
Formally Verifying

Accountable Byzantine Consensus

Karolina Grzeszkiewicz

Capstone Final Report for BSc (Honours) in

Mathematical, Computational and Statistical Sciences

Supervised by: Dr. Ilya Sergey

AY 2022/2023

Yale‐NUS College Capstone Project

DECLARATION & CONSENT

1. I declare that the product of this Project, the Thesis, is the end result of my own work and that

due acknowledgement has been given in the bibliography and references to ALL sources be they
printed, electronic, or personal, in accordance with the academic regulations of Yale‐NUS College.

2. I acknowledge that the Thesis is subject to the policies relating to Yale‐NUS College Intellectual
Property (Yale‐NUS HR 039).

ACCESS LEVEL

3. I agree, in consultation with my supervisor(s), that the Thesis be given the access level specified

below: [check one only]

R Unrestricted access
Make the Thesis immediately available for worldwide access.

R Access restricted to Yale‐NUS College for a limited period
Make the Thesis immediately available for Yale‐NUS College access only from _____________
(mm/yyyy) to _______________ (mm/yyyy), up to a maximum of 2 years for the following
reason(s): (please specify; attach a separate sheet if necessary):
___.

After this period, the Thesis will be made available for worldwide access.

R Other restrictions: (please specify if any part of your thesis should be restricted)

Name & Residential College of Student

___________________________________ __________________________
Signature of Student Date

___________________________________ __________________________
Name & Signature of Supervisor Date

03.04.2023

Karolina Grzeszkiewicz, Saga College

03.04.2023Dr. Ilya Sergey

i

ii

Acknowledgements
I am forever grateful to the following people for their support and influence

throughout my undergraduate studies.

To my capstone advisor, Prof Ilya Sergey, for his valuable advice, unlimited

patience, engaging lectures and office hours, challenging programming assign-

ments, and finally, for piquing my interest in formal verification. His generous

guidance and passion have truly inspiredmy confidence and ambition to pursue

computer science.

To Prof Olivier Danvy for showing me that programming is nothing more

than proving, and initiating me into the beauty of functional programming.

To George and Qiyuan, for their insights and feedback throughout the pro-

cess of working on this project.

Tomojamiłość for always radiating kindness, warmth, and energy, for being

and listening.

To Yale-NUS friends and communities for many memorable experiences:

bhangra, philosophy society, my suitemates.

To my parents for their unwavering support and openness, and to my sister

for being such a source of joy.

iii

YALE-NUS COLLEGE

Abstract

B.Sc (Hons)

Verifying Accountable Byzantine Consensus

by Karolina Grzeszkiewicz

Modern Byzantine consensus protocols can be used to achieve agreement in

the presence of a bounded number of faulty nodes trying to corrupt the net-

work, yet they fail to detect and hence punish or disincentivise Byzantine be-

haviour. When combined with any byzantine consensus protocol, the Account-

able Byzantine Consensus (ABC) transformation guarantees both consensus

and accountability. Given the sensitive applications of consensus, we would

like to have a formal model of the protocol and of the possible deviations from

it, namely the byzantine behaviour. Given such a model, we can formally prove

that the desired properties of the protocol hold for the model.

In this report we present two formalisations of the ABC protocol: one in

TLA+, a formal modelling tool, and a more general model of the network and

protocol semantics, including a faithful representation of Byzantine behaviour.

We use the latter to prove the soundness of the protocol by induction. Finally,

we draw insights regarding modeling Byzantine behaviour and the notion of

accountability offered by ABC.

HTTPS://WWW.YALE-NUS.EDU.SG/

iv

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 Byzantine Consensus . 1

1.2 Accountability in Byzantine Consensus 2

1.3 Problem Statement . 3

1.4 Contributions . 5

2 Background 6

2.1 Accountability in Distributed Systems 6

2.2 The ABC protocol . 8

3 ABC in TLA+ 10

3.1 Modelling Byzantine Consensus 10

3.2 Modelling the Accountable Confirmer 12

3.3 Properties of the Accountable Confirmer 14

3.4 Byzantine Behaviour and Accountability 16

4 Modelling the B in ABC 18

4.1 Assumptions, Parameters and Axioms 18

4.2 System State-Space . 19

v

4.3 Local Node Semantics . 22

4.4 Network Transitions . 24

4.5 Byzantine Network Transitions 24

4.6 The Accountability-Soundness Property 27

4.7 Inductive Invariant . 29

4.8 Proving Accountability–Soundness 33

5 Conclusion and Future Work 37

5.1 Mechanised Proofs in Coq Proof Assistant 38

5.2 Faithfully Modelling Cryptographic Schemes 39

5.3 Stronger Notions of Accountability 40

Bibliography 41

A Accountable Confirmer 43

1

Chapter 1

Introduction

1.1 Byzantine Consensus

The problem of Byzantine Consensus goes back to “The Byzantine Generals

Problem” coined by Leslie Lamport (Lamport et al., 2019). Suppose a group of

Byzantine army generals are camped around a city with their troops and they

want to decide whether all of them should invade the city or retreat. They com-

municate via messengers that can take arbitrarily long to deliver messages, and

some of the generals might be traitors intentionally trying to prevent consen-

sus or push through a malicious plan. In computer science terms, the generals

correspond to nodes in a network, and the decision to be made is usually re-

lated to storing a consistent state or log of events among the honest nodes in

the network. We call the dishonest nodes Byzantine.

We need a reliable consensus mechanism to build large distributed services

in which strangers cooperate with each other according to predefined rules,

perform operations, and store logs mirroring the state or history of the system.

Examples of such services include distributed databases, distributed filesystems,

and blockchains. Clearly, the consensus mechanism has to be immune to the

presence of adversaries who attempt to corrupt the system.

The protocols designed in response to the Byzantine Consensus Problem

Chapter 1. Introduction 2

are referred to as BFT protocols (Byzantine Fault Tolerance), and the most fa-

mous and widely used ones include PBFT (Castro and Liskov, 1999), HotStuff

(Yin et al., 2019), and Nakamoto Conensus (Nakamoto, 2008). The first two pro-

tocols are designed to operate under partial synchrony, but remain safe under

asynchrony. The state-of-the-art protocols have communication complexity of

O (n3) or O (n4), where n is the number of nodes in the network and commu-

nication complexity measures the amount of communication required.

It is known that consensus can only be achieved if at most t0 = ⌈n3 ⌉ − 1

processes are Byzantine (Lamport et al., 2019).1 Assuming there are at most

t0 Byzantine nodes, a protocol that solves the Byzantine consensus problem

satisfies the following:

1. Termination: Every correct process eventually decides a value.

2. Agreement: All correct processes decide the same value.

3. Validity: If all correct processes propose the same value, only that value

can be decided by a correct process.

Agreement and Validity are safety properties, which roughly means that

they assert that “nothing bad happens,” and Termination is a liveness property

meaning that “something good happens eventually.”

1.2 Accountability in Byzantine Consensus

Satisfying the above properties does not necessarily guarantee the safety and

trustworthiness of a distributed service. Firstly, the agreement property holds

only if at most t0 nodes are malicious. Secondly, the Byzantine consensus prob-

lem assumes the network is perfectly connected, which is not always the case.2

1We will refer to t0 in ensuing chapters.
2For instance, in the Bitcoin blockchain communication is carried out via a peer-to-peer

(P2P) network in which a malicious user can isolate a specific node within the network and
hijack its communications.

Chapter 1. Introduction 3

One way to cope with such unlikely yet possible attacks is to disincentivise

the attackers by either making attacks more expensive or identifying and pun-

ishing the attackers, for instance by excluding them from the network. The

latter is what we refer to as accountability.

The research development that is central to this capstone project is the pub-

lication of “As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus

is easy!” (Civit et al., 2022) which presents a transformation of any BFT pro-

tocol into an accountable one. The motivation is to achieve consensus when

possible given the known constraints, and to identify at least t0 + 1 processes

as guilty whenever correct processes disagree. In other words, in addition to

Agreement, Validity, and Termination, an ABC-transformed BFT protocol satis-

fies Accountability: “If two correct processes decide different values, then every

correct process eventually detects at least t0 + 1 faulty processes and obtains a

proof of culpability of all detected processes.” (Civit et al., 2022)

The appeal of ABC is in its simplicity, applicability to any BFT protocol, and

optimal communication complexity. ABC incurs onlyO (n2) extra communica-

tion with at most t0 faulty processes, and O (n3) otherwise. Hence, it does not

increase the communication complexity of most BFT protocols.

The key part of ABC is the Accountable Confirmer algorithm designed to be

executed after the BFT protocol, with the values decided by the processes in the

BFT protocol being submitted in the initial phase of the Accountable Confirmer.

1.3 Problem Statement

Distributed systems are known for being notoriously difficult to reason about,

as their complexity grows with the number of nodes in the network.3 Given

how critical the applications of ABC are, there are strong motivations to gain
3The number of nodes can be counted in millions for blockchain networks.

Chapter 1. Introduction 4

formal guarantees of its correctness (safety and liveness) and other important

properties by applying formal verification techniques.

First, wemodel the protocol in TLA+, designed formodelling and lightweight

verification of concurrent and distributed systems (Lamport, 2003). The lan-

guage of TLA+ is very expressive and thus used in both academia and indus-

try. Specifications are written in the formal language of first-order logic where

a protocol transition is described by its precondition and postcondition. The

TLA toolbox also enables bounded model checking, which explores all possible

executions of the protocol up to some depth in a breadth-first manner. Model

checking requires setting the parameters of the system, such as the number of

nodes, to specific values. For the above-mentioned reasons, model checking is

computationally expensive and unsound, possibly failing to find violations of

invariants when it does not reach the depth at which they occur. We use TLA+

primarily for initial exploration of the protocol logic and its properties.

