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Summary

Formal verification is on the cusp of becoming mainstream. The past decade of verification research

has convincingly demonstrated the efficacy of verification techniques for certifying large-scale real

world software systems, such as compilers, web servers, distributed systems, file systems and even

whole operating system kernels. Despite these successes, however, the challenge of maintaining such

verified artefacts in the face of their inevitable evolution unfortunately remains largely unaddressed

and persists as a critical obstacle that must be overcome if verification is ever to achieve wider adoption.

The focus of this thesis is in tackling this challenge of maintaining evolving verified software. To this

end, this thesis identifies and develops a suite of techniques that can be deployed and applied in anger

to manage the burden of verified software maintenance. The thesis incorporates and adopts a three-fold

strategy for proof-maintenance, investigating tackling evolution through: first, 1) classical formal

techniques of composition and the use of reduction arguments, then second, 2) through the lens of

certified synthesis, drawing from prior works on proof-carrying-code and finally 3) under the umbrella

of repair, developing the novel technique of proof-driven-testing to scale proof-repair strategies to

operate in a real-world setting. Each technique is motivated using a running case study, provided in an

accompanying artefact, that demonstrates the efficacy of the technique in a practical setting.

Through the evaluation of each strategy, this thesis finds that the proposed framework is effective at

considerably reducing the maintenance burden across a variety of verified codebases with significant

impacts, including, for example, reducing the sizes of manual proof scripts of complex and subtle

algorithms by half, or reducing the time spent by proof engineers by hours, or, in some cases, eliminating

the maintenance burden entirely and synthesizing all required code and proofs automatically.
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▼CHAPT ER

1

INTRODUCTION&BACKGROUND

This chapter provides an overview of this thesis, introducing the reader to the motivation of the

work, presenting the problem statement and then summarises the main contributions. The chapter

ends with an outline of the structure of the thesis and a description of each subsequent chapter.

▶ 1.1 Motivation

Can you imagine a world liberated from the pestilence of ubiquitous software errors? This utopian

dream, far fetched may it be, has been the driving vision of the field of formal verification since its

conception; the art of certifying real programs by means of constructing rigorous machine-checked

proofs that reason about semantics in order to establish a program’s correctness. In recent years, driven

by the tireless efforts of innumerable researchers, this vision has begun to come to fruition.

The past decade has seen a radical paradigm shift in the field of formal verification, as frameworks and

tooling have matured and researchers have shifted their efforts to tackle large-scale real-world programs.

Notable results in this direction are numerous and easy to list: the CompCert [76] and CakeML [71]

compilers for C and SML respectively, verified operating systems such as Sel4 [70] and CertiKOS [57],

file servers, such as CrashFS [27] and Daisy-NFS [24], and even complex distributed protocols such

as Paxos [59], PBFT [110] and Raft [132]. Sadly, however, this move from toy-programs to real-world

systems has not been entirely painless, and researchers have found themselves quickly at odds with a

more pernicious and pervasive threat from the world of software engineering: that of code evolution.

Programs are naturally want to change; unfortunately, proofs much less so. The evolution of software

systems is a well-known and thoroughly studied phenomenon. A program may want to change for

any number of common reasons: for example, the project requirements may have shifted, or external

libraries may have updated and changed their implementations and interfaces or simply a developer

may have just wanted to optimise the program. Broadly speaking, these modifications typically surface
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Chapter 1. Introduction & Background 1.1. Motivation

in real code in one of three ways: 1) changes in the specifications of the code itself and thus its external

interface, 2) changes in the data-structures used by the program and 3) changes in the implementation

of the code itself. Unfortunately, software that happens to be verified is no stranger to these forces, but

when such software changes, the maintenance problem is effectively doubled, as developers are also

shackled with the task of also updating the corresponding proof alongside the original program.

The lengthy history of research on automating code evolution naturally leads to the question of whether

techniques from prior works could be extended to handle verified software. Indeed, a review of the

related literature surfaces three general approaches for code evolution that seem likely to generalise to

verified software — in particular, those embodied in the strategies of composition, synthesis and repair:

Composition Building composable modular software simplifies the maintenance of said systems as

the effects of any changes are localised to their respective components, and untouched components can

be reused as is — can we orchestrate verification projects such that they are similarly modular, such

that intermediate verification results can be reused between different versions of the same system?

Synthesis Prior work has demonstrated how incorporating automated code-generation and synthesis

techniques makes a large-scale system more robust to evolution as it can allow necessary code changes

to be automatically generated — in the context of verified software, can synthesis techniques be

incorporated to automatically generate verified code in response to software evolution?

Repair An effective means of handling code evolution is to view the problem as a repair task,

incorporating techniques from automated program repair to infer and apply the necessary patches

to the code — can similar methodologies be used to handle the maintenance of verified systems and

incorporate the additional information inherently present in verified software to optimise this process?

Unfortunately, few prior works have investigated the use of these techniques for the evolution of proofs.

Can verified software ever hope to be practical given the turbulent nature of real world systems?

The driving motive of this thesis is to answer this question. To this end, the thesis considers three

case-studies of verified software that each experiences change, and uses each one to investigate one of

the aforementioned strategies for managing and mitigating the burden of verified software evolution.

For each case study a methodology is proposed to reduce the effort required to keep their proofs faithful

to the underlying code, and the technique is implemented in an accompanying artefact and evaluated

on its effectiveness in this regard. Putting it all together, this thesis proposes a unified framework for

managing evolution in verified software, paving the path to bring verification to the mainstream.

13
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▶ 1.2 State of the art

Of course, the problem of maintaining verified software is by no means a novel observation of this

work—in fact, such concerns were already identified as critical challenges even around the inception of

the very field [38]—however these issues have only started to grow to prominence in recent years as

larger systems have begun to be verified, so research into this topic remains at a nascent state.

The most relevant prior work on this problem is the research by Talia Ringer on proof-repair [113, 114,

115]. Notably, Ringer et al. adopted a repair based approach and were the first to develop automatic

techniques for repairing proofs of programs as they change [115] and also coined the notion proof

repair [114] to refer to verified software evolution, and forms much of the conceptual basis upon which

this work builds. Ringer’s work primarily considers the problem of verified software evolution in

the context of changes in data-type definitions; first investigating how user-provided examples of the

required changes in one proof when a data-type changes could be systematically generalised to other

proofs [115], and then later investigating how user-provided proofs of equivalence between different

representations of the same data can be lifted to any proofs that reason over these data-types [114].

While the techniques in these works were evaluated over real-world verified codebases, the focus of

the tools to specifically only tackle data-type definitions limits their abilities to handle other kinds of

changes and thus leaves the challenge of verified software maintenance as an open problem.

For the remaining approaches, that is, composition and synthesis, while both are well-studied in the

literature, few works have considered how they may be exploited for the purposes of proof maintenance.

In the case of composition, the benefits of compositionality andmodularity for scaling proofs and analysis

are well-known, and much research has been done into extending such reasoning to more complicated

domains, such as concurrent code [16], distributed systems [127] or probabilistic programs [123].

However, only the work by Woos et al. [132], have specifically considered how compositional proofs

can reduce the maintenance cost in updating a verified system. In their work, Woos et al. discuss

their experiences constructing a formally verified implementation of the Raft distributed consensus

protocol. While the protocol itself does not change, their verification effort is nonetheless found to be

an iterative process, as they repeatedly have to strengthen their specifications and invariants as they

certify more and more of the system in question. Drawing from their experiences, Woos et al. develop a

set of general guidelines on structuring proofs of large-scale distributed systems such that the effects of

any individual change are minimised. While these guidelines are generalised to apply to other verified
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codebases, they are informal, and do not form a systematic stategy for verified software maintenance.

Similarly, for the case of synthesis, while there has been a long lineage of work investigating the

automatic synthesis of verified software, no prior research has considered it for handling verified

software evolution. In particular, work on synthesizing certifiying code originates from 1998, considered

first by Necula and Lee [98] who developed a certifying compiler which would compile programs in a

high-level language to assembly and also construct proofs of correctness for the generated code. In

the subsequent decades, many works have built on this idea and considered different approaches to

synthesizing certified software, developing more advanced certified compilers, such as the CompCert C

compiler [76] or CakeML compiler [71], or integrating using metaprogramming facilities of interactic

proof assistant to construct certified programs [36]. While all these works address similar problems as

those considered in this work, research in this line considers the synthesis task as a one-shot problem,

where the generated program is not expected to change, and are not sufficient to ensure maintainability.

Finally, there have a number of works from research into dependently typed provers on tools for

refactoring proofs, considering automated techniques to rearrange and restructure proofs which are

also relevant to this thesis. For example, the tool Levity by Bourke et al. [20] automates the movement

of lemmas between different packages in the Isabelle/HOL theorem prover, ensuring that any definitions

relying on those lemmas do not break. Similarly, Tactitian [1] is another tool for refactoring proof

scripts in HOL Light and RefactorAgda [131] considers the same problem in the Agda programming

language. The Chick tool by Valentin Robert [117] is a framework for refactoring proofs in a bespoke

dependently typed language with the capability to be extended to more or less expressive languages,

with a case study in OCaml. However, overall, the problem of refactoring is mostly orthogonal to

the central problem of verified software maintenance considered by this thesis, that of adapting and

updating proofs in large-scale verified software systems in response to changes to their implementations.

▶ 1.3 Approach

This work investigates a systematic solution to the problem of maintaining verified software systems

over changes in implementations, and to this end, puts forward the following thesis statement:

The problem of maintaining large-scale verified software systems can be effectively solved

through a combination of three general strategies: composition, synthesis and repair.

To substantiate this claim, the thesis presents three case-studies, one for each strategy, of a representative
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verified software system that experiences change and investigates and evaluates the use of each

respective approach to maintain the relevant proofs for each system over the changes.

The case studies of this work are, in order:

• Composition - The first case study investigates the use of composition for proof maintenance,

and describes the mechanical verification of a class of complicated probabilistic data-structures

known as approximate membership query structures (AMQs) in the Coq proof assistant. By

deliberately structuring the verification project in a modular and composable way, this case-study

investigates how the mechanisms of proof assistants can be used to reuse proofs of complex and

nuanced probablistic properties as the definition of these data-structures change, by making use

of large-scale compositional reduction arguments to port them across data-structure definitions.

• Synthesis - Shifting gears away from the human effort required in manual verification, the second

case-study investigates synthesis for proof maintenance, presenting a technique to extend an

existing separation-logic based synthesiser, SuSLik by Polikarpova and Sergey [105], to produce

executable real world-code accompanied with a corresponding foundational proof of correctness

that can be independently machine checked. By making use of an automated synthesis approach,

the thesis demonstrates how verified systems can be made to gracefully handle changes in their

specifications, as the required code and proofs can simply be automatically generated.

• Repair - Finally, the last case study investigates the use of repair for proof maintenance, and

presents a novel technique, proof-driven testing, and a mostly automated tool based on this

technique that can repair real-world verified OCaml programs over changes in their implementa-

tions. In this work, the thesis demonstrates how the inherent information within the constructive

proofs used by proof assistants can be exploited to allow verified systems to automatically handle

changes in their internal implementations while their specifications remain the same.

