

on formalized music theory. We present a harmony synthesis strategy that

builds on the previous works, especially Harmtrace [5] and FComp [6], to

enhance the performance of selecting optimized output chords given an in-

put sequence of chords. We utilize equality graphs, a data structure that al-

lows for efficient storing and extraction of nodes in an abstract syntax tree.

This report will survey basic music theory and the definition of equality

graphs and explain the pipeline of our model by presenting how a sequence

of chords is parsed, saturated, and extracted.

HTTPS://WWW.YALE-NUS.EDU.SG/
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Chapter 1

Introduction

Music creates order out of chaos:

for rhythm imposes unanimity

upon the divergent, melody

imposes continuity upon the

disjointed, and harmony imposes

compatibility upon the

incongruous.

Yehudi Menuhin

1.1 Thesis

Harmonization is an optimization problem.

1.2 Motivation

Harmony is the combination of musical notes that sound simultaneously. It

enriches the melody line by imbuing emotions and modulating the tension

of the musical piece at the appropriate phrase. Think orchestra or choir as

opposed to a single violin playing or a single singer singing. Regardless
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of whether the listener is musically trained or not, good harmony can be

easily distinguished from incongruous harmony. Therefore, creating good

harmony is pivotal for musical composition.

What was once thought to be in the subjective realm of musically-trained

composers, the creation of music has been subject to formalization and au-

tomation in the past few decades. This is because music, more than other

forms of creative art, has regularity and order, allowing the process of har-

monization to be automated [4, 5, 6].

This is where music and computer science intersect. Just as compilers

optimize code to enhance the program performance, for example by elim-

inating redundant code, harmonization can be optimized to enhance the

musical piece.

1.3 Goal of this project

Musical pieces are programs that can be optimized to sound better by adding,

deleting, and expanding individual chords. The goal of our project is to find

enriched harmony using program optimization.

1.4 Our Approach

This project provides a proof of concept for utilizing equality graphs (e-

graphs) as a method of optimizing musical harmony. An e-graph is a non-

destructive graph data structure that stores equivalent programs. The pro-

cess of storing the equivalent programs is called rewriting, and e-graphs are

saturated once the rewriting is complete. Given a cost function, the satu-

rated e-graph is traversed to output the program with the lowest cost. This
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process is called extraction [11]. This is an alternative to traditional and se-

quential methods of optimization as it mitigates the problems encountered

with traditional optimization techniques such as the phase-ordering prob-

lem [11]. It is a technique widely used in fields such as manufacturing [7,

12], machine learning and scientific computing [9]. With the proven effi-

ciency of e-graphs in multiple domains, our model applies the optimization

technique to musical harmony.

1.5 Challenges and Contributions

Rewriting the e-graph is a crucial part of the optimization strategy as the

quality of the rewriting defines the quality of the optimization result. Since

there is no prior work done that accumulates conventional harmony com-

position rules, the challenge of the project was gathering these theories.

The project is significant in the following aspects:

1. It provides a novel formulation of e-graphs and equivalence classes on

trees of musical harmony.

2. It provides a novel set of rewrite rules guided by jazz-style harmony.

3. It allows for a user-guided cost function for music rewriting.

4. It provides an open-source implementation available for experiments

and extensions, which can be found on GitHub.1

1https://github.com/juwonzylee/emu

https://github.com/juwonzylee/emu
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1.6 Outline

The report structure is as follows. In chapter 2, we survey existing literature

and toolchains on automated music and equality graphs. In chapter 3, we

explain how equality graphs were used to optimize musical harmony. In

chapter 4, we explain the rewrite rules and the cost function in depth. In

chapter 5, we provide a specific example of a sequence of musical chords

being optimized through the project’s pipeline. Finally, chapter 6 concludes

with a discussion on the project and possible future work.
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Chapter 2

Background

In this chapter, we first provide a minimalistic explanation of functional

harmony theory in section 2.1. Then we highlight the cornerstones of auto-

mated music and dive in-depth about Harmtrace and FComp in section 2.2.

Finally, we provide the motivation, structure, and applications of equality

graphs in section 2.3.

2.1 Basic Music Theory

A tone is a sound with a fixed frequency. The tones are denoted by notes

based on their pitches. When two or more tones sound simultaneously, har-

mony is made. Harmony is denoted by chords, which is a group of tones. A

chord is identified by its chord root, which is the note that the chord is built

on, and the intervals between the notes.