However, to enable sound verification of ABC, in particular when the pro-

tocol executes in the presence of Byzantine adversaries exhibiting arbitrary be-

haviour, we need a more abstract model of the protocol and the network in

which it executes. Such a model should consist of a global state specified in-

ductively in terms of transitions enabled by the network. The transitions are

to model asynchronous message passing, where the messages sent by honest

nodes are determined by the protocol. The Byzantine nodes, on the other hand,

can send almost arbitrary messages. Such a model shall be parametrised by the

number of honest and Byzantine nodes in the system, and the implementations

of the cryptographic primitives. The parametrisation serves to enable formal

reasoning about the abstract model itself, rather than its particular instantia-

tions. We can then formally prove the key properties that are expected to hold

Chapter 1. Introduction 5

for any instantiation of the system described by the model.

The key insight behind this project is that for the sake of sound verification

of the properties of ABC, a comprehensive model of the protocol is just as im-

portant as that of the Byzantine behaviour. The advantage of an inductivemodel

over TLA+ is that the specification of Byzantine behaviour can be descriptive,

rather than prescriptive. In other words, instead of specifying what a Byzantine

node can do, we can specify what it cannot do, which is a more appropriate way

of thinking about Byzantine behaviour. Moreover, attempting to model Byzan-

tine behaviour comprehensively in TLA+ would lead to an exponential growth

of the state space and thus, make model checking very expensive.

This project has two primary objectives. First, to model ABC in TLA+, mak-

ing certain assumptions about the behavior of Byzantine nodes that may not be

entirely realistic, and then define its accountability properties. We verify these

properties using bounded model checking. Second, to create a more realistic

inductive model of ABC that systematically represents the Byzantine behavior

with minimal restrictions on Byzantine actions. Once we have developed this

model, we can rigorously prove the soundness of Byzantine node detection.

1.4 Contributions

The contributions of this project can be summarised as follows:

1. Specification of the ABC protocol in TLA+.

2. Statement and lightweight verification of the key properties of the Ac-

countable Confirmer in TLA+.

3. Formal model of the ABC semantics and the network in which the proto-
col is executed, faithfully representing Byzantine behaviour.

4. Statement of the accountability-safety property (“every node detected is

Byzantine”) and its proof relying on an inductive invariant of the system.

6

Chapter 2

Background

2.1 Accountability in Distributed Systems

The ideal accountable consensus protocol is one that eventually identifies all

guilty nodes as guilty (completeness), and never identifies correct nodes as guilty

(soundness). However, what does it mean to be “guilty”? For instance, given the

asynchrony of distributed systems we are not able to tell a deliberate omission

error from an indefinite delay.

PeerReview, the first protocol offering an accountability layer for any con-

sensus protocol, invokes the notion of faults that are observable by a correct

node (Haeberlen et al., 2007). It also distinguishes detectably faulty (violating

the rules of the protocol in a way that affects a correct node) from detectably

ignorant (failing to acknowledge that it has received a message sent by a correct

node) nodes. Every detectably ignorant node is suspected forever by a correct

node, and for every node that is detectably faulty with respect to some message,

some node that “propagated” the faulty message will get exposed eventually.

Thus, it satisfies completeness with regards to suspecting the detectably igno-

rant, but not with respect to detecting the detectably faulty. However, it satisfies

soundness in that no correct node is forever suspected by a correct node, and no

correct node is ever exposed by a correct node. These distinctions let us differen-

tiate between the faults that cannot be observed due to asynchrony (detectably

Chapter 2. Background 7

ignorant nodes, which can be subject of suspicion that is never confirmed but

can be disproved) and the faults that are observable as there is evidence of pro-

tocol violation (usually a message) that can be found in a correct node’s log

(detectably faulty nodes). However, as noted earlier, we cannot always identify

all detectably faulty nodes, so we do not have the desired guarantee of complete-

ness in its full form. Moreover, it should be noted that satisfying these properties

comes at a cost – the PeerReview protocol requires that each process maintains

a log recording all of its received and sent messages, and each node can request

the log of any other node, which incurs a significant communication cost.

Polygraph (Civit et al., 2021), on the other hand, is a Byzantine consen-

sus protocol guaranteeing agreement, validity, termination, and accountability,

where accountability is understood as detecting a set of processes that have con-

tributed to the disagreement. In practice, a process contributes to a disagree-

ment when it sends conflicting messages to different processes. In that sense,

the notion of accountability applicable to the Polygraph protocol is weaker than

the one from PeerReview, but this is due to the fact that the processes in Poly-

graph collect and exchange less information than in PeerReview. In Polygraph

a process proves the culpability of at least t0 + 1 processes by comparing its

certificate to its logged ledgers (which contain some information received from

other processes) and observing that they conflict i.e., were constructed in the

same round but contain different values. Then it broadcasts the ledgers to others

to propagate the information needed to prove culpability. However, Polygraph

does not offer detection of omission faults (which are forever suspected in Peer-

Review). Hence, Polygraph has better communication complexity of O (n4),

(which is the communication complexity of some commonly used BFTs), and

scales better in exchange for a slightly weaker notion of accountability.

Chapter 2. Background 8

2.2 The ABC protocol

The ABC protocol transforms any BFT protocol by plugging in each node’s de-

cision into the Accountable Confirmer protocol. Then in the Accountable Con-

firmer a node can confirm the decision and possibly detect guilty processes.

Given an instance of theAccountable Confirmer ac, and an instance of the Byzan-

tine consensus protocol bc, we can describe the execution of the ABC protocol

for some process P as follows:

1. Byzantine Consensus phase: Trigger the execution of bc.

2. Accountable Confirmer phase: If a value v is decided via bc then trigger

the execution of ac by submitting v .

3. Decision: If a value v is confirmed via ac then decide that value.

4. Detection: If a set of processes S is detected via ac then detect S.

Therefore, the ABC transformation enables both consensus and detection.

The Accountable Confirmer, which lies at the heart of ABC, consists of the

following phases:

1. Submit: Broadcast a submit message for a value v to all other processes.

2. Confirm: Upon receivingN − t0 submit messages (whereN is the number

of nodes) for the submitted value v broadcast a confirm message with a

certificate, which consists of the N − t0 received submit messages for v .

3. Detect: If two valid certificates for two different values have been received,

then construct a proof of culpability (S ,F) from the intersection of the

node sets in the two certificates, where S is a set of detected nodes and F

contains evidence for their misbehaviour.

Intuitively, the proof is constructed by finding nodes that sent two submit

messages for two different values, and this evidence of misbehaviour can be

extracted from the set of collected certificates. This suggests that the Byzantine

Chapter 2. Background 9

behaviour that can be detected with ABC consists of sending submit messages

for two different values to two different nodes.

Note that for the messages included in a certificate to count as valid as evi-

dence, we need the submitmessages to include digital signatures to ensure that a

message is not forged or tamperedwithwhen in flight. Then any node receiving

a submit message can verify that the message was sent by the supposed sender

using its public key,4 and if the check passes the node can add the message and

the signature to its certificate. 5

The pseudo-code for theAccountable Confirmer algorithm (Civit et al., 2022)

can be found in Appendix A.

4Usually this is done by invoking some verify function on the message and the signature.
5The original protocol contains a preliminary round of light certificate exchange, where

light certificates contain only a combined signature for the value. This is to avoid sending the
full certificates, carrying all received submit messages for the value, in case no light certificates
conflict.

10

Chapter 3

ABC in TLA+
As noted in the previous section, ABC takes as input a BFT protocol, and runs

the Accountable Confirmer to confirm the decision reached via the BFT, or in

case of lack of decision detect the faulty nodes. Therefore, we would like to

model the underlying BFT and the Accountable Confirmer protocol as twomod-

ules that can be composed together.6

3.1 Modelling Byzantine Consensus

In any consensus protocol there are three states in which a process p can be:

1. working: initial state, until p proposes a value v

2. proposed: p moves to this state after proposing some value v and stays in

the state until it decides some value w

3. decided: p moves to this state after deciding some value w

In this general model of a consensus protocol we abstract away the decision

process, assuming there is some protocol-specific deterministic mechanism for

how the correct processes decide their values.

We begin by defining the constants of the model:

• replicas – set of all processes participating in the protocol.

• values all – pool of all possible values to be proposed or decided.
6The code for the TLA+ model presented in this chapter is available at

https://github.com/karolinagrzeszkiewicz/ABC-in-TLA.

https://github.com/karolinagrzeszkiewicz/ABC-in-TLA

Chapter 3. ABC in TLA+ 11

Note that what we call constants in TLA+ are parameters of the model, and

they have to be assigned values to restrict the model checking to the model

defined by the value assignment.

Then we define the variables of the model:

• proposals – a function from replicas to values all, assigning each

replica the value it proposes, initially in the set of such functions.

• proposals set – set of all proposed values, initially empty.

• decisions – a function from replicas to values all opt, assigning

each replica the value it decided, initially “none” for all replicas.

• states – a function from replicas to the three state labels

• is Byzantine – a function from replicas to Bool indicating whether

a given replica is Byzantine.

Note that we can initialise variables with sets of values corresponding to

various possibilities for the initial state. The model checker then explores all

paths starting at each initial state.