Putting it all together, the thesis proposes a single unified framework for handling the maintenance

of large-scale verified software, using 1) composition, to handle changes in data-structures, then 2)

synthesis, for software components whose specification changes frequently, and finally 3) repair, to

handle changes in the implementation of actual code. The thesis ends with a representative application

of this framework to a hypothetical verified web page server, motivating its effectiveness.
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▶ 1.4 Contributions

This main contributions of this thesis can be described as listed below:

Framework for AMQ structures - the results presented in the first case study are part of a general

framework for the verification of the popular class of probabilistic data structures: Approximate

Membership Query (AMQ) structures. This work also describes the first mechanised proof of the elusive

false positive rate property for the Bloom Filter datastructure [17]. The results of this case-study were

presented before at the 32nd International Conference on Computer Aided Verification (CAV 2020) [53].

Certified Synthesis backend for C - the second case study describes a novel extension to the SuSLik

verifier [105] to produce executable real world C programs alongside with proofs of correctness of said

code with respect to the input synthesis specifications in the Coq theorem prover in the foundational

Verified Software Toolchain framework [7]. These results were developed as part of a larger framework

to translate synthesis proofs from SuSLik to proof scripts for verification frameworks developed with

other co-authors. The results of this larger project, including those described in this thesis, have been

presented before at the 21nd International Conference of Functional Programming (ICFP 2021) [130]

Proof-driven testing - the final case-study presents the first mostly automated tool for the repair

of verified OCaml libraries over changes in their implementation. The tool itself has been evaluated

on a number of functions from real-world widely-used OCaml libraries and shown to be efficient and

effective at reducing the human effort in maintaining verified versions of these programs. As part of

this work, the novel technique of proof-driven testing was invented to allow scaling up the proof-repair

process to large-scale real world codebases. The results of this research have been presented before at

the 44th Conference on Programming Language Design and Implementation (PLDI 2023) [49].

The remainder of this thesis has the following structure:

• Chapter 2 - Verified Software Maintenance through Composition - This chapter presents the

first case study of this work, the verification of Approximate Membership-Query structures in

the Coq proof assistant, and investigates how verification efforts can incorporate composition

to gracefully handle changes in their implementations. The chapter starts with a discussion of

the setting and the objectives motivating this work, before then presenting the technical details

of the case study. The case study itself is presented in two parts, with the first part providing

a gentle introduction to a particular instance of this class, Bloom filters, and how they can be

formally verified, before the second part discusses how the analysis itself can use composition to
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handle a wider class of data structures. The chapter ends with a reflection on the key insights

from this case-study on how composition can be used to handle verified software evolution.

• Chapter 3 - Verified Software Maintenance through Synthesis - This chapter presents the second

case study of this work, the implementation of an extension to the SuSLik separation-logic based

synthesizer to produce real-world executable C code, and investigates how synthesis can be used

to allow verified systems to automate the manual burden of handling changes in specifications.

The chapter starts a brief introduction to the wider context of this development, briefly presenting

the concept of proof evaluators developed byWatanabe et al. [130] to extract synthesized programs

from SuSLik into certified programs in verification frameworks and motivates the challenges with

extending these techniques to produce real-world executable certified C code. The remainder of

the chapter presents the technical details of this extension and describes how the aforementioned

challenges were overcome. The chapter ends with a reflection on the insights revealed by the

case-study on the role that synthesis plays in alleviating the pains of verified software evolution.

• Chapter 4 - Verified Software Maintenance through Repair - This chapter presents the third

case study of this work, the development of a mostly automated tool for repairing verified real-

world OCaml programs over their changes, and investigates how repair can be incorporated

into software methodologies to simplify maintaining verified software as its implementation

evolves. The chapter starts with a discussion of the context of the work and how it relates to the

larger goals of the thesis in supporting verified software evolution. The remainder of the chapter

describes the technical details of the case-study, presenting the design and implementation of the

tool and evaluates its efficacy on real-world verified OCaml programs. The chapter concludes with

a reflection on how repair-based processes can be used to support verified software evolution.

• Chapter 5 - A Unified Framework for Verified Software Evolution - Wrapping up the findings of

this thesis, this chapter combines the techniques explored in the previous chapters and presents

a unifying framework for handling the maintenance of verified software. To motivate this

framework, the chapter considers a hypothetical verified static web page server and discusses

how each of the prior techniques can be used to gracefully maintain this verified system.

• Chapter 6 - Conclusion and Future work - This chapter concludes the thesis, providing an overview

of the work, its main contributions, and directions for future work. The chapter begins with

a summary of the previous chapters, reviewing the main contributions of the work and then

presents the final conclusions. Finally, the chapter ends by discussing directions for future work.
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VERIFIED SOFTWARE
MAINTENANCE

THROUGHCOMPOSITION

This chapter presents the first case study of this work, the verification of approximatemembership-

query structures in the Coq proof assistant, and through it, investigates the use of composition

for verified software maintenance. The chapter starts by discussing the challenges in exploiting

composition in verification efforts and proposes the verification of randomised programs as a setting

laden with numerous occurrences of these problems. Bloom-filters are introduced as an example

of a probabilistic data structure that can serve as a natural case study for investigating the use

of composition for maintenance and the thesis then presents the key properties of interest to be

verified. The chapter then details the process of encoding Bloom filters within a theorem prover,

and follows this with a highlight of the challenging aspects of the actual proof. Zooming out, the

chapter presents how the analysis can be scaled up and ported over to a larger class of approximate

membership-query structures, by decomposing the analysis into reusable components. Finally, the

chapter ends with a review of the main insights and takeaways gained from this investigation.

Composition, and not to mention its many beatitudes for the aspiring proof engineer, are scarcely an idea

that needs introduction. Indeed, many of the advances in formal verification over the past decade been

discovered through optimising for more compositionality, and researchers have spent considerable time

investigating the various ways in which proofs can be structured to be more modular and compositional.

Broadly speaking, researchers have identified three general strategies that are sufficient to ensure

composition in a verification effort: 1) through type systems and encoding verification conditions

as typing constraints, 2) by use of program logics, and reasoning synactically over the program to

certify the properties of interest and finally 3) by reasoning from first-principles and exploiting ad-hoc

compositional mathematical arguments. By structuring proofs following these patterns, the cost of

maintenance is reduced, as when the program changes, the effects are limited to the affected component.
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The goals of this chapter are thus not to again follow this well-trodden path but rather to complement

these prior works and provide a methodological study into the use of composition from the perspective

of verified software maintenance. To this end, the thesis identifies a particular class of randomised

data-structures—Approximate Membership Query Structures (AMQs)—whose intricate behaviours and

complex probabilistic properties leaves them challenging to verify through program logics or type-

systems, and certainly far outside the scope of automated approaches for maintenance such as synthesis

or repair. Considering the verification of AMQs as a case-study, the thesis investigates how composition

can be employed to aid verified software maintenance, treating each individual AMQ data-structure as

a separate verification task, with the goal of maximising proof reuse between instances.

Beyond the methodological study, this chapter makes the following technical contributions:

• A Coq-based mechanised framework Ceramist, specialised for reasoning about AMQs.1 Imple-

mented as a Coq library, it provides a systematic decomposition of AMQs and their properties in

terms of Coq modules and uses these interfaces to to derive certain properties “for free”, as well

as supporting proof-by-reduction arguments between classes of similar AMQs.

• A library of non-trivial theorems for establishing bounds on the false positive rates of AMQs,

including the first formal proof of the closed form for Stirling numbers of the second kind [56].

• A collection of facts and tactics for effective construction of proofs of probabilistic properties in

the style of Ssreflect reasoning [47, 86], that expresses its lemmas in terms of rewrites.

• A number of case study AMQs mechanised via Ceramist: ordinary [17] and counting [125] Bloom

filters, quotient filters [14, 101], and Blocked AMQs [107].

The resulting mechanised development [52] is entirely axiom-free, and is compatible with Coq 8.11.0 [32]

andMathComp 1.10 [86]. It relies on the infotheo library [3] for encoding discrete probabilities.

The remainder of this chapter will present the technical details of this case-study, starting with the

verification of a particularly well-known example of an AMQ, the Bloom Filter, before generalising these

findings to construct a general framework, Ceramist, for verifying a larger class of both classical AMQs

and several entirely novel AMQs by making use of composition. The technical content of this chapter

is a revision of work that been published at the CAV conference series and can be found here [53].

1Ceramist stands for Certified ApproximateMembership Structures.
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▶ 2.1 Motivating Example

The main result of this chapter’s case study is a framework, Ceramist, for reasoning about AMQ data

structures where the underlying randomness arises from the interaction of hashing operations. To

motivate the framework, the chapter starts by investigating the classical example of such an algorithm—a

Bloom filter [17]—a structure whose properties have been oft mischaracterised, as shall be discussed.

2.1.1 The Basics of Bloom Filters

Bloom filters are probabilistic data structures that provide compact encodings of mathematical sets,

trading increased space efficiency for a weaker membership test [17]. Specifically, when testing

membership for a value not in the Bloom filter, there is a possibility that the query may be answered as

positive. Thus a property of direct practical importance is the exact probability of this event, and how it

is influenced and affected by the various other parameters of the implementation.

x

f1 f2 f3 f4 f5

b1 b2 b3 b4 b5 b6 b7 b8

Figure 2.1: Implementation of a Bloom Filter

A Bloom filter bf is implemented as a binary vector ofm bits (all initially zeros), paired with a sequence

of k hash functions f1, . . . , fk, collectively mapping each input value to a vector of k indices from

{1 . . .m}, the indices determine the bits set to true in them-bit array Assuming an ideal selection of

hash functions, the output of f1, . . . , fk on new values can be treated as a uniformly-drawn random

vector. To insert a value x into the Bloom filter, each element of the “hash vector” produced from

f1, . . . , fk can be treated as an index into bf and set the corresponding bits to ones. Finally, to test

membership for an element x, one need only check that all k bits specified by the hash-vector are raised.

2.1.2 Properties of Bloom Filters

Given this model, there are two properties of importance: that of false positives and of false negatives.

False Negatives. It turns out that these definitions are sufficient to guarantee the lack of false-

negatives with complete certainty, i.e., irrespective of the random outcome of the hash functions. This
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follows from the fact that once a bit is raised, there are no permitted operations that will unset it.

Theorem 2.1.1 (No False Negatives). If x ∈ bf , then Pr [x ∈? bf ] = 1, where x ∈? bf stands for the

approximate membership test, while the relation x ∈ bf means that x has been previously inserted into bf .

False Positives. This property is more complex as the occurrence of a false positive is entirely

dependent on the particular outcomes of the hash functions f1, . . . , fk and one needs to consider

situations in which the hash functions happen to map some values to overlapping sets of indices. That

is, after inserting a series of values xs , subsequent queries for y /∈ xs might incorrectly return true.

This leads to subtle dependencies that can invalidate the analysis, and have lead to a number of

incorrect probabilistic bounds on the event, including in the analysis by Bloom in his original paper [17].

Specifically, Bloom first considered the probability that inserting l distinct items into the Bloom filter

will set a particular bit bi. From the independence of the hash functions, Bloom was then able to show

that the probability of this event has a relatively simple closed-form representation:

Lemma 2.1.2 (Probability of a single bit being set). If the only values previously inserted into bf are

x1, . . . , xl, then the probability of a particular single bit at the position i being set is

Pr
[
ith bit in bf is set

]
= 1−

(
1− 1

m

)kl

.