Functional Harmony Theory The functional harmony theory states that

each chord within a key can be reduced to one of three functions within its

tonal context.

1. Tonic: affirms the key, releases tension
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2. Subdominant: builds tension and prepares dominant chord

3. Dominant: builds maximum tension

Chords have different functions in different tonal contexts. For example,

in a C major key, the C major chord is a tonic chord, whereas it would be a

dominant chord in an F major key. The relationships between the keys and

the functionality of the chords are shown in Figure 2.1. This functionality

will be the basis of the rewrite rules in our model.

Key I (T) ii (SD) iii (T) IV (SD) V (D) vi (SD) viio (D)

A A Bm C#m D E F#m G#o

B B C#m D#m E F# G#m A#o

C C Dm Em F G Am Bo

D D Em F#m G A Bm Bo

E E F#m G#m A B C#m D#o

F F Gm Am Bb C Dm Eo

G G Am Bm C D Em F#o

FIGURE 2.1: Function of chords in different tonal contexts. T
stands for tonic, SD for subdominant, and D for dominant.
The roman numerals denote the chord root, uppercase being a

major chord and lower case being a minor chord.

Formalized rules of functional harmony theory can serve as a guide to

harmony composition and optimization.

2.2 Automated Music

Now that we have seen the importance of formalized music grammar, we

briefly survey the history of automated music.

Based on the formalized functional harmony theory, Steedman was among

the first to propose a generative grammar for blues chord progressions [10].
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The first musical piece to be generated by a computer is the Illiac Suite by

the Illiac computer [3]. The computer generated certain musical materials

according to their tonal functions and selected the best option from the can-

didates according to various rules [1]. From then on, modern composers

have integrated algorithmic generated music into their compositions. Ian-

nis Xenakis’s Atrées [14] and Morsima-Amorsima [15] are example compo-

sitions that deduced a score from a "list of note densities and probabilistic

weights supplied by the programmer, leaving specific decisions to a random

number generator" [1].

In the past decade, tonal harmony has been further integrated into algo-

rithms. Tonal harmony was modeled as formal grammar by Rohrmeier [8]

and the formal grammar was implemented by De Hass et al [2]. Magal-

hães [5] expanded on the work of Rohrmeier [8] and proposed HarmTrace,

a parser in Haskell that automatically derives the input chord’s harmonic

function. This allowed for a better estimation of harmonic similarity be-

tween different sequences of chords. HarmTrace has been used in generat-

ing a sequence of chords to accompany an input melody line [4].

Building on the work of Koop [4], Magalhães [6] proposed FComp, a

system that generates both the harmony and the melody that accompanies

the harmony. FComp generates candidate chords based on the basic rules

of functional harmony, which will be explained in depth below.

2.2.1 HarmTrace

HarmTrace takes in an input sequence of chords denoted with its root, acci-

dental, and extension and parses them with chord labels and scale degrees

along with the functional analysis of each of the chords and phrases.
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Piece

Ton

I

C;maj

Sub

V

F;maj

Dom

vi

G;maj

Ton

I

C;maj

FIGURE 2.2: Pretty printed tree of the original chord sequence.

The syntax written in Haskell is shown below.

data Piece = Piece [Phrase]

data Phrase = PT Ton | PD Dom

data Ton = T(IMaj) Degree

data Dom = D(VMaj) Degree | D(SD,D) SDom Dom

data SDom = S(IVMaj) Degree

We see a musical piece as a list of phrases. A phrase is either a tonic

or a dominant, which refers to the theory of functional harmony. A tonic

is simply the first scale degree, while a dominant might branch into a sub-

dominant and a dominant, or simply be the fifth degree.

Here is an example input sequence consisting of C major, F major, D7,

G7, and C major.

C:maj F:maj G:maj C:maj

The example sequence is parsed into a tree, where this sequence of chords,

or type piece, is divided into the tonic phrase, dominant phrase, and the

tonic phrase. The parsed tree is shown in Figure 2.2.

The parsed sequence is then used for music recognition based on the

harmonic structure. Research done afterward utilizes the Harmtrace parser

for other applications such as melody and harmony generation [4, 6].
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2.2.2 FComp

Building on HarmTrace, FComp generates foundational harmony based on

random values of a datatype that encodes the rules of tonal harmony [6].

FComp encodes basic harmony rules without secondary dominants, tritone

substitutions, and more.