Then we can define the two protocol transitions:

• propose(r) – given a non-Byzantine replica r in the “working” state, add

proposed(r) to proposals set and change states(r) to “proposed.”

• decide(r) – given a replica r which has not decided yet and is in the

“proposed” state, if no other replica is in the “working” state then change

states(r) to “decided”, and furthermore if r is honest:

– if there are at most t0 Byzantines, decide a deterministic value.7

– else decide an arbitrary value from proposals set.8

If r is Byzantine then decide an arbitrary value from proposals set.
7We can enforce that all honest replicas choose the same value with the CHOOSE syntax.
8This can be done by using an existential statement.

Chapter 3. ABC in TLA+ 12

The model is defined by its initial state and the Next relation by which to

move from one state to another some replica either proposes or decides:

Next Δ
= ∃ r ∈ replicas : propose (r) ∨ decide (r)

Note that this specification models not only the protocol executions, but

also possible behaviour of Byzantine nodes in the network that deviates from

the protocol. Furthermore, it models what happens when there are more than

t0 Byzantine nodes – in such a scenario arbitrary values can be decided since

the Byzantine Consensus properties do not apply.

The validity and agreement properties of Byzantine Consensus should triv-

ially hold given that the model is designed as a generic BFT. However, we state

them as invariants and model check. We do not state termination – given the fi-

nite nature of TLA+ model checking, the liveness properties cannot be verified.

3.2 Modelling the Accountable Confirmer

The parameters of the Accountable Confirmer model are the same as in the pre-

vious section, since our “environment” is fully defined by the sets of replicas and

possible values. To keep track of the state we define the following variables:

• is Byzantine – a function from replicas to Bool (as above).

• predecisions – a function from replicas to values all assigning to

each replica the value it has decided and is about to submit

• confirmed – a function from replicas to Bool indicating whether a

given replica has confirmed a value or not.

• certificate – a function from replicas to certificates, where a replica’s

certificate is the set of replicas that have sent it a submit message with the

value it has predecided.

• obtainedCertificates – a function from replicas to the certificatemes-

sages they have collected.

Chapter 3. ABC in TLA+ 13

• proof – a function from replicas to the powerset of replicasmapping

each replica to the set of replicas it has detected.

• msgs – the set of all messages currently in the pool (when a message is

received it gets removed from the pool, this is to model asynchrony).

• rState – a function from replicas to their possible states.

• submitted – a function from sender replicas to a function from re-

ceiver replicas to values all i.e., submitted[sender][receiver]

is the value that the sender has submitted to the receiver.

Then we define the model transitions for a replica r as follows:

• submit – broadcast a submit message for the value predecisions(r)

to all other processes, can be taken if r is in the intial state, after the

broadcast r switches to the “submitted” state.

• receiveSubmit – if the value in the submit message is the same as

predecisions(r) then the sender is added to certificate(r). This

transition can be taken in the initial or “submitted” state.

• confirm – this transition can be taken if r has submitted a value but has

not confirmed yet, and it has received at least n − t0 submit messages for

predecisions(r). If this holds, then r can broadcast certificate(r)

and move to the “confirmed” state.

• receiveCertificate – the certificate in the message is appended to

obtainedCertificates(r).

• proveCulpability – if there are two conflicting certificates in its

obtainedCertificates(r), then r sets proof equal to the intersection

of the two certificates.

The key assumption behind this model is that processes can experience ar-

bitrary delays in performing actions and in particular in receiving messages.

Chapter 3. ABC in TLA+ 14

This is why we have two separate transitions for sending a message (whereby

a message gets added to the pool of all unreceived messages) and for receiving

a message (whereby a message is removed from the pool of messages and the

receiving replica performs some bookkeeping).

Now we define a single transition that applies only to a Byzantine replica b:

• submitByzantine – for every r in replicas a submit message is sent

from b to r with an arbitrary value in values all.

The only other possible deviations from the protocol are failures to take

some transition action, or sending arbitrary certificates. Yet the former is equiv-

alent to an arbitrarily long delay and hencewill be covered by themodel checker.

The latter is not possible since we assume that submit messages in a certificate

are signed with private keys and thus cannot be forged.

3.3 Properties of the Accountable Confirmer

Ideally, we would like the following to hold for the Accountable Confirmer :

1. Completeness – If a process behaved Byzantine then it will get caught

eventually.

2. Soundness – If a process got caught then the process must have behaved

Byzantine.
We explore how to formally state these two properties and model check the

candidate invariants for a set of four replicas and three possible values.

First, following the insight from chapter 2, we define Byzantine behaviour

with respect to the Accountable Confirmer protocol as follows:

behavedByzantine (r) Δ
=

∃ v1, v2 ∈ {submitted [r] [to] : to ∈ replicas \ {r }}, : v1 ≠ v2

Then consider the following definition of completeness:

AccountabilityCompleteness Δ
=

Chapter 3. ABC in TLA+ 15

∀ r1, r2 ∈ replicas :

(∧ is byzantine [r1] = “false”

∧ behavedByzantine (r2)

∧ rState [r1] = “proved”)

=⇒ r2 ∈ proof [r1])

Aswe find out from themodel checker, there is an interleaving of transitions

which violates the property. This is because the Byzantine process might have

submitted values that no honest process has pre-decided, in which case its sub-

mit messages are ignored even though they constitute Byzantine behaviour. An

honest node registers only submit messages for the value it has pre-decided it-

self, so if a Byzantine node submits a value that no honest node has pre-decided,

as far as the protocol is concerned, it has not submitted anything at all.

Furthermore, if the number of Byzantine processes is greater than t0 + 1,

sometimes a process might behave Byzantine but not with respect to exactly

the two processes whose certificates were found to conflict with each other and

used to construct as proof. For instance, suppose a Byzantine node b submits

a value v to all but two nodes nodes, call them n1 and n2. b submits v ′ to n1

(which has pre-decided v) and n2 (which has pre-decided v ′). Then if an honest

node h constructs a proof of culpability from the conflicting certificates for v

and v ′, sent by n1 and n2 respectively, b will not be in that proof. However, this

is only possible when there are more than t0 + 1 nodes, because the intersection

of two sets of N − t0 nodes is always of size at least t0 + 1. Therefore, even if we

redefine Byzantine behaviour as submitting two different values pre-decided by

some honest nodes, the model will still fail to achieve completeness.

Now consider the soundness property:

AccountabilitySoundness Δ
=

Chapter 3. ABC in TLA+ 16

∀ r1 ∈ replicas : is byzantine [r1] = “false”

=⇒ ∀ r2 ∈ proof [r1] : behavedByzantine (r2)
Intuitively, soundness should hold, since the only way for a process to be

in the intersection of two conflicting certificates is by sending two different

values. Indeed, the model checker confirms that it holds for finite executions

with chosen parameters.

Finally, we also state and model check the accountability property from the

original paper (Civit et al., 2022), namely that if two honest processes confirm

different values, then eventually every honest process detects at least t0 + 1

faulty processes. This property can be thought of as a substitute for complete-

ness, as it states that we can detect a significant number of Byzantine nodes.

Accountability Δ
=

∃ p, q ∈ replicas : confirmDifferentVal (p, q)

=⇒ ∀ r ∈ replicas :

(∧ is byzantine [r] = “false”

∧ rState [r] = “proved”)

=⇒ Cardinality (proof [r]) ≥ t0 + 1
However, the TLA+ definition only asserts that once a replica has a proof of

culpability the proof has cardinality at least t0 + 1, which follows trivially from

the set intersection size of two sets of at least N − t0 members. Yet, we can-

not do better than this since eventuality is a temporal property that cannot be

expressed in first-order logic, unless we identify “eventually” with a particular

state of the system.

3.4 Byzantine Behaviour and Accountability

We have provided models of a generic BFT together with the Accountable Con-

firmer, and verified the properties of the latter through finite execution. Our

Chapter 3. ABC in TLA+ 17

findings indicate that completeness does not hold, regardless of how we define

Byzantine behaviour, and we conjectured that soundness holds.

However, the verificationwas not sound, not just because it relied on bounded

model checking, but primarily because of the fact that due to the practical re-

strictions of model checking with TLCwewere not able to model a large class of

Byzantine behaviour.9 This class consists of various ways in which the Byzan-

tine nodes can collude, and hence go beyondmerely submitting arbitrary values.

Therefore our verification effort risked missing important classes of conceptual

safety issues with the protocol. Henceforth, we will pursue a more comprehen-

sive model of Byzantine behaviour, which can only be achieved by inductively

modelling the system.

For the next step, we would like to define the system inductively. This will

enable us to refine the model of Byzantine behaviour by defining minimal con-

straints on possible deviations from the protocol. Moreover, the model will be

suitable for sound verification through inductive proofs, which can be mecha-

nised in an automated theorem prover, such as Coq Proof Assistant.

9TLC is the model checker for TLA+ specifications.

18

Chapter 4

Modelling the B in ABC
In this section we present a full formalisation of the ABC protocol and the

Byzantine behaviour acting against it. This formalisation is suitable for sound

verification. We define inductively a global state of a network of nodes, which

exchange messages asynchronously and possibly maintain a local state. The

honest nodes are required to exchange messages according to the ABC proto-

col, but they operate in a network where certain messages appear “out of thin

air” (independently of the protocol), signed by Byzantine nodes. Then the goal

is to prove that only Byzantine nodes can be detected through the protocol

(soundness of accountability), no matter what the adversaries do and how hard

they try to forge evidence for misbehaviour of honest nodes.