Alas, at this point Bloom made a subtle mistake, and claimed that the probability of a false positive was

simply the probability of a single bit being set, raised to the power of k, reasoning that a false positive

for an element y ̸∈ bf only occurs when all the k bits corresponding to the hash outputs are set.

Unfortunately, as was later pointed out by Bose et al. [19], as the bits specified by f1(x), . . . , fk−1(x)

may overlap, it is not possible to guarantee the independence that is required for any simple relation

between the probabilities. Bose et al. rectified the analysis by instead interpreting the bits within a

Bloom filter as maintaining a set bits(bf ) ⊆ N[0,...,m−1], corresponding to the indices of raised bits.

With this interpretation, an element y only tests positive if the random set of indices produced by

the hash functions on y is such that inds(y) ⊆ bits(bf ). Therefore, the chance of a positive result for

y ̸∈ bf resolves to the chance that the random set of indices from hashing y is a subset of the union of

inds(x) for each x ∈ bf . The probability of this reduced event is described by the following theorem:

Theorem 2.1.3 (Probability of False Positives). If the only values inserted into bf are x1, . . . , xl, then for
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any y ̸∈ bf ,

Pr [y ∈? bf ] =
1

mk(l+1)

m∑
i=1

iki!

m
i


kli

 ,

where

st
 stands for the Stirling number of the second kind, capturing the number of surjections from

a set of size s to a set of size t.

The key step in capturing these program properties is in treating the outcomes of hashes as random

variables and then propagating this randomness to the results of the other operations. A formal treatment

of program outcomes requires a suitable semantics, representing programs as distributions of such

random variables. Before moving to mechanised proofs, it is necessary to first properly characterise

this semantics, formally defining a notion of a probabilistic computation in Coq.

▶ 2.2 Encoding Bloom Filters in Coq

Moving on to the encoding of AMQs and their probabilistic behaviours in Coq, consider now how to

translate the running example from mathematical notation to Gallina, Coq’s language. The rest of this

section will introduce each of the key components of this encoding through the lens of Bloom filters.

2.2.1 Probability Monad

In this case study, probabilistic computations are represented using an embedding following the style

of the FCF library [102]. The code does not use FCF directly, due to its primary focus on cryptographic

proofs, providing little support for proving probabilistic bounds directly, instead prioritising a reduction-

based approach of expressing arbitrary computations as compositions of known distributions.

Following the adopted FCF notation, a term of type Comp A represents a probabilistic computation

returning a value of typeA, and is constructed using the standard monadic operators, with an additional

primitive rand n that allows sampling from a uniform distribution over the range Zn:

ret : A→ Comp A

bind : Comp A→ (A→ Comp B)→ Comp B

rand : (n : N)→ Comp (Zn)

It is then possible to implement a Haskell-style do-notation over this monad, allowing idiomatic and
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natural descriptions of probabilistic computations within Gallina. For example, the following seemingly

imperative code is used to implement the query operation for the Bloom filter:

hash_res <-$ hash_vec_int x hashes; (* hash x using the hash functions *)

let (new_hashes, hash_vec) := hash_res in

(* check if all the corresponding bits are set *)

let qres := bf_query_int hash_vec bf in

(* return the query result and the new hashes *)

ret (new_hashes, qres).

In the above listing, the code passes the queried value x along with the hash functions hashes to a

probabilistic hashing operation hash_vec_int to hash x over each function in hashes. The result of

this random operation is then bound to hash_res and split into its constituent components—a sequence

of hash outputs hash_vec and an updated copy new_hashes of the hash functions, now incorporating

the mapping for x. Then, having mapped the input into a sequence of indices, the implementation

can simply query the Bloom filter for membership using a corresponding deterministic operation

bf_query_int to check that all the bits specified by hash_vec are set. Finally, the computation

is completed by returning the resulting query outcome qres and also the updated hash functions

new_hashes making use of the ret operation to lift the result to a probabilistic outcome.

Using the code snippet above, it is possible to define the query operation bf_query as a function that

maps a Bloom filter, a value to query, and a collection of hash functions to a probabilistic computation

returning the query result and an updated set of hash functions. However, because the computation

type does not impose any particular semantics on the programs written in it, this result only encodes

the syntax of the probabilistic query and has no actual meaning without a separate interpretation.

Thus, given a Gallina term of type Comp A, any proofs about it must first evaluate it into a distribution

over possible results to state properties on the probabilities of its outcomes. To do this, the case-study

interprets the aforementioned monadic encoding using Ramsey’s probability monad [111], which

decomposes a complex distribution into composition of primitive ones bound together via conditional

distributions. To capture this interpretation within Coq, the code uses the encoding of this monad from

the infotheo library [2, 4], and provides a function eval_dist : Comp A → dist A that evaluates

computations into distributions by recursively mapping them to the probability monad. Here, dist A

represents infotheo’s encoding of distributions over a finite support A, defined as a measure function

pmf : A→ R+, and a proof that the sum of the measure over the support A produces 1.

This mapping from computations to distributions must be done to a program e (involving, e.g., Bloom
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filter) before stating its probability bound. Therefore, this evaluation process is hidden behind a notation

that allows stating probabilistic properties in a form closer to their mathematical counterparts:

Pr [e = v] ≜ (eval_dist e) v

Pr [e] ≜ (eval_dist e) true

Above, v is an arbitrary element in the support of the distribution induced by e. Finally, the code uses a

binding operator ▷ to allow concise representation of dependent distributions: e ▷ f ≜ bind e f .

2.2.2 Representing Properties of Bloom Filters

The state of a Bloom filter (BF) itself can be concisely encoded in Coq simply as a binary vector of a

fixed lengthm, shown below using Ssreflect’s m.-tuple data type to represent the vector of bits:

Record BF := mkBF { bloomfilter_state: m.-tuple bool }.

Definition bf_new : BF := (* construct a BF with all bits cleared *).

Definition bf_get_int i : BF → bool := (* retrieve BF's ith bit *).

The deterministic components of the implementation can be defined as pure functions taking a BF

instance and a set of indices assumed to be obtained from a prior call to the associated hash functions:

bf_add_int : BF→ seq Zm → BF

bf_query_int : BF→ seq Zm → B

That is, bf_add_int takes the Bloom filter state and a sequence of indices to insert and returns a new

state with the requested bits also set. Conversely, bf_query_int returns true iff all the queried indices

are set. These pure operations are then called within a probabilistic wrapper that handles hashing the

input and the book-keeping associated with hashing to provide the standard interface for AMQs:

bf_add : B → (HashVec B ∗ BF)→ Comp (HashVec B ∗ BF)

bf_query : B → (HashVec B ∗ BF)→ Comp (HashVec B ∗ B)

The component HashVec B (to be defined in Subsection 2.2.3), parameterised over an input type B, is

used to keep track of the known results of all the involved hash functions and is provided as an external

argument that must be provided to the function rather than being a part of the data structure to reflect

typical uses of AMQs, wherein the hash operation is pre-determined and shared by all instances.
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With these definitions and notation, it is now possible to state the key theorems of interest within Coq:2

Theorem 2.2.1 (No False Negatives). For any Bloom filter state bf , a vector of hash functions hs , after

having inserted an element x into bf , followed by a series xs of other inserted elements, the result of query

x ∈? bf is always true. That is, in terms of probabilities:

Pr [bf_add x (hs, bf ) ▷ bf_addm xs ▷ bf_query x] = 1.

Lemma 2.2.2 (Probability of Flipping a Single Bit). For a vector of hash functions hs of length k, after

inserting a series of l distinct values xs , all unseen in hs , into an empty Bloom filter bf , represented by a

vector ofm bits, the probability of its any index i being set is

Pr [bf_addm xs (hs, bf_new) ▷ bf_get i] = 1−
(
1− 1

m

)kl

.

Here, bf_get is a simple embedding of the pure function bf_get_int into a probabilistic computation.

Theorem 2.2.3 (Probability of a False Positive). After having inserted a series of l distinct values xs , all

unseen in hs , into an empty Bloom filter bf , for any unseen y ̸∈ xs , the probability of a subsequent query

y ∈? bf for y returning true is given as

Pr [bf_addm xs (hs, bf_new) ▷ bf_query y] =
1

mk(l+1)

m∑
i=1

iki!

m
i


kli

 .

The proof of this theorem required developing the first axiom-free mechanised proof of the closed form

for Stirling numbers of the second kind [56], a standalone fact that can be reused by future developments.

In the definitions above, the output of the hashing operation is used as the boundary between the

deterministic and probabilistic components of the Bloom filter. For instance, in the earlier description of

the Bloom filter query operation in Subsection 2.2.1, it was possible to implement the entire operation

with the only probabilistic operation being the call hash_vec_int x hashes. In general, structuring

AMQ operations as manipulations with hash outputs via pure deterministic functions allows decompos-

ing the reasoning about the data structure into a series of specialised properties about its deterministic

primitives and a separate set of reusable properties on its hash operations, improving modularity.

2bf_addm is a trivial generalisation of the insertion to multiple elements.
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2.2.3 Reasoning about Hash Operations

Hash operations in the development are encoded using a random oracle-based implementation. In

particular, in order to keep track of seen hashes learnt by hashing previously observed values, the state

of a hash function from elements of type B to a range Zm is represented using a finite map to ensure

that hashing produces consistent outputs — i.e. that previously hashed values produce the same result:

Definition HashState B := FixedMap B 'I_m.

The hash state is then paired with a randomised function for hashing that generates uniformly random

outputs for unseen values, and otherwise returns the value as from its prior invocations:

Definition hash value state : Comp (HashState B * B) :=

match find value state with

| Some(output) ⇒ ret (state, output)

| None ⇒ rnd <-$ rand m;

new_state <- put value rnd state;

ret (new_state, rnd)

end.

A hash vector is a generalisation of this structure to a vector of states of k independent hash functions:

Definition HashVec B := k.-tuple HashState B.

The corresponding hash operation over the hash vector, hash_vec_int, is then defined as a function

taking a value and the current hash vector and then returning a pair of the updated hash vector and

associated random vector, internally calling out to hash to compute individual hash outputs.

This random oracle-based implementation naturally allows formulating several helper theorems for

simplifying probabilistic computations using hashes by considering whether the hashed values have

been seen before or not. For example, if one knows that a value x has not been seen before, then intuitively

one can reason that the possibility of obtaining any particular choice of a vector of indices would be

equivalent to obtaining the same vector by a draw from a corresponding uniform distribution. This

natural intuition can be mechanically formalised in the form of the following theorem:

Theorem 2.2.4 (Uniform Hash Output). For any two hash vectors hs , hs ′ of length k, a value x that has

not been hashed before, and an output vector ιs of lengthm obtained by hashing x via hs , if the state of

hs ′ has the same mappings as hs and also maps x to ιs , the probability of obtaining the pair (hs ′, ιs) is

uniform: Pr
[
hash_vec_int x hs = (hs ′, ιs)

]
=

(
1
m

)k
Similarly, there are also cases where a proof requires hashing a value that has already been seen. In
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these cases, if the result a value hashes to is known, it is possible to prove a certainty on the outcome:

Theorem2.2.5 (Hash Consistency). For any hash vector hs , a valuex, if hs mapsx to outputs ιs , then hash-

ing x again will certainly produce ιs and not change hs , that is, Pr [hash_vec_int x hs = (hs, ιs)] = 1.