The general harmony rules used by FComp are as follows:

1. The tonic phrase consists of the I chord.

2. A dominant can expand to the following: a dominant or major chord

built on the V chord, or a diminished VII chord. It can also be preceded

by a subdominant or a secondary dominant on the II chord.

3. The subdominant, in major mode, can either be II:Min chord or IV:Maj,

preceded by a III:Min. In minor mode, a subdominant is realized with

IV:Min chord.

We will be using the given rules and expanding on them to include

more complex functional harmony rules and jazz-style harmony rules in

our model in chapter 4.

2.3 Equality Graph (E-Graph)

In order to enhance the quality of the chords, we introduce equality graphs,

or e-graphs for short, a data structure to store candidate chords in a non-

destructive manner, resolving a phase-ordering problem of traditional opti-

mization strategies.
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2.3.1 Introduction to e-graphs

Movivation In traditional optimization, the program is made incre-

mentally better with an applied sequence of optimization rules. Because

the optimization rules are applied sequentially, if the program is optimized

in a different order than the previous optimization, there would be a dif-

ferent optimized result. If there exists an exponential number of orderings,

the traditional optimization would randomly output the optimized version,

instead of traversing through the whole set of possible candidate outcomes.

This is called the phase ordering problem. In light of this problem, equality

graphs ([11]) have been proposed as an alternative optimization method to

traditional optimization.

2.3.2 Ego: E-graphs OCaml Library

Ego (EGraphs OCaml) is an OCaml library that provides generic equality

saturation using e-graphs.1 This has been translated from the original egg

library in Rust into OCaml by the Verse lab at NUS. The design of Ego pro-

vides two flexible interfaces, one to run basic equality saturation and one

extended with custom user-defined analyses.

Among the two interfaces to the library, we use Ego.Basic for syntactic

rewrites and visualizations of e-graphs. In order to understand how the

library works, we work with a simple example.

1https://verse-lab.github.io/ego/ego/index.html

https://verse-lab.github.io/ego/ego/index.html
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2.3.3 Initialization

Consider the mathematical program (x ≪ 1)/2. In order to initialize the e-

graph for our example program, we define the program as a sub-expression.

let expr =

List [Atom "/"; List[Atom "<<"; Atom "x"; Atom "1"]; Atom "2"]

We then initialize an e-graph and add the sub-expression using the method

Ego.Basic.EGraph.add_sexp. Adding the sub-expression yields an expression

id, which will be used for extraction.

let graph = EGraph.init()

let expr_id = EGraph.add_sexp graph expr

Now our example program (x ≪ 1)/2 can be visualized using the helper

function Ego.Basic.EGraph.to_dot. The GraphViz representation of the initial

e-graph is shown in Figure 2.3. Each of the equivalence classes is denoted

by their expression id’s, such as e0, e1, and so on.

e3

e0

e4

e1

e2

2

x

/

<<

1

FIGURE 2.3: The e-graph representation of (x ≪ 1)/2.
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2.3.4 Rewriting and Saturation

Now here are the two rewrite rules we wish to use to saturate the e-graph:

1. x ≪ 1 is equivalent to x ∗ 2.

2. x ∗ 2/2 is equivalent to x.

Using the helper function Ego.Basic.EGraph.run_until_saturation, we ap-

ply the two rules. Here is a simplified version of the code snippet for read-

ability.

let expr1 = (a<<1) in

let expr2 = (a*2) in

let rule1 = (Rule.make ~from ~into) in

let expr3 = ((a*2)/2) in

let expr4 = (a) in

let rule2 = (Rule.make ~from:from1 ~into:into1) in

let _ = EGraph.run_until_saturation graph [rule1;rule2] in

Now the e-graph stores the following equivalent programs in a non-

destructive form:

1. (x ≪ 1)/2

2. (x ∗ 2)/2

3. x

The saturated e-graph is visualized in Figure 2.4.
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e3 e0

e4

e1

e2

2 x

/

<<

?x

1

*

FIGURE 2.4: The saturated e-graph visualized.

2.3.5 Extraction

Next, we search the saturated e-graph to extract the optimized program. We

define a cost function to do this.

let cost_function score (sym, children) =

let node_score =

match Symbol.to_string sym with

| "*" -> 1.

| "/" -> 1.

| "<<" -> 2.

| _ -> 0. in

node_score +. List.fold_left (fun acc vl ->

acc +. score vl) 0. children

Here, we see that the left shift operator has been given the highest cost

of 2. The multiplication and division operators are given costs of 1 each.