4.1 Assumptions, Parameters and Axioms

In this section, we discuss the assumptions, parameters, and axioms of our

model. Unlike in the TLA+ model, we can quantify over all possible values

of parameters, provided that the axioms hold.

Firstly, we assume asynchrony of the network, meaning that messages can

be rearranged, duplicated or take arbitrarily long to be delivered.

Secondly, the system is parametrised by a set of consensus parameters: a set

of all addresses of nodes in the network, a subset of all addresses that belong to

Byzantine processes, and a function value bft from processes to values accepted

Chapter 4. Modelling the B in ABC 19

in the BFT. The nodes with non-Byzantine addresses are honest, i.e., follow

the Accountable Confirmer protocol, and the nodes with Byzantine addresses

are Byzantine, i.e., can exhibit arbitrary behaviour constrained by the network

semantics and limitations imposed by the cryptography used.

Thirdly, Public Key Cryptography is used to sign the value that a given node

is submitting, and the signature can then be verified by any other node given

the address of the signee (which can serve as its public key). We do not adopt

any particular scheme, but rather take the secret keys of nodes and the sign

and verify functions as parameters of the model, with the minimal requirement

that a signature is valid (i.e., verify returns true) if and only if it is equal to one

produced with the sign function. We also assume that secret keys are unique,

and through the protocol semantics we enforce that the secret keys of honest

nodes are not shared.

Finally, since the ABC protocol is parametrised by a BFT, or more concretely

the values obtained by each node from its execution, wemodel these valueswith

the value bft function. We let value bft be any function from node addresses

to options of values (either “None” or “Some v” where v is a value), subject

to the constraint that the Byzantine Consensus properties of termination and

agreement hold. Note that validity, which asserts that the value decided by a

correct node must have been proposed by a correct node, is not relevant to our

model. Unlike in the TLA+ model, we abstract away the “propose” phase of a

BFT protocol and only consider the final “decided” values, which have a bearing

on the final outcome of executing the Accountable Confirmer protocol.

4.2 System State-Space

Any system configuration is a pair of global state △ (a mapping from node ad-

dresses to their local states) and packet soup P (a pool of all packets sent by

Chapter 4. Modelling the B in ABC 20

Addr ≜ N

NodeAddr ⊆ Addr
ByzAddr ⊆ NodeAddr

HonestAddr ≜ NodeAddr \ ByzAddr
N ≜ |NodeAddr|
t0 ≜ ⌈N3 ⌉ − 1
t ≜ |ByzAddr|

Figure 4.1: Network parameters.

Value : eqType
Key : eqType

Signature : eqType
value bft : Addr→ option Value

verify : Value→ Signature→
Addr→ Bool

secret key : Addr→ Key
sign : Value→ Key→ Signature

Figure 4.2: State parameters.

termination : t ≤ t0 =⇒ ∀n ∈ HonestAddr,∃ v : Value, value bft(n) = Some v
agreement : t ≤ t0 =⇒ ∀n1, n2 ∈ HonestAddr, value bft(n1) = value bft(n2)
two correct : |HonestAddr| ≥ 2
valid sig : ∀ v : Value, sig : Signature, n ∈ Addr, verify(v , sig ,n)

⇐⇒ sig = sign (v, secret key(n))
unique keys : ∀ n1, n2 ∈ Addr, n1 ≠ n2 =⇒ secret key(n1) ≠ secret key(n2)
unique sig : ∀v1, v2 : Value, n1, n2 ∈ Addr, v1 ≠ v2 ∨ n1 ≠ n2

=⇒ sign(v1, secret key(n1)) ≠ sign(v2, secret key(n2))

Figure 4.3: Axioms of the framework parameters.

nodes in the network). The initial system configuration is defined as an empty

packet soup and an initial local state for every honest node, since we cannot

make any assumptions about the state of Byzantine nodes. By termination

∀ n ∈ HonestAddr,∃ v : Value, value bft(n) = Some v , so we can define that

local state in terms of a node’s pre-decided value.

A local state of a node is a quadruple that models both immutable and mu-

table state of a node. The quadruple includes the address of the node, a Bool

value that corresponds to whether the node has already confirmed or not, the

node’s certificate, and the set of certificates the node has received from other

nodes. The certificate consists of a value, and a set of nodes that have submitted

this value to our node, together with each node’s signature for the value. A cer-

tificate serves as evidence for other nodes’ actions, and hence signatures enable

Chapter 4. Modelling the B in ABC 21

△ ∈ GlobState ≜ NodeAddr→ LocalState
P ∈ PacketSoup ≜ P(Packet)

𝜎 ∈ Config ≜ GlobState × PacketSoup

Figure 4.4: System configurations.

∧ ∀ n ∈ HonestAddr,∃ v : Value,
value bft(n) = Some v
=⇒ △0(n) = ⟨n , false, ⟨v , ∅⟩, ∅⟩

∧ P0 = ∅
Figure 4.5: Initial system configuration.

𝛿 ∈ LocalState ≜ Addr × Bool ×Certificate × P(Certificate)
c ∈ Certificate ≜ Value × P(NodeAddr × Signature)

Figure 4.6: Local state.

p ∈ Packet ≜ Addr × Addr ×Msg × Bool
Prcv ≜ {⟨src p, dest p,msg p⟩| p ∈ P ∧ received p = true}
Psent ≜ {⟨src p, dest p,msg p⟩| p ∈ P }

mark rcv(P , p) ≜ P \ {p} ∪ {⟨src p, dest p,msg p, true⟩}
m ∈ Msg ::= SubmitMsg(⟨v : Value, sig : Signature⟩)

| ConfirmMsg(c : Certificate)

Figure 4.7: Messages and Packets.

verification of the validity of such evidence and detection of forged evidence.

Packets are quadruples containing the address of the sender, the address of

the receiver, the message, and a Bool value indicating whether the message has

been received by the addressee. The contents of messages are defined by the

Msg data type. According to the data type a message can be of two kinds, either

a submit message for a value and a signature (which should be the signature for

the submitted value if the node is following the protocol), or a confirmmessage

for a certificate, by means of which a node can broadcast evidence that a given

set of nodes have “voted for” its value.

Note that the packet soup stores the history of all messages ever sent, and

for a protocol that implements accountability a history of messages sent is all

we need to reason about the safety properties of the protocol. Henceforth, we

refer to the set of all messages in the packet soup as Psent , and the set of messages

that have been received, a subset of Psent , as Prcv .

Chapter 4. Modelling the B in ABC 22

4.3 Local Node Semantics

Per-node transitions define how a node operates, namely the atomic transition

it undergoes in reaction to receiving a message or without any triggering event.

A node’s response involves an update of its local state and possibly emitting

new packets. The operational semantics presented in this chapter are in line

with the Accountable Confirmer protocol and thus concern only honest nodes.

We follow a relational style of presenting operational semantics, where a rule

describes the relation between the preconditions for the state update (top part)

and the state update itself (bottom part). We split the local node transitions into

(1) receive step transitions 𝛿
p
−−→𝜌 (𝛿′, ps) where a node changes its state from

𝛿 to 𝛿′ upon receiving a packet p, and emits a set of packets ps, and (2) internal

step transitions 𝛿 −−→𝜄 (𝛿′, ps) where a node changes its state from 𝛿 to 𝛿′, and

emits a set of packets ps, where the node is not reacting to any event and hence,

can take the step transition at an arbitrary moment.

Receive transitions can be divided into RCVSUBMIT transitions in reaction

to receiving a submit message, and RCVCONFIRM transitions in response to a

confirmmessage. The precondition for the former transition is that the message

received is a submit message for the same value that the receiver has in its

certificate (i.e., the value it decided in the BFT phase) and that the signature in

the message is a valid signature for the value sent. If that precondition holds

and the receiver has not finished collecting signatures for its certificate (i.e.,

not reached the N − t0 threshold) then the receiver updates its certificate with

the address and signature of the sender. Furthermore, if the N − t0 threshold

is reached upon the certificate update then the sender broadcasts its certificate

to everyone in a confirm message. The RCVCONFIRM transition, on the other

hand, only requires that all of the signatures in the certificate received via the

Chapter 4. Modelling the B in ABC 23

Receive-step transitions: 𝛿
p
−−→𝜌 (𝛿 ′, ps)

RcvSubmit

nsigs′ = (if (v = v′ and verify (v, sig, from) and not conf) then {⟨from, sig⟩} ∪ nsigs else nsigs)
conf ′ = |nsigs′ | ≥ N − t0

ps = (if conf′ then {⟨this,n ,ConfirmMsg ⟨v, nsigs′⟩⟩ | n ∈ NodeAddr} else ∅

⟨this, conf , ⟨v, nsigs⟩, certs⟩
⟨from, this,SubmitMsg ⟨v ′ ,sig⟩⟩
−−−−−−−−−−−−−−−−−−−−−−−−−−→𝜌 (⟨this, conf ′, ⟨v, nsigs′⟩, certs⟩, ps)

RcvConfirm
∀ ⟨n , sig⟩ ∈ nsigs, verify (v, sig,n)

⟨this, conf , cert, certs⟩
⟨from, this,ConfirmMsg ⟨v , nsigs⟩⟩
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→𝜌 (⟨this, conf , cert, {⟨v, nsigs⟩} ∪ certs⟩, ∅)

Figure 4.8: Local semantics, receive-transitions.