By combining these types of probabilistic properties about hashes with the earlier Bloomfilter operations,

it was possible to prove the prior theorems about Bloom filters operations by reasoning primarily about

the core logical interactions of the deterministic components of the data structure rather than the random

components. This decomposition is not just applicable to the case of Bloom filters, but can be extended

into a general framework for obtaining modular proofs of AMQs, as will be shown in the next section.

▶ 2.3 Generalising to AMQs at Large

Zooming out from the prior discussion of Bloom filters, it is time to present the complete Ceramist

framework in its full generality, describing how its careful high-level design exploits composition in

terms of the various interfaces it requires to instantiate to obtain verified AMQ implementations.

The core of the framework revolves around the decomposition of an AMQ data structure into interfaces

for hashing (AMQHash) and state (AMQ), generalising and encapsulating the specific decomposition

used for Bloom filters (hash vectors and bit vectors respectively). More specifically, the AMQHash

interface captures the generally reusable probabilistic properties of the hashing operation, while the

AMQ interface captures the bespoke deterministic interactions of the state with the hash outcomes.

2.3.1 AMQHash Interface

The AMQHash interface carefully generalises the nuanced behaviours of hash vectors (Subsection 2.2.3)

to provide a generic unifying description of the various hashing operations typcially used in AMQs.

The interface abstracts over the specific types used in the prior hashing operations (such as, e.g.,

HashVec B) by treating them as opaque parameters, and using a parameterAMQHashState to represent

the state of the hash operation. The types Key andValue are used to encode the hash inputs and outputs

respectively, and finally, a deterministic operation AMQHash_add_internal is used to encode the

basic interaction of the state with the outputs and inputs. As the definition of probability distributions

used in the project are defined over finite supports, all types are constrained to also be finite.

Parameter AMQHashState : finType.

Parameter Key : finType.

Parameter Value : finType.

Parameter AMQHash_add_internal :
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AMQHashState → Key → Value → AMQHashState.

For example, for a single hash function, the state parameter AMQHashState would be HashState B,

while for a hash vector this would instead be HashVec B to represent the vector of states.

To invoke this hash and the corresponding hash state from probabilistic computations, the interface

then requires a separate probabilistic operation that will take the hash state and randomly generate an

output as has been seen before (e.g., hash for single hashes and hash_vec_int for hash vectors):

Parameter AMQHash_hash: Key → AMQHashState → Comp (AMQHash * Value).

Then, to abstractly capture the reasoning patterns about outcomes of hash operations as done with

Bloom filters in Subsection 2.2.3, the interface assumes two predicates on the hash state about its

contents:

Parameter AMQHash_hashstate_contains: AMQHashState → Key → Value → bool.

Parameter AMQHash_hashstate_unseen: AMQHashState → Key → bool.

These components are then combined together to produce more abstract general formulations of the

previous Theorems 2.2.4 and 2.2.5 on hash operation outputs and consistency.

Property 1 (Generalised Uniform Hash Output). There exists a probability phash, such that for any two

AMQ hash states hs, hs ′, a value x that is unseen, and an output ιs obtained by hashing x via hs , if the

state of hs ′ has the same mappings as hs and also maps x to ιs , the probability of obtaining the pair (hs ′, ιs)

is given by: Pr
[
AMQHash_hash x hs = (hs ′, ιs)

]
= phash.

Property 2 (Generalised Hash Consistency). For any AMQ hash state hs , a value x, if hs maps x to an

output ιs , then hashing x again will certainly produce ιs and not change hs :

Pr [AMQhash_hash x hs = (hs, ιs)] = 1

Proofs of these corresponding properties must also be provided to instantiate the AMQHash inter-

face. Conversely, components operating over this interface can assume their existence, and use them

to abstractly perform the same kinds of simplifications as done with Bloom filters, resolving many

probabilistic proofs to dealing with deterministic properties on the AMQ states.
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2.3.2 The AMQ Interface

Building on top of an abstract AMQHash component, the AMQ interface then provides a unified view of

the state of an AMQ and how it interacts with the output type Value of a particular hashing operation.

As before, the interface begins by abstracting the specific types and operations of the previous analysis

of Bloom filters, first introducing a type AMQState to capture the state of the AMQ, and then assuming

deterministic implementations of the typical add and query operations of an AMQ:

Parameter AMQ_add_internal: AMQState → Value → AMQState.

Parameter AMQ_query_internal: AMQState → Value → bool.

In the case of Bloom filters, these would be instantiated with the BF, bf_add_int and bf_query_int

operations (cf. Subsection 2.2.2), thereby setting the associated hashing operation to the hash vector

(Subsection 2.2.3).

When it comes to reasoning about the behaviours of these operations, the interface diverges slightly

from that of the Bloom filter by conditioning on an assumption that the state has sufficient capacity:

Parameter AMQ_available_capacity: AMQState → nat → bool.

While the Bloom filter has no real deterministic notion of a capacity, this cannot be said of all AMQs in

general, such as the Counting Bloom filter or Quotient filter, as will be presented later.

With these definitions in hand, the expected behaviours of well-formed AMQ operations themselves

are then characterised in the interface using a corresponding series of associated assumptions:

Property 3 (AMQ insertion validity). For a state s with sufficient capacity, inserting any hash output ιs

into s via AMQ_add_internal will produce a new state s′ for which any subsequent queries for ιs via

AMQ_query_internal will return true.

Property 4 (AMQ query preservation). For any AMQ state s with sufficient remaining capacity, if queries

for a particular hash output ιs in s via AMQ_query_internal happen to return true, then inserting any

further outputs ιs ′ into s will return a state for which queries for ιs will still return true.

Though these assumptions seemingly place strict restrictions on the permitted operations, these proper-

ties were found to be satisfied by most common AMQ structures. One potential reason for this might be

because they are in fact sufficient to ensure the No-False-Negatives property standard of most AMQs:

Theorem 2.3.1 (Generalised No False Negatives). For any AMQ state s, a corresponding hash state hs ,

after having inserted an element x into s, followed by a series xs of other inserted elements, the result of
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Figure 2.2: Overview of Ceramist and the dependencies between its components.

query for x is always true. That is,

Pr [AMQ_add x (hs, s) ▷ AMQ_addm xs ▷ AMQ_query x] = 1.

Here, AMQ_add, AMQ_addm, and AMQ_query are the straightforward generalisations of the previously

seen probabilistic wrappers of Bloom filters (cf. Subsection 2.2.1) that both keep track of the bookkeeping

associated with hashing and delegate the actual implementation to the internal deterministic operations.

The generalised Theorem 2.3.1 illustrates one of the key facilities provided by the Ceramist framework

use of composition, wherein by simply providing components satisfying the AMQHash and AMQ

interfaces, it is possible to obtain proofs of standard probabilistic properties or simplifications for free.

The diagram in Figure 2.2 provides a high-level overview of the interfaces of Ceramist, their specific

instances, and dependencies between them, demonstrating Ceramist’s take on compositional reasoning

and proof reuse. For example, Bloom filter implementation instantiates the AMQ interface implementa-

tion and uses, as a component, hash vectors, which themselves instantiate AMQHash used by AMQ .

The Bloom filter is also used as a proof reduction target by Counting Bloom filter. The following sections

will elaborate on this and other noteworthy dependencies between interfaces and instances of Ceramist.

2.3.3 Counting Bloom Filters through Composition

To provide a concrete demonstration of the use of the AMQ interface for composition and proof reuse,

consider now a new running example—Counting Bloom filters [125]. A Counting Bloom filter is a
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variant of the Bloom filter in which individual bits are replaced with counters, thereby allowing the

removal of elements. The implementation of the structure closely follows the Bloom filter, generalising

the logic from bits to counters: insertion increments the counters specified by the hash outputs, while

queries treat counters as set if greater than 0. The remainder of this section will discuss the process of

encoding and verifying the Counting Bloom filter for the standard AMQ properties using the facilities

provided by Ceramist. Furthermore, to demonstrate how new properties and theorems can be built on

top of the framework constructions produced by composition, the development also proves two novel

domain-specific properties of Counting Bloom filters, to be outlined in Section 2.4.

When applying the Ceramist framework, as the Counting Bloom filter uses the same hashing strategy

as the Bloom filter, the hash interface can be instantiated with the Hash Vector structure used for the

Bloom filter, entirely reusing the earlier proofs on hash vectors. Next, in order to instantiate the AMQ

interface, the state parameter can be defined as a vector of bounded integers, all initially set to 0:

Record CF := mkCF { countingbloomfilter_state: m.-tuple Zp }.

Definition cf_new : CF := (* a new CF with all counters set to 0 *).

As mentioned before, the add operation is implemented similarly to the Bloom filter but simply incre-

ments counters rather than setting bits, and the query operation treats non-zero counters as raised.

cf_add_int : CF→ seq Zm → CF

cf_query_int : CF→ seq Zm → B

To prevent integer overflows, the counters in the Counting Bloom filter are bounded to some range Zp,

so the overall data structure too has a maximum capacity. It would not be possible to insert any values

if doing such would raise any of the counters above their maximum. To account for this, the capacity

parameter of the AMQ interface is instantiated with a simple predicate cf_available_capacity

that verifies that the structure can support l further inserts by ensuring that each counter has at least

k ∗ l spaces free (where k is the number of hash functions used by the data structure).

The add operation can be shown to be monotone on any counter when there is sufficient capacity

(Property 3). The remaining properties of the operations also trivially follow, thereby completing the

instantiation, and allowing the automatic derivation of the No-False-Negatives result via Theorem 2.3.1.
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2.3.4 Proofs about False Positive Probabilities by Reduction

As the mechanisms of the Counting Bloom filter closely match those of the Bloom filter, it seems

reasonable to expect that the same probabilistic bounds might also apply to the data structure. Drawing

inspiration from this intuition, Ceramist provides an AMQMAP interface, which allows reusing proven

properties about one data structure to derive probabilistic bounds for a new data structure, internally

using reduction arguments to compositionally map properties from one AMQ data structure to another.

The AMQMAP interface is parameterised by two AMQ data structures, AMQ A and B, using the same

hashing operation. It is assumed that corresponding bounds on False Positive rates have already been

proven for AMQ B, while have not for AMQ A. The interface first assumes the existence of some

mapping from the state of AMQ A to AMQ B, which satisfies a number of properties:

Parameter AMQ_state_map: A.AMQState → B.AMQState.

In the case of the Counting Bloom filter example, this mapping would convert the Counting Bloom

filter state to a bit vector by mapping each counter to a raised bit if its value is greater than 0. In order

to automatically derive the false positive rate property, the AMQMAP interface then further requires

the behaviour of this mapping to be proven to satisfy a number of additional assumptions:

Property 5 (AMQ Mapping Add Commutativity). Adding a hash output to the AMQ B obtained by

applying the mapping to an instance of AMQ A produces the same result as first adding a hash output to

AMQ A and then applying the mapping to the result.

Property 6 (AMQ Mapping Query Preservation). Applying B’s query operation to the result of mapping

an instance of AMQ A produces the same result as applying A’s query operation directly.

When reducing Counting Bloom filters (A) to Bloom filters (B), both properties follow from the fact

that after incrementing a counter, it will have a value greater than 0 and thus be mapped to a raised bit.