Based on this cost function, the costs of the three equivalent programs in

the saturated graph are as follows:

1. Cost of (x ≪ 1)/2 is 3.
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2. Cost of (x ∗ 2)/2 is 2.

3. Cost of x is 0.

Therefore, the program x has the lowest cost, meaning it is the optimized

program. We can use the helper function Ego.Basic.EGraph.extract to extract

and return the sub expression of the optimized output, as shown in Fig-

ure 2.5.

e3 e0

e4

e1

e2

2 x

/

<<

?x

1

*

FIGURE 2.5: The red box shows the optimized program within
the saturated e-graph.

Applications E-graph is a powerful and versatile optimization tech-

nique that allows new functionality and speedups in program synthesis and

optimization [13]. Since the invention of the technique, there have been

applications in a wide range of topics, such as 3D printing [7] where they

allowed for efficient search of smaller programs, shrinking the size of the

model in seconds. Diospyros [12] optimized small linear algebra kernels
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for digital signal processors using e-graphs, outperforming existing DSP li-

braries by 3.1 on average. Pherbie [9] integrated e-graphs in precision tun-

ing to improve the accuracy for floating point expressions. Our model ex-

pands the field of applications to music.

2.3.6 Using e-graphs for harmonization

Using the versatility of the data structure, we adapt and define the domain

to apply the optimization technique to harmonization. The current genera-

tion of harmony in FComp is done in the following steps [6]:

1. An element of randomness is introduced to select candidate chords

out of the valid pool of chords.

2. Each constructor has a set weight to control which rules of harmony

appear more frequently over others.

Since it is impossible to consider all possible candidate chords, FComp

chooses the sequence that appears more statistically. However, by introduc-

ing e-graphs to compactly store the possible candidate chord sequences, we

are able to search through the space and extract the optimized chords at-

tuned to the user’s desires without introducing a random component in the

optimization process.
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Chapter 3

Encoding

Now that we have explored and understood the toolchain for e-graph, we

can apply e-graphs to harmony automation. The pipeline of our project is

shown in Figure 3.1. We first take in an input sequence of chords, which is

passed to the HarmTrace parser [5], which is then parsed into OCaml sub-

expressions. Using the parsed output, we initialize, saturate, and extract the

e-graph to output the optimized harmony.

3.1 Parsing 3.2 Rewriting 3.3 Extraction

FIGURE 3.1: Implementation pipeline

3.1 Parsing

Before we can initialize an e-graph with a chord sequence, we utilize the

HarmTrace parser ([5]) to parse the input sequence of chords.

The HarmTrace parser parses each chord within the input sequence into

a root, extension, accidental, shorthand, and function. The function refers
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to the subdivision in functional harmony theory: tonic, subdominant, and

dominant.

Using this information, we encode our own datatype in OCaml. First,

the input sequence is represented as type piece, which is a list of phrases.

We include a constructor DomPhraseof (phrase ∗ phrase) because a dominant

phrase can consist of a tuple of phrases, for example, a subdominant and a

dominant.

type phrase =

| Ton of chord list

| Dom of chord list

| DomPhrase of (phrase * phrase)

| Sub of chord list

type piece = phrase list

Each constructor in the type phrase is comprised of a list of chords,

whereby the type chord has four constructors: the root, accidental, short-

hand, and extension. The constructors for type chord is shown below:

type chord = {root : root

; accidental : accidental

; shorthand : shorthand

; extension : extension}

type root = C | D | E | F | G | A | B

type accidental = Sharp | Natural | Flat

type shorthand = Maj | Min

type extension = Fifth | Seventh | Ninth

Let’s take an example of a simple chord sequence in the C Major key

consisting of one tonic, one subdominant, and one dominant chord. The

sequence is shown in Figure 3.2.
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ex

   iii (T) IV(SD) V(D)

Em F G

FIGURE 3.2: Chord sequence of E minor, F major, and G major
in the key of C Major. The root of the chord is written in Ro-
man numerals on top of the chords, along with the functional

analysis of the chord.

3.2 E-graph Rewriting

With the input sequence parsed, we can now initialize the e-graph. We add

the sub-expression of the chord sequence and obtain the e-graph visualized

in Figure 3.3.

The order of the chord sequence is preserved using the cons placeholder.