Internal step transitions: 𝛿 −−→𝜄 (𝛿 ′, ps)

INTSUBMIT

value bft(this) = Some v sig = sign (v , secret key (this))
ps = {⟨this,n ,SubmitMsg ⟨v , sig⟩⟩ | n ∈ NodeAddr}
⟨this, conf , cert, certs⟩ −−→𝜄 (⟨this, conf , cert, certs⟩, ps)

Figure 4.9: Local semantics, internal transitions.

confirmmessage are valid, and if that is the case the received certificate is added

to the set of certificates collected from other nodes.

There is a unique internal step transition, namely INTSUBMIT, which cor-

responds to a node broadcasting a submit message for the value it has decided

in the BFT phase. As a precondition we require that the broadcasted value is

the one the node has decided in the BFT, and the signature is a valid signature

of the sender for the sent value. Note that this transition can be taken by a node

any time, and possibly multiple times. Yet since we model the collection of ad-

dresses and signature in a certificate as a set, by the RCVSUBMIT transition if a

node and its signature are already in the set, then the set is not updated, hence

preventing duplicates from appearing in the signature set.

Chapter 4. Modelling the B in ABC 24

4.4 Network Transitions

We model our network with five network transition rules which define all pos-

sible changes to the system configuration in one system step. The network

transition rules are of the form ⟨Δ,P⟩ ==⇒ ⟨Δ′,P ′⟩, where ⟨Δ′,P ′⟩ refers to the

updated system configuration. In this section we focus on the first two tran-

sition rules which are non-Byzantine, meaning that they model how packets

addressed to honest nodes are picked up from the packet soup and processed

by the addressee (according to local node transitions). There is also a trivial

transition NETIDENTITY which leaves ⟨Δ,P⟩ unchanged.

NETDELIVER corresponds to the global state transition of delivering a ran-

domly picked unread message p from packet soup P to its destination address

a of a node with state 𝛿 , where a must be a non-Byzantine address. Then the

node with address a processes the message as specified by the receive step tran-

sitions, depending on the type of the message delivered.

NETINTERNAL defines a transition that can be taken by an honest node

any time, regardless of the contents of the packet soup. The local state change

of the node and the emitted messages are defined by the internal step transition

INTSUBMIT. This means that the only state change an honest node can undergo

without being prompted by any event is broadcasting submit messages.

4.5 Byzantine Network Transitions

There are two network transitions corresponding to actions taken by Byzantine

adversaries. The key insight behind the transitions is that Byzantine nodes can

do anything that is possible in a system. In case of the ABC protocol, this implies

being able to send any messages consistent with the Msg data type and being

subject to constraints imposed by the public key cryptography. We enforce

Chapter 4. Modelling the B in ABC 25

Network transitions: 𝛿 −−→𝜄 (𝛿 ′, ps)

NETDELIVER

p ∈ P dest p = a received p = false
a ∈ HonestAddr Δ(a) = 𝛿 𝛿

p
−−→𝜌 (𝛿 ′, ps)

⟨Δ,P⟩
rcv a p
=======⇒ ⟨Δ[a ↦→ 𝛿 ′],mark rcv(P , p) ∪ ps}⟩

NETINTERNAL

Δ(a) = 𝛿 a ∈ HonestAddr 𝛿 −−→𝜄 (𝛿 ′, ps)

⟨Δ,P⟩ int a
=====⇒ ⟨Δ[a ↦→ 𝛿 ′],P ∪ ps⟩

NETIDENTITY

⟨△,P⟩ id
===⇒ ⟨△,P⟩

Figure 4.10: Non-Byzantine network transitions.

that at least the honest nodes follow the signature scheme, but the Byzantines

might disregard it, by sharing their secret keys or signatures for values with

other nodes.

Note that we model the adversarial actions in the network transition level

rather than through special local transitions for Byzantine nodes. This is be-

cause we are interested in how the Byzantine nodes, as a group, can corrupt

the system by sending arbitrary messages. Hence, the local state of a Byzantine

node is not modelled. Instead, what we model is adding (almost) arbitrary mes-

sages from Byzantine senders to the packet soup, which represents the most

general scenario of Byzantine messages appearing in the system “out of thin

air”. The above representation of Byzantine behaviour is complete, rather than

underapproximating the space of Byzantine actions by modelling concrete ac-

tions like we did with the TLA+ model of ABC.

Chapter 4. Modelling the B in ABC 26

The NETBYZSUBMIT transition corresponds to an arbitrary submit mes-

sage being sent from an arbitrary Byzantine address to an arbitrary node ad-

dress. Note that Byzantine nodes can send submit messages with arbitrary val-

ues and signatures – even if the signature is invalid. By RCVSUBMIT honest

nodes should ignore messages with invalid signatures.

On the other hand, the content of a confirm message being sent from a

Byzantine address to an arbitrary address cannot be entirely arbitrary, as shown

in the NETBYZCONFIRM transition. The confirm messages emitted by Byzan-

tine nodes are subject to someminimal constraints due to the fact that the nodes

cannot forge the signatures of other nodeswithout (1) knowing their secret keys

or (2) having overheard the signature for the value being signed. Now we as-

sume that the honest nodes follow the given signature scheme by not sharing

their secret keys or signatures, unless the signature is shared via broadcasting

a submit message. Yet we cannot expect the same from the Byzantine nodes.

For instance, the Byzantine nodes might be collaborating and intentionally ex-

changing their secret keys, or simply be dismissive of the rules of secure com-

munication. Hence, we only require that for all signatures of honest nodes in

the certificate prepared by a Byzantine node, if the signature for a given value

is valid, then there is a corresponding submit message in the packet soup with

that signature and value. Any such submit message must have been sent to the

preparing Byzantine node, or to any other node (as the Byzantine node might

have been eavesdropping on the communication channel and storing signa-

tures of other nodes). However, there are no requirements on the signatures of

Byzantine nodes – given the above-mentioned reasons we cannot assume that

it is impossible to forge them.

Chapter 4. Modelling the B in ABC 27

Network transitions: 𝛿 −−→𝜄 (𝛿 ′, ps)

NETBYZSUBMIT

p : Packet src p ∈ ByzAddr
∃ v : Value, sig ∈ Signature, msg p = SubmitMsg ⟨v , sig⟩

⟨△,P⟩
byz p
======⇒ ⟨△,P ∪ {p}⟩

NETBYZCONFIRM

p : Packet src p ∈ ByzAddr
∃ v : Value , nsigs ∈ P(NodeAddr × Signature), msg p = MConfirm ⟨v ,nsigs⟩

∀ ⟨n , sig⟩ ∈ nsigs, n ∈ HonestAddr ∧ sig = sign(v , secret key(n))
=⇒ ∃ n ′ ∈ NodeAddr, b : Bool, ⟨n ,n ′, MSubmit ⟨v , sig⟩, b⟩ ∈ P

⟨△,P⟩
byz p
======⇒ ⟨△,P ∪ {p}⟩

Figure 4.11: Byzantine network transitions.

4.6 The Accountability-Soundness Property

For the model described above, we would like to prove that the Accountability –

Soundness property holds. This property asserts that ABC has no false positives

i.e, if a node is detected then it must be Byzantine. This property is key if

we want to employ ABC to punish malicious nodes or exclude them from the

network.

First, we need to formally define how nodes get detected. We do not rep-

resent proof as a local state component since this would entail that a proof of

culpability is constructed by each node asynchronously. However, the proof of

culpability can be defined by the intersection of two conflicting certificates from

the set of certificates collected by a node. Then we define proof as a function

from a set of certificates to a set of nodes.10

Now, we can formally state Accountability–Soundness as follows: “If a cor-

rect process obtains a proof of culpability of another processes, then the detected

10Since for Accountability–Soundness we only consider proofs constructed by honest nodes,
we do not need the original submit messages of detected nodes in the proof.

Chapter 4. Modelling the B in ABC 28

∀ certs ∈ P (Certificate),n ∈ proof (certs) ⇐⇒
∃v1, v2 : Value , sig1, sig2 ∈ Signature,
nsigs1, nsigs2 ∈ P(NodeAddr × Signature),
∧⟨v1, nsigs1⟩ ∈ certs
∧⟨v2, nsigs2⟩ ∈ certs
∧v1 ≠ v2
∧⟨n , sig1⟩ ∈ nsigs1
∧⟨n , sig2⟩ ∈ nsigs2

Figure 4.12: Definition of the proof function.

process is Byzantine.” . However, for a stronger notion of soundness, not only

do we want the detected node to be Byzantine, but we also want it to have be-

haved Byzantine.11 This could be stated as “If a correct process obtains a proof of

culpability of another processes, then the detected process has behaved Byzantine.”

This was the soundness property we formulated in chapter 3, conjecturing that

it holds upon running the model checker for fixed parameters.

However, this stronger notion of soundness does not necessarily hold. It is

violated by the scenario in which one of the conflicting confirm messages was

fabricated by a Byzantine node b, and the signature of the Byzantine node n

in the certificate was forged by b (given that b might have had access to n’s

secret key) rather than being taken from a corresponding submit message in

the packet soup. Note that our TLA+ model did not account for this possibility.

Hence, we consider the former notion of accountability.

In the next two sections we will prove that Accountability–Soundness holds

for any global state △ and packet soup P satisfying the inductive invariant.
11A Byzantine node can behave honestly i.e., follow the protocol.