Having instantiated the AMQMAP interface with the corresponding function and proofs about it, it is

now possible to exploit composition and automatically show that the false positive rate of Bloom filters

holds for Counting Bloom filters entirely for free through the following generalised lemma:

Theorem 2.3.2 (AMQ False Positive Reduction). For any two AMQs A, B, related by the AMQMAP

interface, if the false positive rate for B after inserting l items is given by the function f on l, then the false
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positive rate for A is also given by f on l. That is, in terms of probabilities:

Pr [B.AMQ_addm xs (hs,B.AMQ_new) ▷ B.AMQ_query y] = f(length xs) =⇒

Pr [A.AMQ_addm xs (hs,A.AMQ_new) ▷ A.AMQ_query y] = f(length xs).

▶ 2.4 Additional Properties of Counting Bloom Filters

While the No-False-Negatives and false positive rate are practically important aspects of an AMQ, in the

case of a Counting Bloom filter, there are a few other behaviours of the structure that are of importance.

One such property is the ability to remove elements from a Counting Bloom filter without affecting

queries for other ones, by decrementing the counters corresponding to the removed element.

To demonstrate the flexibility of the framework, the development also includes a mechanised proof of

the validity of this removal operation, which had not ever been previously formalised:

Theorem 2.4.1 (Counting Bloom filter removal). For any Counting Bloom filter cf with sufficient capacity

and associated hashes hs , removing a previously inserted value x′ will not change the query for any other

previously inserted value x, that is:

Pr
[
cf_add x′ (hs, cf) ▷ cf_add x ▷ cf_remove x′ ▷ cf_query x

]
= 1.

The operation cf_remove from the theorem statement deletes a value from the Counting Bloom filter

by decrementing the associated counters, and is provided as a custom operation externally to the other

Ceramist components, as removal operations are not a typical operation in AMQ interfaces.

The development also provides a proof of another specialised property of the Counting Bloom filte

structure—that inserting any value will increase the total sum of the counters by a fixed amount. This

property characterises how the modified state of the Counting Bloom filter allows tracking more detailed

information, than just element membership, in terms of the exact number of insertions.

Theorem 2.4.2 (Certainty of Counter Increments). For any counting Bloom filter cf , a value y that was

not previously inserted into cf , if the sum of the values of all counters di in cf is l, then after inserting y,

the sum of the counters will certainly increment by k, that is: Pr
[∑

di∈cf di = l + k
]
= 1.
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▶ 2.5 Proof Automation for Probabilistic Sums

The narrative has, until now, avoided discussing the technical details of how properties of probabilistic

computations can be composed, and also the specifics of how proofs in the framework itself are

structured. As it turns out, most of this process resolves to reasoning about summations over real values

as encoded by Ssreflect’s bigop library. The development involves extensive manipulations of nested

summations, using a tactic library for rewriting under summations by Martin-Dorel and Soloviev [87].

This section outlines the most essential proof principles facilitating the proofs-by-rewriting about

probabilistic sums. While most of the provided rewriting primitives are standalone general equality

facts, some of the proof techniques are better understood as combining a series of rewritings into a more

general rewriting pattern. To delineate these two, the text will use Pattern to refer to a general pattern

the library supports by means of a dedicated tactic, while Lemma will refer to standalone equalities.

2.5.1 The Normal Form for Composed Probabilistic Computations

When stating properties on outcomes of a probabilistic computation (cf. Subsection 2.2.1), the computa-

tion must first be recursively evaluated into a distribution, where the intermediate results are combined

using the probabilistic bind operator. Therefore, when decomposing a probabilistic property into

smaller subproofs, one must rely on its semantics that is defined for discrete distributions as follows:

bind_dist (P : dist A) (f : A→ dist B) ≜
∑
a: A

∑
b: B

P a × (f a) b

Expanding this definition, one can represent any statement on the outcome of a probabilistic computation

in a normal form composed of only nested summations over a product of the probabilities of each

intermediate computational step. This paramount transformation is captured as the following pattern:

Pattern 2.5.1 (Bind normalisation).

Pr [(c1 ▷ . . . ▷ cm) = v] =
∑
v1

· · ·
∑
vm−1

Pr [c1 = v1]× · · · × Pr [cm vm−1 = v]

Here, ci vi−1 = vi is used to denote the event in which the result of evaluating the command ci vi−1 is

vi, where vi−1 is the result of evaluating the previous command in the chain. This basic transformation

then allows decomposing the proof of a given probabilistic property into proving simpler statements on

its individual substeps. For instance, consider the implementation of Bloom filter’s query operation

from Section 2.2.1. When proving properties of the result of a particular query (as in Theorem 2.2.1),
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this rule is used to decompose the program into its component parts, namely as being the product of

a hash invocation Pr [hash_vec_int x hs] and the deterministic query operation bf_query_int.

This allows dealing with the hash operation and the deterministic component separately by applying

subsequent rewritings to each factor on the right-hand side of the above equality.

2.5.2 Probabilistic Summation Patterns

Having resolved a property into its normal form via a tactic implementing Pattern 2.5.1, the subsequent

reductions rely on the following straightforward patterns and lemmas.

Sequential composition. When reasoning about the properties of composite programs, it is common

for some subprogram e to return a probabilistic result that is then used as the arguments for a probabilistic

function f . This composition is encapsulated by the operation e ▷ f , as used by Theorems 2.2.1, 2.2.2,

and 2.2.3. These programs, once converted to normal form, are characterised by having factors in its

product that simply evaluate the probability of the final statement ret v′ producing a given value vk:

∑
v1

· · ·
∑
vm−1

Pr [c1 = v1]× · · ·Pr [ret v′ = vk]︸ ︷︷ ︸
e

· · · × Pr [cm vm−1 = v]︸ ︷︷ ︸
f

Since the return operation is simply defined as a delta distribution with a single peak at the given return

value v′, the whole statement can be simplified by just removing the entire summation over vk, and

replacing all corresponding occurrences of vk with v′, through the following pattern:

Pattern 2.5.2 (Probability of a Sequential Composition).

∑
v1

· · ·
∑
vm−1

Pr [ret v′ = v1] · · · × Pr [cm vm−1 = v]] =

∑
v2

· · ·
∑
vm−1

Pr [[v′/v1](c2 v1) = v2]× · · · × Pr [[v′/v1]cm vm−1 = v]

Notice that, without loss of generality, Pattern 2.5.2 assumes that the v′-containing factor is in the head.

Ceramist’s tactic libraries will implicitly rewrite proof statements into to this form by default.

Plausible statement sequencing. One common issuewith the normal form, is that, as each statement

is evaluated over the entirety of its support, some of the dependencies between statements are obscured.

That is, the outputs of one statement may in fact be constrained to some subset of the complete support.

To recover these dependencies, the development makes use of the following theorem, that allows

reducing computations under the assumption that their inputs are plausible:
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Lemma 2.5.3 (Plausible Sequencing). For any computation sequence c1 ▷ c2, if it is possible to reduce the

computation c2 x to a simpler form c3 x when x is amongst plausible outcomes of c1, ( i.e., Pr [c1 = x] ̸= 0

holds) then it is possible to rewrite c2 to c3 without changing the resulting distribution:

∑
x

∑
y

Pr [c1 = x]× Pr [c2 x = y] =
∑
x

∑
y

Pr [c1 = x]× Pr [c3 x = y]

Plausible outcomes. As seen in the previous paragraph, sometimes proofs may involve knowledge

that a particular value v is a plausible outcome for a composite probabilistic computation c1 ▷ . . . ▷ cm:

∑
v1

· · ·
∑
vm−1

Pr [c1 = v1]× · · · × Pr [cm vm−1 = v] ̸= 0

This fact in itself is not particularly helpful as it does not immediately provide any usable constraints on

the value v. However, this inequality can now be turned into a conjunction of inequalities for individual

probabilities, thus getting more information about the intermediate steps of the computation:

Pattern 2.5.4. If

∑
v1
· · ·

∑
vm−1

Pr [c1 = v1]×· · ·×Pr [cm vm−1 = v] ̸= 0, then there exist v1, . . . , vm−1

such that Pr [c1 = v1] ̸= 0 ∧ · · · ∧ Pr [cm = v] ̸= 0.

This transformation is possible due to the fact that probabilities are always non-negative, thus if a

summation is positive, there must exist at least one element in the summation that is also positive.

Distributions over tuples

When reducing computations to their normal forms, it is common to end up with goals as below:

Pr [c ▷ λv. ret (P v ∧Q v)] =

Pr [c ▷ λv. ret P v]× Pr [c ▷ λv. ret Q v]

For instance, when proving the lack of false negatives (Theorem 2.2.1), the recursive definition of the

query operation requires decomposing the event of a successful query for a given set of indices ι :: ιs

into a conjunction of the facts that the first index ι and that the remaining indices ιs are set.

This property turns out to be equivalent to proving independence, which is defined within the framework

as the particular situation in which the probability of two or more simultaneous events can be simply
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decomposed into the product of each individual event independently.

∑
v

Pr [c1 = v]× Pr [c2 = v] =

∑
v

Pr [c1 = v]×
∑
v

Pr [c2 = v]

The general approach to proving these kinds of properties would then be to re-index the summand by a

bijective mapping into disjoint sub-terms, such that each internal statement holds on a separate term.

Pattern 2.5.5 (Split for independent events). If f : A→ (A1, A2) is a bijective mapping that decomposes

the outcome of a computation c into two distinct subcomputations c1, c2, and predicates P ′
and Q′

are

such that P = P ′ ◦ ·1 ◦ f and Q = Q′ ◦ ·2 ◦ f ,3 then

Pr [c ▷ λv. ret (P v ∧Q v)] =

Pr [c1 ▷ λv1. ret (P ′ v1)]×Pr [c2 ▷ λv2. ret (Q′ v2)]

This reindexing thus allows splitting an event into a product of two summations of the projections of

f ’s images, from which the remainder of the independence proof follows by showing that the factors of

the multiplication on either side of the equality are the same. This strategy was also found to act as a

good heuristic for event independence: whenever the author was unable to find a suitable bijection, it

would often later turn out that the events in question were not independent at all.

As a special case, when reasoning about computations returning fixed length sequences, such as the

k.− tuples of hashes forming hash vectors, it was found that a common strategy for demonstrating

independence of the computations’ outcomes was to split the sequence into smaller subsequences.

For simple properties, it suffices to divide the sequence summand into its head and tail:

Lemma 2.5.6 (Distributing sums over cons).

∑
vs: (m+1).−tuple A

Pr [c = vs;P vs] =
∑
v: A

∑
vs: m.−tuple A

Pr [c = v :: vs;P (v :: vs)]

Other more complex properties sometimes required larger partitions:

3The formalisation only requires point-wise predicate equality.
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Lemma 2.5.7 (Distributing sums over concatenation).

∑
vs: (m+l).−tuple A

Pr [c = vs;P vs] =

∑
vs: m.−tuple A

∑
vs′: l.−tuple A

Pr [c = vs ++ vs ′;P (vs ++ vs ′)]

2.5.3 Implementation Details

For completeness, this section discusses some of the technical details of the encoding used for embedding

the properties presented in Sections 2.5.1-2.5.2 into the Coq proof assistant.

Using finite types. The careful reader may have noticed that the prior examples technically only

required that the types being reasoned about are countable, however the development itself actually

enforces a slightly stronger constraint—that the types must themselves be finite. This primarily arises

from the use of infotheo’s probability monad for execution, as it limits the definition of distributions to

those with finite supports, implemented by means of Ssreflect’s finType interface.