Reading in ascending order of the e-class expression id’s, the first chord

has function of Tonic (e7), root note of E (e3), and shorthand of Minor (e1),

accidental of Natural (e0), and extension of Fifth (e2). The same applies for

the next two chords.

Now let’s rewrite the graph according to two the following rules:

1. Functional Harmony Rule: A dominant chord can be substituted by

other dominant chords, and tonic chords by other tonic chords. In

the tonal context of C major, the G major chord can be changed to a

diminished seventh chord, and the E minor chord can be substituted

by the C major chord.

2. Extension Chord: The fifth extension chords can be substituted by the

seventh extension chords.



Chapter 3. Encoding 24

e15

e12

e9

e6

e19

e3

e16

e0

e13

e10

e7

e4

e1

e17

e14

e11

e8

e5

e18

e2

::

Chord []

Sub

::

F

NaturalMaj Fifth

::

Chord

::

Ton::

E

Min

Dom

G

Chord

::

FIGURE 3.3: E-graph visualized for the original chord se-
quence in Figure 3.2.

Applying this rule, the saturated e-graph is shown in Figure 3.4.

We see in Figure 3.4 that the e-class with id e14 has been expanded to

include the diminished seventh chord of G major seventh. E-class e4 has

expanded to include the C major seventh chord.
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e15

e12

e9

e6

e19

e3

e16

e0

e13

e10

e7

e23

e20

e4

e17

e1

e14

e11

e8

e5

e21

e2

e18

::

Chord []

Sub

::

F

NaturalMajFifth

::

Chord

::

Ton::

E

Min

Dom

G

Chord

C

Seventh

Chord

::

Chord

G

FIGURE 3.4: Visualized for the saturated e-graph. The red
boxes indicate the expanded e-classes and added e-nodes.

3.3 E-graph Extraction

With the saturated e-graph example, we now wish to extract an optimized

program based on a cost function. Let’s assume that the cost function is

defined as shown in Figure 3.5.

The minor chords are placed with a cost of 2, the major chords 1. The

fifth extension has a higher cost of 2 whereas the seventh extension has cost

1. This means the major chord and the seventh extension will be prioritized

for extraction.
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let cost_function score (sym, children) =
let node_score =

match Symbol.to_string sym with
| "Min" -> 2.
| "Maj" -> 1.
| "Fifth" -> 2.
| "Seventh" -> 1.
| _ -> 0. in

node_score +. List.fold_left (fun acc vl ->
acc +. score vl) 0. children

FIGURE 3.5: Example cost function that penalizes minor
chords and fifth extensions.

According to this cost function, we obtain the following sub-expression:

(:: (Ton (:: (Chord (C Natural Maj Seventh)) []))

(:: (Sub (:: (Chord (F Natural Maj Fifth)) []))

(:: (Dom (:: (Chord (G Natural Maj Seventh)) [])) [])))

ex

   viio (D)

Go

I (T)

C7

FIGURE 3.6: Output chord sequence of C major seventh, F ma-
jor, and G diminished seventh major.

Based on the cost function, the seventh extensions and major shorthand

have been extracted over the minor shorthand and fifth extension as visual-

ized in Figure 3.6.
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Chapter 4

Optimizations

This chapter explains the rewrite rules that are used to saturate the e-graph

(section 4.1) along with the details of the cost function used for extraction

(section 4.2).

4.1 Rewrite rules

Our goal is to make the input sequence of chords sound better. The more

rewrite rules we have, the bigger the pool of candidate chords to choose

from. We have referenced existing literature and musicians to gather widely

used harmony rules.

4.1.1 Functional Harmony Rules

We begin by encoding the basic harmony rules used by Rohrmeier [6]. Refer

to section 2.2 and Figure 2.1 for more details.

1. Dominant chords of a tonal context can be substituted by any other

dominant chord.

2. Dominant chords can be subdivided into a dominant chord preceded

by a subdominant chord.
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3. Subdominant chords can be substituted by any other subdominant

chord.

4. Tonic chords remain within the tonic functional chords.

We expand on the basic functional harmony rules used by Rohrmeier to

include more complex rules.

5. Dominant chords can be substituted by secondary dominant chords

as illustrated in Figure 4.1. The audio file is available here.1

ex











FIGURE 4.1: The first chord is the G major dominant chord.
The second chord is the secondary G major seventh dominant

chord.