Chapter 4. Modelling the B in ABC 29

behavedByz(n ,P) :=
∃ v1, v2 : Value, sig1, sig2 : Signature,
a1, a2 ∈ NodeAddr,
∧ v1 ≠ v2
∧ ⟨n , a1, SubmitMsg⟨v1, sig1⟩, true⟩ ∈ P
∧ ⟨n , a2, SubmitMsg⟨v2, sig2⟩, true⟩ ∈ P
∧ sig1 = sign (v1, secret key (n))
∧ sig2 = sign (v2, secret key (n))

Figure 4.13: Byzantine behaviour.

AccSoundness(⟨△,P⟩) :=
∀ n ∈ NodeAddr, h ∈ HonestAddr,
n ∈ proof (△(h)) =⇒ n ∈ ByzAddr

AccSoundness′(⟨△,P⟩) :=
∀ n ∈ NodeAddr, h ∈ HonestAddr,
n ∈ proof (△(h))
=⇒ behavedByz(n ,P)

Figure 4.14: Accountability–Soundness.

4.7 Inductive Invariant

In this section we define an inductive system invariant – a property of the

system that holds inductively, i.e., (1) it holds for the initial system configu-

ration ⟨△0,P0⟩, and (2) if it holds for ⟨△,P⟩ then it also holds for ⟨△′,P ′⟩ where

⟨Δ,P⟩ ==⇒ ⟨Δ′,P ′⟩. Such a property would then hold for every possible sys-

tem configuration ⟨△,P⟩. The inductive invariant is an overapproximation of

the system semantics, describing what the semantics entails. We would like to

have an inductive invariant that implies theAccountability–Soundness property.

We find that the invariant in Figure 4.15 is inductive and implies Accountabil-

ity–Soundness. The key insight behind this invariant is that it encapsulates the

transitions of the system, tracing back the preconditions that must hold for a

node to end up in the proof of culpability constructed by an honest node.

Now we will present a proof sketch for the inductivity of this invariant.

Proof. First, we want to prove that Inv(⟨△0,P0⟩) holds. We know that

∀n ∈ NodeAddr, certs (△0(n)) = ∅ so (1) holds trivially. Similarly, (2), (4), and

(5) hold trivially since P0 = ∅, and (3) holds trivially because ∀n ∈ NodeAddr,

cert (△0(n)) = ⟨value bft (n), ∅⟩. Then we know that Inv(⟨△0,P0⟩) holds.

Now suppose that Inv(⟨△,P⟩) holds for some system configuration △,P

(inductive hypothesis), and ⟨Δ,P⟩ s
==⇒ ⟨Δ′,P ′⟩ where s is one of the network

Chapter 4. Modelling the B in ABC 30

Inv(⟨△,P⟩) :=
(1) ∧ ∀ h ∈ Honest, v : Value,nsigs ∈ P (NodeAddr × Signature),
⟨v, nsigs⟩ ∈ certs(△(h))
=⇒ ∃n ′ ∈ NodeAddr , ⟨n ′, h ,ConfirmMsg ⟨v ,nsigs⟩⟩ ∈ Prcv
∧∀⟨n , sig⟩ ∈ nsigs, sig = sign (v, secret key (n))

(2) ∧ ∀ h ∈ Honest,n ∈ NodeAddr, v : Value,nsigs ∈ P (NodeAddr × Signature),
⟨h ,n ,ConfirmMsg ⟨v ,nsigs⟩⟩ ∈ Psent =⇒ cert (△(h)) = ⟨v, nsigs⟩

(3) ∧ ∀ h ∈ Honest, v : Value,nsigs ∈ P (NodeAddr × Signature),
cert (△(h)) = ⟨v, nsigs⟩
=⇒ ∀⟨n , sig⟩ ∈ nsigs, ⟨n , h ,SubmitMsg ⟨v, sig⟩⟩ ∈ Prcv
∧ sig = sign (v, secret key (n))

(4) ∧ ∀b ∈ ByzAddr, h ∈ NodeAddr, v : Value,nsigs ∈ P (NodeAddr × Signature),
⟨b, h ,ConfirmMsg ⟨v ,nsigs⟩⟩ ∈ Psent
=⇒ ∀⟨n , sig⟩ ∈ nsigs,

n ∈ HonestAddr ∧ sig = sign(v , secret key(n))
=⇒ ∃n ′ ∈ NodeAddr , ⟨n ,n ′, SubmitMsg ⟨v , sig⟩⟩ ∈ Psent

(5) ∧ ∀ h ∈ Honest,n1,n2 ∈ NodeAddr, sig1, sig2 ∈ Signature, v1, v2 : Value,
(⟨h ,n1, SubmitMsg ⟨v1, sig1⟩⟩ ∈ Psent ∧ sig1 = sign (v1, secret key (h))
∧ ⟨h ,n2, SubmitMsg ⟨v2, sig2⟩⟩ ∈ Psent ∧ sig2 = sign (v2, secret key (h)))
=⇒ v1 = v2

Figure 4.15: The inductive invariant.

transitions. Then we consider the five cases corresponding to the five network

transition rules:

Case I: s = NETIDENTITY

Then ⟨△′,P ′⟩ = ⟨△,P⟩ so by inductive hypothesis Inv(⟨△′,P ′⟩) holds.

Case II: s = NETDELIVER (p,𝛿) and msg p = SubmitMsg ⟨v , sig⟩ for some

v : Value, sig : Signature

Then if (1) holds for ⟨△,P⟩ then it should also hold for ⟨△′,P ′⟩ since

∀h ∈ Honest certs (△(h)) = certs (△′(h)) (certificates collected by a node can

only be updated through receiving a confirm message).

Now for (2), by the inductive hypothesis:

∀ h ∈ Honest, n ∈ NodeAddr, v : Value, nsigs ∈ P (NodeAddr × Signature),

⟨h , n ,ConfirmMsg ⟨v , nsigs⟩⟩ ∈ Psent =⇒ cert (△(h)) = ⟨v, nsigs⟩

Chapter 4. Modelling the B in ABC 31

We know that P ′sent = Psent ∪ {⟨src p, dest p, SubmitMsg ⟨v, sig⟩⟩}. Note that

P ′sent does not contain any confirm messages that are not in Psent , and by RCV-

SUBMIT an honest node’s certificate is not updated after being sent. Then (2)

must hold for ⟨△′,P ′⟩.

For (3), by the inductive hypothesis:

∀ h ∈ Honest, v : Value, nsigs ∈ P (NodeAddr × Signature),

cert (△(h)) = ⟨v, nsigs⟩

=⇒ ∀⟨n , sig⟩ ∈ nsigs, ⟨n , h , SubmitMsg ⟨v, sig⟩⟩ ∈ Prcv

∧ sig = sign (v, secret key (n))

We only need to prove it for h = dest p since for other nodes the property holds

by inductive hypothesis. If cert (△′(h)) = cert (△(h) then it also holds triv-

ially. The only remaining case is cert (△′(h)) = ⟨v , {⟨n′, sig′⟩} ∪ nsigs⟩ where

cert (△(h)) = ⟨v , nsigs⟩, in which case we only need to consider the newly

added signature (the remaining ones are covered by the inductive hypothe-

sis). Then by RCVSUBMIT ⟨n′, h , SubmitMsg ⟨v , sig′⟩⟩ ∈ P ′rcv and also sig′ =

sign (v, secret key (n′)). Hence, the property holds in ⟨△′,P ′⟩.

Now, (4) and (5) hold in ⟨△′,P ′⟩ by inductive hypothesis, since the transition

we are considering does not involve sending confirm messages with Byzantine

sender address or sending submit messages (only receiving).

Case III: s = NETDELIVER (p,𝛿) andmsgp = ConfirmMsg ⟨v , nsigs⟩ for some

v : Value, nsigs : P(NodeAddr × Signature)

Consider (1). By RCVCONFIRM clearly if certs(△′(dest p)) = certs(△(dest p))

∪ {cert′} for some cert′ = ⟨v, nsigs⟩ then ⟨src p, dest p,ConfirmMsg ⟨v , nsigs⟩⟩

∈ Prcv and ∧∀⟨n , sig⟩ ∈ nsigs, sig = sign (v, secret key (n)). Hence, if (1) holds

for ⟨△,P⟩ then it also holds for ⟨△′,P ′⟩.

Chapter 4. Modelling the B in ABC 32

Now (2), (3), (4), and (5) hold for ⟨△′,P ′⟩ by induction hypothesis alone since

these propositions do not assert anything about received confirm messages.

Case IV: s = NETINTERNAL (a ,𝛿)

(1), (2), (3), and (4) hold for ⟨△′,P ′⟩ by induction hypothesis alone since

these propositions do not assert anything about sent submit messages.

For (5) note that the only new submit messages in P ′ could come from hon-

est address a with state 𝛿 . Yet by INTSUBMIT a , if value bft(a) = Some v for

some v : Value, then a always submits v , andP ′sent = Psent ∪ {⟨a , n , SubmitMsg

⟨v , sig⟩⟩ | n ∈ NodeAddr} where sig = sign (v, secret key (a)). Therefore, since

the values submitted are always the ones contained in value bft(a), and by

termination ∀a ∈ HonestAddr,∃ v : Value, value bft(a) = Some v , they are

necessarily the same, both in Psent and P ′sent . So the property also holds for

⟨△′,P ′⟩.

Case V: s = NETBYZSUBMIT p

(1), (2), (3), (4) and (5) hold for ⟨△′,P ′⟩ by induction hypothesis since thesy

do not assert anything about submit messages sent from Byzantine addresses.