While enforcing this constraint imposes its own costs, such as necessitating the pervasive use of

dependent types, it was found find that constraining types to be finite generally produced more practical

results. Specifically, by having to bound all types to finite ranges, the framework was required to

ensure that all theorems are stated in relation to constraints on a finite capacity. For example, when the

development was used to prove properties on Counting Bloom filters, the author was forced to also

consider the possibility of integer overflow by stating the theorems on the condition that all cells in the

structure have enough space to not exceed their maximum capacity.

Additionally, as the development separates between the encoding and evaluation of probabilistic com-

putations using the comp A and dist A types, the core definitions are independent of the formulation

of distributions. Future work could potentially lift this constraint by using a different distribution

definition and supplying an alternate definition of the eval_dist function.

Tactics and automation. Given that the normal form introduces additional summations for each

computational step, a large part of the proof effort was in manipulating and reasoning about deeply

nested sums. The core difficulty in automating this problem arises from the fact that the body of any

summation is implemented as a Coq’s lambda-expression. This means that rewriting within a nested

summation cannot be performed using the default tactics and either required Coq’s Setoid rewriting

rules4 or a custom rewrite tactic that implicitly also invokes functional extensionality.
4https://coq.inria.fr/refman/addendum/generalized-rewriting.html
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To simplify this task, the development adopts the tactic library developed by Martin-Dorel and Soloviev

from their work certifying boolean games in Coq [87]. This library provides a transformer tactic under

which can prefix any other tactic to allow applying the tactic under the context of the summation.

Summary of the development. By composing these components together, the resulting development

becomes a comprehensive toolbox for effectively reasoning about probabilistic computations. It was

found that that the summation patterns end up encapsulating most of the book-keeping associated with

the encoding of probabilistic computations, which, combined with the AMQ/AMQHash decomposition

from Section 2.3, allows for a fairly straightforward approach for verifying properties of AMQs.

2.5.4 A Simple Proof of Generalised No False Negatives Theorem

To showcase the fluid interaction of the proof principles in action, consider now the proof of the

generalised No-False-Negatives Theorem 2.3.1, stating the following:

Pr

AMQ_add x (hs, s)︸ ︷︷ ︸
(a),(b)

▷ AMQ_addm xs︸ ︷︷ ︸
(c)

▷ AMQ_query x︸ ︷︷ ︸
(d),(e)

 = 1 (2.1)

As with most of probabilistic proofs in the framework, the proof begins by applying the normalisation

Pattern 2.5.1 to reduce the computation into its normal form:

∑
ιs0,hs0

∑
s0

∑
s1,hs1

∑
ιs2,hs2



(a) Pr [AMQHash_hash x hs = (ιs0, hs0)] ×

(b) Pr [ret (AMQ_add_internal s ιs0) = s0] ×

(c) Pr [AMQ_addm xs (s0, hs0) = (s1, hs1)] ×

(d) Pr [AMQHash_hash x hs1 = (ιs2, hs2)] ×

(e) Pr [ret (AMQ_query_internal s1 ιs2)]



The above equation labels the factors to be rewritten as (a)–(e) for the convenience of the presentation,

indicating the correspondence to the components of the statement (2.1). From here, as all values are

assumed to be unseen, the proof then uses Property 1 in conjunction with the sequencing Pattern 2.5.2

as seen before to reduce the two terms (a) and (b) in the summation as follows:

∑
ιs0

∑
s1,hs1

∑
ιs2,hs2



(a) phash ×

(c) Pr [AMQ_addm xs ((s←add ιs0), (hs ←hash (x : ιs0))) = (s1, hs1)] ×

(d) Pr [AMQHash_hash x hs1 = (ιs2, hs2)] ×

(e) Pr [AMQ_query_internal s1 ιs2]
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Here, phash is the probability from the statement of Property 1. Here, the presentation uses the notations

s ←add ιs0 and hs ←hash (x : ιs0) to denote the deterministic operations AMQ_add_internal and

AMQHash_add_internal respectively. Then, using Pattern 2.5.4 for decomposing plausible outcomes,

it is possible to separately show that any plausible hs1 from AMQ_addm must map x to ιs0, as hash

operations preserve mappings. Combining this fact with Lemma 2.5.3 (plausible sequencing) and Hash

Consistency (Property 2), the proof follows by deriving that the execution of AMQHash_hash on x in

(d) must return ιs0, simplifying the summation even further:

∑
ιs0

∑
s1,hs1


(a) phash ×

(c) Pr [AMQ_addm xs ((s←add ιs0), (hs ←hash (x : ιs0))) = (s1, hs1)] ×

(e) Pr [AMQ_query_internal s1 ιs0]



Finally, as s1 is a plausible outcome from AMQ_addm called on s←add ιs0, it is possible to then show,

using Property 4 (query preservation), that querying for ιs0 on s1 must succeed. Therefore, the entire

summation reduces to the summation of distributions over their support, which is trivially 1.

▶ 2.6 Overview of the Development and More Case Studies

The final result of this case study is the Ceramist mechanised framework, implemented as library in the

Coq proof assistant [52]. It consists of three sub-parts, each handling a different aspect of constructing

and reasoning about AMQs: (i) a library of bounded-length data structures, enhancingMathComp’s [86]

support for reasoning about finite sequences of varying lengths; (ii) a library of probabilistic computations,

extending the infotheo probability theory library [4] with definitions of deeply embedded probabilistic

computations and a collection of tactics and lemmas on summations described in Section 2.5; and

(iii) the AMQ interfaces and instances representing the core of the framework described in Section 2.3.

Alongside these core components, the development also includes four specific case studies to provide

concrete examples of how the library can be used for practical verification. The first two case studies

are the mechanisation of the Bloom filter [17] and the Counting Bloom filter[125], as discussed earlier.

In proving the false-positive rate for Bloom filters, the proof follows the proof by Bose et al. [19],

also providing the first mechanised proof of the closed expression for Stirling numbers of the second

kind. The third case study provides a mechanised verification of the quotient filter[14]. The final case

study is a mechanisation of the Blocked AMQ—a family of AMQs with a common aggregation strategy.

Finally, this abstract structure is instantiated with each of the prior AMQs, obtaining, among others,

a mechanisation of Blocked Bloom filters [107]. The sizes of each library component, along with the
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Section Size (LOC)
Specifications Proofs

Bounded containers 286 1051
Notation (§2.2.1) 77 0
Summations (§2.5) 742 2122

Hash operations (§2.3.1) 201 568
AMQ framework (§2.3.2) 594 695

Bloom filter (§2.2.2) 322 1088
Counting BF (§2.3.4, §2.4) 312 674
Quotient filter (§2.6.1) 197 633
Blocked AMQ (§2.6.2) 269 522

Table 2.1: Ceramist framework overview

references to the sections that describe them, are given in Table 2.1.

Of particular note, in effect due to the extensive proof reuse supported by Ceramist through its use of

compositionality, the proof size for each of the case-studies progressively decreases, with around a 50%

reduction in the size from the initial proofs of Bloom filters to the final Blocked AMQ case-studies.

2.6.1 Quotient Filter

A quotient filter [14] is a type of AMQ data structure optimised to be more cache-friendly than other

typical AMQs. In contrast to the relatively simple internal vector-based states of the Bloom filters, a

quotient filter works by internally maintaining a hash table to track its elements.

The operations of a quotient filter build upon the notion of quotienting, whereby a single p-bit hash

outcome is split into two by treating the upper q-bits (the quotient) and the lower r-bits (the remainder)

separately. Whenever an element is inserted or queried, the item is first hashed over a single hash

function and then the output quotiented. The operations of the quotient filter then work by using the

q-bit quotient to specify a bucket of the hash table, and the r-bit remainder as a proxy for the element,

such that a query for an element will succeed if its remainder can be found in the corresponding bucket.

A false positive can occur if the outputs of the hash function happen to exactly collide for two particular

values (collisions in just the quotient or remainder are not sufficient to produce an incorrect result).

Therefore, it is then possible to reduce the event of a false positive in a quotient filter to the event

that at least one in several draws from a uniform distribution produces a particular value. In the

framework, quotient filters are encoded by instantiating the AMQHash interface from Subsection 2.3.1

with a single hash function, rather than a vector of hash functions, which is used by the Bloom filter
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variants (Section 2.1). The size of the output of this hashing operation is defined to be 2q ∗ 2r, and a

corresponding quotienting operation is defined by taking the quotient and remainder from dividing the

hash output by 2q . With this encoding, the development is then able to provide a mechanised proof of

the false positive rate for the quotient filter implemented using a p-bit hash function as being:

Theorem 2.6.1 (Quotient filter False Positive Rate). For a hash-function hs , after inserting a series of

l unseen distinct values xs into an empty quotient filter qf , for any unseen y ̸∈ xs , the probability of a

query y ∈? qf for y returning true is given by:

Pr [qf_addm xs (hs, qf_new) ▷ qf_query y] = 1−
(
1− 1

2p

)l

2.6.2 Blocked AMQ

Blocked Bloom filters[107] are a cache-efficient variant of Bloom filters where a single instance of the

structure is composed of a vector of m independent Bloom filters, using an additional “meta”-hash

operation to distribute values between the elements. When querying for a particular element, the

meta-hash operation would first be consulted to select a particular instance to delegate the query to.

While prior research has only focused on applying this blocking design to Bloom filters, a contribution

of this case study was the observation that this strategy is in fact compositional and generic over

the choice of AMQ, allowing the development to formalise an abstract Blocked AMQ structure, and

later instantiate it for particular choices of “basic” AMQs. As such, this data structure highlights the

scalability and proof reuse facilitated by Ceramist through the composition of programs and proofs.

The encoding of Blocked AMQs within Ceramist is done via means of two higher-order modules as

in Figure 2.2: (i) a multiplexed-hash component, parameterised over an arbitrary hashing operation,

and (ii) a blocked-state component, parameterised over some instantiation of the AMQ interface. The

multiplexed hash captures the relation between the meta-hash and the hashing operations of the basic

AMQ, randomly multiplexing hashes to particular hashing operations of the sub-components. The

multiplexed-hash is constructed as a composition of the hashing operation H used by the AMQ in

each of them blocks, and a meta-hash function to distribute queries between them blocks. The state

of this structure is defined as pairing ofm states of the hashing operation H , one for each of them

blocks of the AMQ, with the state of the meta-hash function. As such, hashing a value v with this

operation produces a pair of type (Zm,Value), where the first element is obtained by hashing v over
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the meta-hash to select a particular block, and the second element is produced by hashing v over the

hash operation H for this selected block. With this hashing operation, the state of the Blocked AMQ is

defined as sequence ofm states of the AMQ, one for each block. The insertion and query operations

work on the output of the multiplexed hash, using the first element to select a particular element of the

sequence, and then the second element as the value to be inserted or queried on the selected state.

Having instantiated the data structure as described above, the development proves the following novel

generalised result about the false positive rate for blocked AMQs:

Theorem 2.6.2 (Blocked AMQ False Positive Rate). For any AMQ A with a false positive rate after

inserting l elements estimated as f(l), for a multiplexed hash-function hs , after having inserted l distinct

values xs , all unseen in hs , into an empty Blocked AMQ filter bf composed ofm instances of A, for any

unseen y ̸∈ xs , the probability of a subsequent query y ∈? bf for y returning true is given by:

Pr [BA_addm xs (hs, BA_new) ▷ BA_query y] =
l∑

i=0

(
l

i

)
(
1

m
)i(1− 1

m
)l−if(i)

The development instantiates this interface with each of the previously defined AMQ structures,

obtaining the standard Blocked Bloom filters, the novel Counting Blocked Bloom filters and Blocked

Quotient filter along with proofs of similar properties for them, entirely for free.