6. Tritone substition: A dominant seventh chord can be substituted by a

tritone (chord with three whole steps) from the original chord. This is

illustrated in Figure 4.2 and the audio file is available here.2

ex











FIGURE 4.2: The first chord is the G major seventh dominant
chord. The second chord is the tritone substitution of the first,

the D flat major seventh chord.

1https://drive.google.com/file/d/1bKFG4Gl_vrIVhz4OZRvtB4LwAZ8IgPpw/
view?usp=sharing

2https://drive.google.com/file/d/1AfJZ1nGYbJy1z2br5MfeZ_
gFTGCmQs6H/view?usp=sharing

https://drive.google.com/file/d/1bKFG4Gl_vrIVhz4OZRvtB4LwAZ8IgPpw/view?usp=sharing
https://drive.google.com/file/d/1bKFG4Gl_vrIVhz4OZRvtB4LwAZ8IgPpw/view?usp=sharing
https://drive.google.com/file/d/1AfJZ1nGYbJy1z2br5MfeZ_gFTGCmQs6H/view?usp=sharing
https://drive.google.com/file/d/1AfJZ1nGYbJy1z2br5MfeZ_gFTGCmQs6H/view?usp=sharing
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4.1.2 Jazz Harmony Rules

Next, we add the jazz harmony rules on top of the functional harmony rules.

7. Passing Chords (2-5-1) allow the subdominant and dominant chords

to be built up with more tension. Figure 4.3 is an example of a passing

chord in the C major scale. The sound is available in Google Drive.3

FIGURE 4.3: Example of a 2-5-1 passing chord in C Major key.
The root chords are denoted in the bass clef; and the harmony

is built on the seventh extension in the treble clef.

8. Extension chords allow the tonic, subdominant, and dominant chords

to sound richer in harmony, meaning there are more emotions imbued

in the chords. This is because on top of the perfect triad, the seventh

or ninth note is added to the chord.

9. Chord replacement is another method to modulate the tension in the

dominant phrase.

Based on these rewrite rules, the e-graph is saturated with all possible

candidate chord sequences. Next, we explain how our program selects a

chord sequence out of the equivalent programs.

3https://drive.google.com/file/d/1ja2NONm6yHbD25v7QtsiQUJ6CARU6EgV/
view?usp=sharing

https://drive.google.com/file/d/1ja2NONm6yHbD25v7QtsiQUJ6CARU6EgV/view?usp=sharing
https://drive.google.com/file/d/1ja2NONm6yHbD25v7QtsiQUJ6CARU6EgV/view?usp=sharing
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4.2 Cost function

E-graphs search through the program and all the candidate phrases and

choose the one based on the given cost function. We allow the user to guide

the cost function based on the emotions of the output they wish.

Emotions, as subjective as they seem, are the definition of how chords

are defined. The major shorthand is known to give off happier feelings

than chords with a minor shorthand. For example, the diminished seventh

chords are more sad-sounding than a minor fifth chord.

With this convention, we can give different chords different costs, which

is shown in Figure 4.4.

let cost_function score (sym, children) =
let node_score =

match Symbol.to_string sym with
| "Min" -> 0.
| "Maj" -> 1.
| "Fifth" -> 1.
| _ -> 0. in

node_score +. List.fold_left (fun acc vl ->
acc +. score vl) 0. children

FIGURE 4.4: Cost function that optimizes for minor shorthand,
penalizing the major shorthand.

The cost function places a higher cost on the major chord lower cost on

minor chords. In other words, the one with the major chords is being penal-

ized. This will be the case when the user wants to obtain an output chord

sequence that sounds sad. In addition, it is possible to experiment with the

cost function with other aspects of the chord sequence such as the exten-

sion, accidental, and length of the sequence. For example, Figure 3.5 is a

cost function that penalizes not only the shorthand of the chords but also

the extension.
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Chapter 5

Evaluation

5.1 Method

In this section, we take the melody of the song Moon River from Tiffany’s at

Breakfast as our testing example.1 We generate two optimized outputs based

on two different cost functions, one that outputs happy-sounding sequence

of chords, and one that outputs sad-sounding one. The three sound files are

available on google drive.2

C Am C CF F Dm E7

FIGURE 5.1: The original chord sequence of Moon River

1https://tabs.ultimate-guitar.com/tab/audrey-hepburn/
moon-river-chords-1480951

2https://drive.google.com/drive/folders/1-uNNqIBGugrqaJ8wwidi8_
p-Q3MPZwaX?usp=sharing

https://tabs.ultimate-guitar.com/tab/audrey-hepburn/moon-river-chords-1480951
https://tabs.ultimate-guitar.com/tab/audrey-hepburn/moon-river-chords-1480951
https://drive.google.com/drive/folders/1-uNNqIBGugrqaJ8wwidi8_p-Q3MPZwaX?usp=sharing
https://drive.google.com/drive/folders/1-uNNqIBGugrqaJ8wwidi8_p-Q3MPZwaX?usp=sharing
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5.2 Process