Case VI: s = NETBYZCONFIRM p

(1), (2), and (3) hold for ⟨△′,P ′⟩ by induction hypothesis since they do not

assert anything about confirm messages sent from Byzantine addresses.

For (4) we know thatP ′sent = Psent ∪ {⟨src p, dest p,ConfirmMsg ⟨v, nsigs⟩⟩}

for some v : Value , nsigs ∈ P(NodeAddr × Signature), and src p ∈ ByzAddr.

Then by NETBYZCONFIRM:

∀⟨n , sig⟩ ∈ nsigs, n ∈ HonestAddr ∧ sig = sign(v , secret key(n))

=⇒ ∃n′ ∈ NodeAddr , ⟨n , n′, SubmitMsg ⟨v , sig⟩⟩ ∈ Psent ⊆ P ′sent

Hence, the assertion holds for all messages in Psent and for the new message

⟨src p, dest p,ConfirmMsg ⟨v , nsigs⟩⟩, so the property must hold for ⟨△′,P ′⟩.

Chapter 4. Modelling the B in ABC 33

(5) also holds trivially for ⟨△′,P ′⟩ since it does not concern confirmmessages

sent by Byzantine nodes.

□

Note that the proof is structured such that each of the five conjuncts of

the invariant is validated by one network transition (or one network and one

local node transition combined), and not invalidated by the remaining transi-

tions (in which case it holds by induction hypothesis alone). This demonstrates

how the invariant is nothing more than a slight overapproximation of the ABC

semantics, encapsulating the logic behind the transitions that makes the Ac-

countability–Soundness property “true.” In the light of the above-mentioned,

the inductive invariant can be thought of a logical intermediate layer between

the formal specification of ABC and the Accountability–Soundness property –

the system specification implies the invariant, and the invariant implies the Ac-

countability–Soundness property.

4.8 Proving Accountability–Soundness

Given the that the inductive invariant holds for any system configuration ⟨△,P⟩,

we can prove that AccSoundness(⟨△,P⟩) holds for any system configuration

⟨△,P⟩ simply as a consequence of the validity of the invariant, without the

need to use induction. For the sake of brevity, in the proof we will refer to the

five conjuncts of the invariant by their respective identifiers (1)-(5).

Proof. Suppose a node n is in the proof extracted from the certificates of an

honest node, i.e., let n ∈ NodeAddr, h ∈ Honest and n ∈ proof (certs(△(h))).

Then by the specification of proof, ∃ c1, c2 ∈ certs(△(h)) such that:

c1 = ⟨v1, nsigs1⟩ for some nsigs1 ∈ P(NodeAddr × Signature), v1 : Value (4.1)

c2 = ⟨v2, nsigs2⟩ for some nsigs2 ∈ P(NodeAddr × Signature), v2 : Value (4.2)

Chapter 4. Modelling the B in ABC 34

v1 ≠ v2 (4.3)

∃sig1, sig2 : Signature , such that ⟨n , sig1⟩ ∈ nsigs1 and ⟨n , sig2⟩ ∈ nsigs2 (4.4)

Then by (1) both c1 and c2 must have been sent by some other nodes, call them

n1 and n2 i.e:

∃ n1 ∈ NodeAddr , ⟨n1, h ,ConfirmMsg ⟨v1, nsigs1⟩⟩ ∈ Prcv (4.5)

∃ n2 ∈ NodeAddr , ⟨n2, h ,ConfirmMsg ⟨v2, nsigs2⟩⟩ ∈ Prcv (4.6)

and by (1) and equation (4.4):

sig1 = sign (v1, secret key (n)) (4.7)

sig2 = sign (v2, secret key (n)) (4.8)

Now the invariant logic branches out depending on whether each of n1 and n2

is Byzantine, so we consider four cases.

Case 1: n1 and n2 are honest: Note that Prcv ⊆ Psent . Then by (2):

cert (△(n1)) = ⟨v1, nsigs1⟩ (4.9)

cert (△(n2)) = ⟨v2, nsigs2⟩ (4.10)

Then by (3) and equation (4.4):

⟨n , n1, SubmitMsg ⟨v1, sig1⟩⟩ ∈ Prcv ∧ sig1 = sign (v1, secret key (n)) (4.11)

⟨n , n2, SubmitMsg ⟨v2, sig2⟩⟩ ∈ Prcv ∧ sig2 = sign (v2, secret key (n)) (4.12)

Now suppose for the sake of contradiction that n ∈ Honest. Then by (5), and

equations (4.9) and (4.10), it follows that v1 = v2 which contradicts equation

(4.3) (hence contradicts the specification of proof). Therefore, it must be that

n ∈ ByzAddr.

Case 2: n1 is honest, n2 is Byzantine.

Then by the same logic as in Case 1, by (2):

cert (△(n1)) = ⟨v1, nsigs1⟩ (4.13)

Then by (3) and equation (4.4):

⟨n , n1, SubmitMsg ⟨v1, sig1⟩⟩ ∈ Prcv ∧ sig1 = sign (v1, secret key (n)) (4.14)

Chapter 4. Modelling the B in ABC 35

Suppose n is honest. Then by (4), since n is in the certificate c2 fabricated by

a Byzantine node, by equation (4.8) its signature is valid, and by assumption n

is honest, there must be a corresponding submit message from n to some other

node n′ for the value v2 in the packet soup:

∃n′ ∈ NodeAddr , ⟨n , n′, SubmitMsg ⟨v2, sig2⟩⟩ ∈ Psent (4.15)

From equations (4.15), (4.8) and (4.14), and by (5), it follows that v1 = v2 which

contradicts equation (4.3). Therefore, it must be that n ∈ ByzAddr

Case 3: n1 is Byzantine, n2 is honest. Holds by symmetry with Case 2.

Simply swap n1 and n2 in the proof above.

Case 4: n1 and n2 are Byzantine. Suppose n is honest. Then by (4) and

equations (4.7), (4.8):

∃n′ ∈ NodeAddr , ⟨n , n′, SubmitMsg ⟨v1, sig1⟩⟩ ∈ Psent (4.16)

∃n′′ ∈ NodeAddr , ⟨n , n′′, SubmitMsg ⟨v2, sig2⟩⟩ ∈ Psent (4.17)

Now by (4.7), (4.8), the assumption that n is honest, and (5), it must be that

v1 = v2. However, this contradicts equation (4.3). Hence, n ∈ ByzAddr.

□

The proof is structured such that it traces back the “actions” of the accused

node n , which is enabled by the structure of the invariant. The possibilities for

“precedent actions” branch out depending on whether the node that sent either

of the conflicting certificates to h is Byzantine or honest. This makes the proof

repetitive and suitable for mechanisation.

Furthermore, note that in Case 1 we could prove the stronger property

AccSoundness’ because clearly, we get a direct proof for the fact that n sent

messages for two different values with valid signatures to two (not necessarily

different) nodes, which is how we defined Byzantine behaviour. However, in

Chapter 4. Modelling the B in ABC 36

all other cases at least one of the senders of conflicting certificates is Byzan-

tine, which means that the sender could have included a forged signature of

another Byzantine node in its certificate, without the latter sending a corre-

sponding submit message. This way, a Byzantine node can be detected through

a proof of culpability without having behaved Byzantine. The detected node, if

its address comes from the set of Byzantines, might have even conscientiously

followed the ABC protocol, but having failed to keep its secret key secret, its

signature might have been forged by other Byzantines. By this argument, we

could refine the notion of Byzantine behaviour for the ABC protocol to include a

node sharing its secret key with other nodes (possibly only Byzantine nodes).12

We could conjecture that for Byzantine behaviour defined in such way Acc-

Soundness’ should hold, yet we would need to redefine our network semantics

to model key sharing.

12In addition to the Byzantine behaviour of sending conflictingmessages (i.e., failing to follow
the rules of the Accountable Confirmer).

37

Chapter 5

Conclusion and Future Work

Byzantine Consensus protocols are notoriously difficult to reason about, yet we

need formal guarantees of their safety, ideally even in the worst-case scenario

of Byzantine nodes overpopulating the network and exhibiting arbitrary be-

haviour. The motivation of this project is to obtain the key safety guarantees

for the ABC protocol by rigorously modelling a system in which a set of correct

nodes follow the protocol in the presence of Byzantine adversaries. The latter

can violate the protocol rules, collude with each other, and behave in arbitrary

ways subject to the constraints imposed by the cryptographic methods.

We began with a TLA+ model, which included a single Byzantine transition

and did not model the cryptography used, hence underapproximating the space

of Byzantine actions. However, a more accurate model would be unfeasible due

to concerns about the exponential growth of state space, which we should avoid

to enable model checking. Yet the simple TLA+ model allowed us to formulate

the relevant properties and model check them for fixed parameters.

To obtain a more accurate model suitable for sound verification we chose to

represent ABC semantics as an inductively specified systemwith asynchronous

message passing and digital signatures from Public Key Cryptography. This en-

abled more rigorous modelling of Byzantine behaviour, and a refined statement

of theAccountability-Soundness property. We presented a proof of the inductive

Chapter 5. Conclusion and Future Work 38

invariant and a proof of Accountability-Soundness from the invariant.

However, although we chose to focus on the most essential safety prop-

erty which guarantees that the accountability mechanism never accuses cor-

rect nodes, there are other important properties we would expect from an ac-

countable protocol. Some of these properties, such as the ones presented in

chapter 1, in particular the original accountability property from (Civit et al.,

2022), could be proved given an appropriate logic for reasoning about liveness.