▶ 2.7 Related Work

Proofs about AMQs. While there has been a wealth of prior research into approximate membership

query structures and their probabilistic bounds, the prevalence of paper-and-pencil proofs has meant

that errors in analysis have gone unnoticed and propagated throughout the literature.

The most notable example is in Bloom’s original paper [17], wherein dependencies between setting bits

lead to an incorrect formulation of the bound (equation (17)), which has since been repeated in several

papers [22, 39, 40, 89] and even textbooks [90]. While this error was identified by Bose et al. [19], their

analysis was marred by an error in the definition of Stirling numbers of the second kind, resulting in

another incorrect bound, corrected two years later by Christensen et al. [31], who avoided the error

by eliding Stirling numbers, and deriving the bound directly. Furthermore, despite these corrections,

many subsequent papers [35, 69, 81, 82, 107, 108, 125] still used Bloom’s original incorrect bounds. For

example, in Putze et al. [107]’s analysis of a Blocked Bloom filter, they derive an incorrect bound on the
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false positive rate by assuming that the subcomponents are described by Bloom’s bound.

Mechanically Verified Probabilistic Algorithms. Past research has also investigated the verifica-

tion of probabilistic algorithms, and this work builds on the results from several of these developments.

The ALEA library also provides mechanisms to simplify the task of proving properties of probabilistic

algorithms [10]. In contrast to the deep embedding used in this case study for encoding probabilistic

computations, ALEA uses a shallow embedding through a Giry monad [46], representing probabilistic

programs as measures over their outcomes. As ALEA axiomatises a custom type to represent the subset

of reals between 0 and 1 for capturing probabilities, they must independently prove any properties on

reals required for their theorems, considerably increasing the proof effort.

The Foundational Cryptography Framework (FCF) [102] was developed for proving the security prop-

erties of cryptographic programs and provides an encoding for probabilistic algorithms. Rather than

developing tooling for solving probabilistic obligations as is done in Ceramist, their library prioritises a

proof strategy of proving the probabilistic properties of computations by reducing them to standard

“difficult” programs with known distributions. To this end, their library uses an encoding of distributions

as lists of possible values and an associated measure, and provides a Probabilistic Relational Hoare

logic [11] (PRHL) over their monad to perform the reductions. While this strategy follows the structure

of cryptographic proofs, their encoding increases the complexity of proving probabilistic properties.

Tassarotti et al.’s Polaris [126] library is a Coq framework for reasoning about probabilistic concurrent

algorithms. Polaris uses the same reduction strategy for probabilistic specifications as the FCF library,

inheriting some of the same issues with proving standalone bounds. Additionally, unlike this devel-

opment, Polaris does not use a general monad for encoding probabilistic computations, and instead

utilises a specialised monad for representing the interactions of concurrent probabilistic computations.

The author’s previous effort on mechanising the probabilistic properties of blockchains also considered

the encoding of probabilistic computations in Coq [51]. While that work also relied on infotheo’s

probability monad, it primarily considered the mechanisation of a restricted form of probabilistic

properties (those with complete certainty), and did not deliver reusable tooling for this task.

Though this chapter primarily focuses on verification in the Coq proof assistant, there have been a

number of lines of research into verifying probabilistic programs in other theorem provers, such as the

HOL or Isabelle theorem prover, that are also relevant to the results of this work. Most such works

adopt a measure-theoretic based encoding of probability, as seen with the ALEA library. This allows for
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reasoning about a larger class of programs, including those that manipulate distributions over infinite

or even continuous domains, but imposes a higher verification burden than is required for verifying

AMQs, which can be mechanised by reasoning solely about discrete and finite distributions.

The first of such works is Hurd’s [65] framework for reasoning about probabilistic programs in the

HOL theorem prover, developed in order to verify the Miller-Rabin primality test. His proof repre-

sents randomness in a program as an infinite stream of bits, with probabilistic programs producing

distributions over such streams. Using this encoding, Hurd can thus reason about programs whose

termination depends on probabilistic arguments, however the low-level encoding of randomness makes

constructing and reasoning about higher-level primitives such as generating a random natural num-

ber more challenging. Subsequent work has built upon this framework to encode the probabilistic

guarded command logic (pGCL) program logic and incorporated reasoning about non-determinism [66].

Eberl et al. [41] and Lochbihler [83] provide similar measure-theoretic frameworks in the Isabelle/HOL

prover and use them to verify randomised binary trees and cryptographic protocols respectively.

Hölzl considered mechanised verification of probabilistic programs in Isabelle/HOL [64]. While Hölzl

uses a similar composition of probability and computation monads to encode and evaluate probabilistic

programs, his construction defines the semantics of programs as infinite Markov chains, represented as a

co-inductive stream of probabilistic outputs. This design makes their encoding unsuitable for capturing

terminating programs as done in this development, yet it is the only encoding that the author is aware

of that is able to allow reasoning about the properties of non-terminating probabilistic programs.

While Ceramist is the first development, to the best of the author’s knowledge, that provides a mecha-

nised proof of the probabilistic properties of Bloom filters, it should be noted that some prior research

has considered their deterministic properties. Blot et al. [18] provided a mechanised proof of the absence

of false negatives for their implementation of a Bloom filter as part of their work on a library for using

abstract sets to reason about the bit-manipulations in low-level programs.

Proofs of differential privacy. Another popular motivation to reason about probabilistic computa-

tions is for the purposes of demonstrating differential privacy. As a result, some prior research in this

area has also considered the mechanised verification of probabilistic programs as this work does.

Barthe et al.’s CertiPriv framework [12] extends ALEA to support reasoning using a Probabilistic

Relational Hoare logic, and uses this fragment to prove probabilistic non-interference arguments.

However, CertiPriv again focuses on proving relational probabilistic properties of coupled computations

rather than explicit numerical bounds. More recently, Strub et al. [124] have developed a newer

46



Chapter 2. Evolution Through Composition 2.8. Takeaways and Main Insights

mechanisation that supports a more general coupling between distributions, though it should be said

that this extension still does not address the problem of directly proving numeric bounds.

▶ 2.8 Takeaways and Main Insights

This chapter has presented an overview of the first case study of this thesis, an investigation into the

use of composition for verified software evolution through the construction of a general framework

for verifying Approximate Membership Query structures. The case study began with the verification

of Bloom filters, building up the tooling and definitions in Coq to verify their properties, before using

composition to scale up this analysis to handle a larger class of probabilistic data structures, introducing

a modular analysis strategy to allow massive proof reuse, and sometimes even obtain results for free.

The main contributions of this chapter are the development of a strategy for handling the scalable

verification of randomised algorithms and an example of its application to produce the first verified

implementations of a host of widely used AMQs: Bloom filter [17], Counting Bloom filter [125], the

quotient filter [14], and a mechanisation of the novel Blocked AMQ—a generalisation of Blocked Bloom

filters to abstract over the constituent elements, which was then instantiated to obtain a mechanisation

of Blocked Bloom filters [107]. Finally, when proving the false-positive rate for Bloom filters, the

implementation formalises the proof by Bose et al. [19], and in the process also provides the first

mechanised proof of the closed expression for Stirling numbers of the second kind.

While this case study was effectively able to use compositional reasoning to reuse proofs over changes

between the various AMQ data structures, the focus on such complicated data structures limits how

representative its results can be of real verification projects. In particular, one of themain such limitations

was the direct encoding of randomised algorithms, where the development encoded the semantics of

randomised programs directly in terms of probability distributions. While the flexibility of this approach

allowed for a greater diversity in proof strategies and thereby allowed effectively reasoning about the

behaviours of AMQs, it came at the cost of always having to reason about programs from first principles.

Furthermore, even though some of this proof burden was reduced using proof automation, this also

lead to complex difficult to maintain proof tactics that took long times to run.5 In practice, many real

programs operate on simpler principles and do not require such bespoke arguments to certify — for the

case of such verified software, can the task of maintenance be simplified even further?

5The full verification of the development takes around 1 hour to complete, and most of this time is spent in tactics.
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This chapter presents the second case study of this work, an extension to the SuSLik separation-

logic based program synthesiser to produce certified real-world executable C code, and through

it, investigates the use of synthesis for verified software maintenance. The chapter starts by

introducing certified program synthesis as an alternative to writing manual proofs for verified

software maintenance, and focuses on the SuSLik program synthesiser as an example for the case

study. The chapter then presents a brief background tutorial on separation logic and deductive

synthesis, before introducing the technique of proof interpreters by Watanabe et al. [130] that allows

converting synthesis traces to deductive certificates and upon which this work builds. The chapter

then covers the technical details of extending this technique of proof interpreters to produce executable

certified C code and evaluates the effectiveness of this extension against SuSLik’s benchmark suite.

Finally, the chapter ends with a reflection on the main insights from this case study.

As the reader may have noticed from the several thousands of lines of proofs carefully constructed

in the previous chapter, the process of manually certifying a program can be quite a laborious task.

In practice however, not all programs make use of such subtle and nuanced probabilistic interactions

as seen in Bloom filters that would necessitate this level of complexity in their verification. In fact,

many common real world programs rely on far simpler arguments for their correctness, so much so

that researchers have found that a substantial number of programs can be automatically proven correct

or in some cases the entire implementation itself can by synthesised from the specification alone.

As an example, consider now the task of writing a function to deallocate a linked list data structure, a

fairly common and ubiquitous operation when writing in low-level programming languages such as C
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or Rust. The specification for the correctness of such a program might be expressed as follows:

{sll(x, S)} list_free(x) {emp} (3.1)

The above formula uses classical Separation Logic (SL) [100, 112] to concisely encode constraints on

memory locations and asserts that, if the function list_free is called on a pointer x in a state where x

points to a singly-linked list with contents S (captured here by the SL predicate sll(x, S)), then after

executing this function, the heap will be empty — i.e. this function will indeed deallocate the list at x.

Passing this specification, along with suitable definitions for the sll predicate to the deductive SL-based

synthesiser SuSLik [105] will allow it to automatically generate the program in Figure 3.1 by performing

a proof search with the guarantee that the generated program satisfies the specification by construction.

void list_free(loc x) {

if (x == 0) {}

else {

let nxt = *(x + 1);

list_free(nxt);

free(x);

}

}

Figure 3.1: Automatically synthesised list_free implementation

This small experiment reveals a promising alternative approach to verified software maintenance,

wherein certain selected components of a larger system may be fully automatically synthesised. In

particular, for components in a verified system whose specifications themselves change frequently,

designing and invoking bespoke composition arguments manually as was done previously would not

be effective, as each change in the specification will inevitably require redoing the entire laborious

process of certifying the implementation. Instead, one might envision a workflow in which both

the implementation and the verification of these components may be fully outsourced to a program

synthesiser like SuSLik, thereby effectively relieving the maintenance burden from the human developer.

There are unfortunately a couple of problems with enacting this plan for verified software maintenance.