5.2.1 Optimizing for major shorthand

First, we extract chord sequences that sound happy. In other words, we

use a cost function that penalizes the minor shorthand. The music sheet is

shown in Figure 5.2.
Moon River

7

    

                        



  









 










Moon River

7

    

                        



  









 










C Em G Em GC Bb

FIGURE 5.2: The optimized sequence that penalizes minor
chords.

The red boxes in Figure 5.2 show the differences from the original chord

sequence in Figure 5.1. The A minor subdominant chord has been substi-

tuted by the two-five-one passing chord sequence of C major, E minor, and

G major sequence. The D minor chord has been substituted for the B flat

major chord. As opposed to having two minor subdominant chords, the

optimized version has substituted them for major subdominant chords.

5.2.2 Optimizing for minor shorthand

Next, we extract chord sequences that sound sad. This time we penalize the

major shorthand. The music sheet is shown in Figure 5.3

This time, we see that the subdominant chord has been substituted by

an extension chord of A minor seventh preceded by an E minor chord. The

dominant F chord has been substituted with the passing chord sequence of
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Moon River

7

    

                        



  


















Moon River

7

    

                        



  


















Em Am7 C FG Am7

FIGURE 5.3: The optimized sequence that penalizes major
chords.

G, C, and F, and the last subdominant D minor chord has been substituted

for an A minor seventh.

5.3 Results

To evaluate whether the optimization heuristics correlated with the user

preferences, we conducted a pilot survey, gathering ten participants of vari-

ous musical backgrounds. Participants listened to the two different outputs

and describe the emotions they felt.

FIGURE 5.4: Survey results comparing the participant re-
sponses to the two different optimized outputs. The orange
bar plot shows the response to the output optimized for the

major chord, and vice versa.
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Emotions As seen in Figure 5.4, four out of ten participants described

the output optimized for happier sounding sequence (Figure 5.2) as ener-

gizing, whereas only one out of ten described the output optimized for sad

sounding sequence (Figure 5.3) as energizing. One out of ten participants

described the happier sounding sequence as sad, whereas three out of ten

participants described the sad sounding sequence as sad. This is the pre-

dicted output as the major and minor shorthand are designed to convey

different emotions, where the major shorthand sounds happy, and the mi-

nor sad.

Preference We asked the participants which chord sequence they pre-

ferred, and there was an even split between the two versions. Interestingly,

both sides conveyed that their preferred sequence had more emotions im-

bued. This is where the subjectivity of music plays in. An objective standard

for a better sounding harmony does not exist. Individual experiences and

cultural conceptions of emotions form biases that affect one’s judgment of

music. Our model takes this into account by allowing the users to define the

cost function to output the sound that they prefer.
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Chapter 6

Discussion

6.1 Conclusion

We started with a thesis statement that harmonization is an optimization

problem. The goal was to find better and richer harmony. Through the uti-

lization of equality graphs, where there is flexibility in both the rewriting

phase and the extraction phase, we gathered a pool of candidate chord se-

quences from which the user could extract according to their preferences of

emotions.

6.2 Future Work

Because this project is built on previous works of HarmTrace [5] which by

default assumes that the input sequence of chords is in the C Major context,

this project does not produce complete musical pieces invariant to the tonal

context but provides a proof of concept for the C major key. However, this

puts the burden on the user to transpose their input chord sequence into the

C major key. This could be resolved by allowing the user to designate the
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tonal context along with their input sequence, and transposing the chords

into the C major key.

The cost function is limited to the shorthand of the chords. As the code is

open-sourced, users may experiment with the cost function to include other

metrics such as the extension or the functionality of the chord sequences to

output their preferred sound.

Lastly, music is constantly evolving and so is harmony composition.

There may be genres that are not captured by the rewrite rules accumulated

in our paper, which may be easily added later on to enhance the quality of

the program.
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