However, the project shows that certain desirable accountability properties do

not hold for ABC. This raises the question of the feasibility of stronger notions

of accountability. We briefly discuss some future work that could address the

above-mentioned problems.

5.1 Mechanised Proofs in Coq Proof Assistant

The model presented in chapter 4 was designed with a Coq Proof Assistant for-

malisation in mind.13 The transitions, modeled in relational style in this project,

can be translated to executable functions, and we can define possible system

configurations inductively with a system step proposition asserting a relation

between a valid configuration w and a subsequent configuration w ′. Then we

canwrite machine-checked proofs for the inductive invariant (from the system

step proposition) and for Accountability-Soundness (from the inductive invari-

ant). While the Coq Proof Assistant encoding is not part of our contribution to

this project, it has been done independently by following our formalisation.

Furthermore, there is work being done to prove the Accountability property

from (Civit et al., 2022). The property asserts that if two honest nodes confirm

different values, then eventually all honest nodes prove the culpability of at least
13Coq Proof Assistant provides a formal language to write definitions and theorems as well

as an environment for machine-checked proofs.

Chapter 5. Conclusion and Future Work 39

t0 + 1 nodes. We can define “eventually” as “once all messages in the packet soup

sent from and addressed to honest nodes have been delivered,” and show that

if the latter is the case then any honest node can extract a proof of culpability

of at least t0 + 1 nodes from the certificates it has collected. To prove the above,

we would need to extend the inductive invariant with a few more propositions,

including a proposition asserting that if an honest node has confirmed, then it

must have broadcasted a certificates with N − t0 signatures.

Finally, work is also being done to generalise the framework for modelling

Byzantine behaviour and apply it to other accountable distributed system pro-

tocols, such as PeerReview (Haeberlen et al., 2007).

5.2 FaithfullyModellingCryptographic Schemes

As demonstrated in chapter 4, assumptions about the cryptographic methods

can play a key role in determining what the adversaries can do, and hence

which safety properties hold. Furthermore, some actions that violate a signa-

ture scheme based on Public Key Cryptography, such as sharing one’s secret

key, could be considered Byzantine. Ideally, we would like to have a more com-

prehensive model of ABC where the message exchanges intended for setting

up the scheme, and the message exchanges intended to compromise its secu-

rity, are included.

However, in reality the security guarantees of most cryptographic schemes

used in practice are only probabilistic. For instance, with negligible though

non-zero probability the adversary can guess the sender’s secret key and use it

to impersonate the sender. Therefore, the safety properties of any distributed

protocol that uses digital signatures or encryption will only hold with large

probability. For mechanised and composable proofs of the (probabilistic) se-

curity of underlying schemes one could use the SSProve library in Coq Proof

Chapter 5. Conclusion and Future Work 40

Assistant (Haselwarter et al., 2021).

5.3 Stronger Notions of Accountability

Finally, a question that naturally arises from the conclusion of this verification

effort is whether there exists an accountable protocol that satisfies completeness.

Intuitively, completeness of an accountable protocol means that we can detect

all nodes that have misbehaved, and hence prove the honesty of the remaining

nodes, which seems to be impossible. If that is the case, it would be interesting

to model a general accountability protocol and prove that it cannot be complete.

Furthermore, completeness is always relative to our definition of Byzantine

behaviour; for instance the definition adopted by the authors of ABC does not

include delay or omission, i.e., nodes deliberately refusing to send messages. If

the majority of nodes were to behave this way, the ABC protocol execution

would hang forever. It would be interesting to research for which definitions of

Byzantine behaviour (if any) we can achieve completeness.

41

Bibliography

Castro,Miguel and Barbara Liskov (1999). “Practical Byzantine Fault Tolerance”.

In: OsDI. Vol. 99. 1999, pp. 173–186.

Civit, Pierre, Seth Gilbert, and Vincent Gramoli (2021). “Polygraph: Account-

able Byzantine Agreement”. In: 2021 IEEE 41st International Conference on

Distributed Computing Systems (ICDCS). IEEE, pp. 403–413.

Civit, Pierre, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Ko-

matovic (2022). “As easy as ABC: Optimal (A)ccountable (B) yzantine (C)

onsensus is easy!” In: 2022 IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS). IEEE, pp. 560–570.

Haeberlen, Andreas, Petr Kouznetsov, and Peter Druschel (2007). “PeerReview:

Practical Accountability for Distributed Systems”. In:ACMSIGOPS operating

systems review 41.6, pp. 175–188.

Haselwarter, Philipp G, Exequiel Rivas, Antoine Van Muylder, Théo Winter-

halter, Carmine Abate, Nikolaj Sidorenco, Catalin Hritcu, Kenji Maillard,

and Bas Spitters (2021). “SSProve: A Foundational Framework for Modular

Cryptographic Proofs in Coq”. In: Cryptology ePrint Archive.

Lamport, Leslie (2003). Specifying Systems: The TLA+ Language and Tools for

Hardware and Software Engineers. Addison-Wesley Professional.

Lamport, Leslie, Robert Shostak, and Marshall Pease (2019). “The Byzantine

Generals Problem”. In: Concurrency: The Works of Leslie Lamport. New York,

Bibliography 42

NY, USA:Association for ComputingMachinery, 203–226. isbn: 9781450372701.

Available from: https://doi.org/10.1145/3335772.3335936.

Nakamoto, Satoshi (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. https:

//bitcoin.org/bitcoin.pdf. Accessed: March 3, 2023.

Yin, Maofan, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham (2019). “HotStuff: BFT Consensus with Linearity and Responsiveness”.

In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Com-

puting, pp. 347–356.

43

Appendix A

Accountable Confirmer

Given N processes, t0 = ⌈n3 ⌉ − 1, and i ∈ {1, . . . ,N } the full code for a process

Pi , as described by Civit et al. (2022), is:

upon event ⟨Init⟩ do

valuei ← ⊤

confirmedi ← false

fromi ← ∅

lightCertificatei ← ∅

fullCertificatei ← ∅

obtainedLightCertificatesi ← ∅

obtainedFullCertificatesi ← ∅

upon event ⟨Submit | v⟩do

valuei ← v

trigger ⟨Broadcast | [SUBMIT, v , ShareSign i (v)]𝜎i ⟩

Appendix A. Accountable Confirmer 44

upon event ⟨Deliver | Pj , [SUBMIT, value, share]œj⟩ do

if ShareVerify j (value , share) = ⊤ and value = value i andPj ∉ fromi then

fromi ← fromi ∪ {Pj }

lightCertificatei ← lightCertificatei ∪ {share}

fullCertificatei ← fullCertificatei ∪ {[SUBMIT, value, share]𝜎j }

upon event |fromi | ≥ n − t0 do

confirmedi ← true

trigger ⟨Confirm | value i ⟩

trigger ⟨Broadcast | [LIGHT − CERTIFICATE, , value i ,Combine (lightCertificatei)]⟩

upon event ⟨Deliver | Pj , [LIGHT − CERTIFICATE, , valuej , lightCertificatej]⟩ do

if lightCertificatej is a valid light certificate then

obtainedLightCertificatesi ← obtainedLightCertificatesi ∪ {lightCertificatej}

upon event c1, c2 ∈ obtainedLightCertificatesi, where c1 conflicts with c2

trigger ⟨Broadcast | [FULL − CERTIFICATE, , value i , fullCertificatei]⟩

upon event ⟨Deliver | Pj , [FULL − CERTIFICATE, , valuej , fullCertificatej]⟩ do

if fullCertificatej is a valid light certificate then

obtainedFullCertificatesi ← obtainedFullCertificatesi ∪ {fullCertificatej}

upon event c1, c2 ∈ obtainedFullCertificatesi, where c1 conflicts with c2

proof ← extract a proof of culpability of (at least) t0 + 1 processes from c1 and c2

F ← set of processes detected via proof

trigger ⟨Detect | F , proof ⟩

Note that the Accountable Confirmer splits certificates into light certificates

and full certificates. The latter contain the receivedmessages together with their

Appendix A. Accountable Confirmer 45

respective signatures, while the former are collections of threshold signatures,

included in each submit message, which can then be combined into a single

signature before broadcasting the certificate to other nodes. Then there is a

preliminary light certificate exchange round, with communication complexity

of O (N), and only if two conflicting light certificates are found the node broad-

casts its full certificate, which has communication complexity of O (N 2). The

reason why a round of full certificate exchange is necessary to find evidence for

misbehaviour is that nodes detected from a conflict of light certificates might be

prone to false positives. This is because threshold signatures might be forged in

case the number of byzantine processes exceeds t0.

	Acknowledgements
	Abstract
	Introduction
	Byzantine Consensus
	Accountability in Byzantine Consensus
	Problem Statement
	Contributions

	Background
	Accountability in Distributed Systems
	The ABC protocol

	ABC in TLA+
	Modelling Byzantine Consensus
	Modelling the Accountable Confirmer
	Properties of the Accountable Confirmer
	Byzantine Behaviour and Accountability

	Modelling the B in ABC
	Assumptions, Parameters and Axioms
	System State-Space
	Local Node Semantics
	Network Transitions
	Byzantine Network Transitions
	The Accountability-Soundness Property
	Inductive Invariant
	Proving Accountability–Soundness

	Conclusion and Future Work
	Mechanised Proofs in Coq Proof Assistant
	Faithfully Modelling Cryptographic Schemes
	Stronger Notions of Accountability

	Bibliography
	Accountable Confirmer