In particular, firstly, the programs generated by such synthesisers are often written in bespoke domain

specific languages tailored for synthesis and not directly executable — for example, the programs

generated by SuSLik are by default written in a toy language, SusLang, tailored to capture the tool’s
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encoding of Separation Logic. Secondly, even if these generated programs are transpiled into some

executable format, they fail to constitute a certified program, as their correctness now depends on both

the correctness of the transpilation, which could easily introduce discrepencies in the semantics of the

generated programs, and also the correctness of the synthesiser itself, which, for non-trivial program

synthesisers such as SuSLik, are typically large and complex codebases in their own right.

The goals of this chapter are to investigate the challenges in constructing real-world executable and

certified code from such deductive program synthesisers and through this process demonstrate the

efficacy of program synthesis for the purposes of verified software maintenance. To do this, this case

study will build upon the technique of proof interpreters introduced by Watanabe et al. [130] that

provides a unifying framework for translating synthesis trees to verification proofs and extend it to

produce executable C code that is verified to be correct according to the initial synthesis specification

embedded in the Verified Software Toolchain framework [7] for foundational verification of C code.

The main technical contributions of this case study are therefore the design and implementation of an

extension to the SuSLik program synthesiser to produce executable and certified real-world C code.

In the remainder of this chapter, the narrative will discuss the technical details of this case-study,

starting with a gentle introduction to Separation Logic and how SuSLik performs deductive synthesis,

before motivating the high-level intuition behind proof interpreters. The chapter then discusses the

key challenges of generating C code from SuSLik and explains how each one was handled, before

presenting an overall evaluation of the extension itself by using it to synthesise executable versions of

each one of the benchmarks from SuSLik’s test suite. The technical content of this chapter is a revision

of work that has been published before at the ICFP conference series and can be found here [130].

▶ 3.1 A Tutorial on Proof Interpreters

In order to contextualise the results of this chapter, this section provides a brief introduction to technique

of proof interpreters developed by Watanabe et al. [130] to construct proof certificates from the output

of a deductive synthesiser such as SuSLik. The section starts with a review of the Synthetic Separation

Logic variant [68] used by SuSLik to reason about programs, then motivates how SuSLik uses this

formalism to deductively search for programs satisfying a specification by constructing synthesis proof

trees. Finally the section presents the key ideas of how proof interpreters use the mechanisms of

such derivation trees in SuSLik to map synthesis trees to verification proofs. The reader is directed to

Watanabe et al.’s paper [130] for more details; a full coverage is outside the scope of this thesis.
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3.1.1 Synthetic Separation Logic Primer

Synthetic Separation Logic (SSL) [68] is the extension of classical Separation Logic [112] that underlies

the deductive synthesis algorithm implemented by the latest versions of the SuSLik tool [105].

Assertions in (Synthetic) Separation Logic capture constraints over disjoint partitions of the program’s

heap, called heaplets. These constraints can be combined using the separating conjunction ∗: the

statementH ∗H ′ asserts that the heap can be partitioned into two disjoint sub-heaps such thatH holds

on the first, and H ′ on the second. This document will use the standard notation a 7→ e to describe a

heaplet represented by a memory location with address a and contents e (pronounced “a points to e”);

emp is an SL assertion satisfied by an empty heap. Using these assertions, one can capture the semantics

of an imperative program using a Hoare triple {P} c {Q} (cf. (3.1)), which asserts the following: if in

any state satisfying P , after executing the program c, the resulting heap state must satisfy Q.

Next, in order to reason about non-trivial pointer-based data structures on the heap, separation logics

allow users to define new inductive predicates to capture the memory layouts of such entities. For

example, in SSL, a singly-linked list might be defined by the following inductive predicate:

sllα(x, s) ≜ x = 0 ∧ {s = ∅; emp}

| x ̸= 0 ∧
{
s = {v} ∪ s1 ∧ β < α; [x, 2] ∗ x 7→ v ∗ (x+ 1) 7→ nxt ∗ sllβ(nxt , s1)

} (3.2)

The two clauses in definition (3.2) correspond to the cases of an empty and non-empty list. In the first

case, the “head” pointer of the list is null, and the heap allocated for the structure, as well as its payload,

represented by the set s, are empty. In the latter case, the head pointer of the list x is non-empty, and

the heap structure of the list is represented by two subsequent pointers, starting from x and storing

a payload element v and the pointer nxt to the tail, which has the same structure, captured by the

recursive occurrence of the same predicate sll. One non-standard aspect of this encoding is the use

of mathematical sets to represent the linked list’s payload instead of more traditional algebraic lists,

which are an artefact arising from the SuSLik implementation for more streamlined integration with

third-party SMT solvers. The other unusual part of this predicate definition are the cardinality variables

(α, β), as well as the constraints on them (β < α), which are necessary to reason about termination of

synthesised recursive programs and their auxiliary procedures via the mechanism of cyclic proofs [118].1

For the purpose of this work, one can think of cardinalities in inductive predicates as integer variables

1The exact usage of cyclic proofs for synthesis of provably terminating recursive programs is orthogonal to this work,
and the reader is referred to the paper by Itzhaky et al. [68] for the details.
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capturing the fact that the size of a heap, constrained by a recursive occurrence, is strictly smaller than

that of the enclosing data structure, as in, e.g., β < α in the predicate definition (3.2).

3.1.2 Deductive Synthesis in SSL

Given a specification, SuSLik will generate a program in SusLang, a simple C-like language with

pointers, function calls, and recursion, whose syntax is given in Figure 3.2. SusLang values include

booleans and integers, and a special type loc for pointer variables. Pointers are equivalent to unsigned

integers with a designated pointer constant 0 for null. Expressions include variables, literal constants,

equality checks and logical connectives. The language allows pointer arithmetic in the form x+ ι.

Variable x, y Alpha-numeric identifiers
Size, offset n, ι Non-negative integers
Expression e ::= 0 | True | x | e = e | e ∧ e | ¬e | d
T -expr. d ::= n | x | d+ d | n · d | {} | {d} | · · ·
Command c ::= let x = ∗(x+ ι) | ∗(x+ ι) = e |

let x = malloc(n) | free(x) | err |
f(ei) | c; c | if (e) {c} else {c}

Figure 3.2: SusLang syntax.

To synthesise an implementation of list_free in SusLang, the specification (3.1) is first transformed

to a synthesis goal of the form Γ; P⇝Q| c, where Γ is the set of currently available program-level

and logical variables (in the running example, it was initially just {x, S}); {P} and {Q} are the

corresponding ascribed pre- and postconditions; and c is an unknown program, yet to be synthesised. In

general, both the pre- and postcondition of specifications and goals can feature a pure and spatial part,

e.g., {P} = {ϕ, P}. The pure part ϕ captures the logical constraints on variables and values involved

in the specification. The spatial part P describes the heap shape using standard SL assertions, joined

by the separating conjunction connective (∗): emp for an empty heap, (x+ ι) 7→ e for an individual

address x storing a value e at a (possibly zero) offset ι, a block assertion [x, n] for a continuous segment

of n elements starting at x, which can be deallocated, and pα(ti) for a heap of size α (omitted when

unambiguous from context) described by an occurrence of a predicate p with arguments ti.

The synthesis itself proceeds by iteratively applying one of the rules of SSL, building a derivation for

the initial goal. Such a derivation will also contain the desired program c as its byproduct which can

then be extracted. Figure 3.3 presents a few selected rules of SuSLik. Within rules, lowercase Latin

letters x, y are used for program variables (taken from the set ProgVars), e, t for program-level terms
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Emp
⊢ ϕ⇒ ψ

Γ; {ϕ; emp}⇝{ψ; emp}| skip

Frame
{ϕ;P}⇝{ψ;Q}| c

{ϕ;P ∗R}⇝{ψ;Q ∗R}| c

Read
∀y.Γ; {ϕ ∧ y = e; (x+ ι) 7→ e ∗ P}⇝Q| c
x ∈ ProgVars y ∈ ProgVars \ Vars(Γ)

Γ; {ϕ; (x+ ι) 7→ e ∗ P}⇝Q| let y = ∗(x+ ι); c

Write
Γ; {ϕ; (x+ ι) 7→ e ∗ P}⇝{ψ; (x+ ι) 7→ e ∗Q}| c

Vars(e) ⊆ ProgVars

Γ;
{
ϕ; (x+ ι) 7→ e′ ∗ P

}
⇝

{ψ; (x+ ι) 7→ e ∗Q} | ∗(x+ ι) = e; c

Free
Γ; {ϕ;P}⇝{ψ;Q}| c x ∈ ProgVars

Γ;
{
ϕ; [x, n] ∗

(
(x+ i) 7→ ei

)
0≤i<n ∗ P

}
⇝{ψ;Q}

∣∣ free(x); c
Call
∀xi, νj .∃ωk ;

{
ϕ′;P

}
⇝

{
ψ′;S

}∣∣ f(xi) Γ ∪· ∀σ(ωi);
{
[σ]ψ′ ∧ ϕ; [σ]S ∗R

}
⇝Q

∣∣ c
⊢ ϕ⇒ [σ]ϕ′ dom (σ) = {xi, νj , ωk} σ(xi) ∈ e[Γ] σ(νj) ∈ κ[Γ]

Γ; {ϕ; [σ]P ∗R}⇝Q| f(σ(xi)); c

Open
Γ ∪· ∀ωjk ; [ti/νi]{ϕ ∧ ej ∧ χj ; Rj ∗ P}⇝Q

∣∣∣ cj for all j=1..r

pα(νi) : ⟨ej , { ωjk, χj}⟩Rjj=1..r s.t. ωjk ̸∈ Vars(Γ),GV(ti) = ∅

Γ;
{
ϕ; pα(ti) ∗ P

}
⇝Q

∣∣ if ([ti/νi]e1) {c1}
else if ([ti/νi]e2) {c2} else · · ·

Close
Γ ∪· ∃ωjk ; P⇝ [ti/νi]{ϕ ∧ ej ∧ χj ; Rj ∗Q}

∣∣∣ cj for some j∈1..r
Predicate pα(νi) : ⟨ej , {ωjk, χj}⟩Rjj=1..r s.t. ωjk ̸∈ Vars(Γ)

Γ; P⇝
{
ϕ; pα(ti) ∗Q

}∣∣ c
Figure 3.3: Selected declarative rules of SSL (adapted from [130]).

(of the syntactic class e in Figure 3.2), Greek letters ν, ω for logical variables, and ϕ, ψ, χ for logical

formulas. Assertions are interpreted in an environment Γ in which some of the variables are universally

quantified and others existentially quantified, with a prefix of the form ∀x.∃y. Program variables are

always included in the universal prefix. Logical variables are split between universal (also called ghost

variables and denoted GV(Γ)) and existential (Existentials(Γ)). All quantified variables are denoted as

Vars(Γ) = {x, y}. The ∪· operator, used in some of the rules, joins two environments, so in the resulting

environment the quantifiers follow the same ∀.∃ quantifier pattern. The notation uses e[Γ] for the set

of all possible expressions that can be constructed using program variables in Γ, and κ[Γ]—to denote all

logical terms that can be constructed with any variables from Γ. Finally, the notation [σ]P is used to

denote the application of a substitution σ to all variables in an expression P .

Most of the rules in Figure 3.3 (Read, Write, Alloc, Open, and Call) are operational: when read

bottom-up, they advance the synthesis by emitting parts of the program and reducing its goal to their

premises. Perhaps the most interesting of those is the Call rule, which synthesises procedure calls. The

rule combines SL-style framing, with R as the frame, and substitution of actual into formal parameters
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{sll(x, S)}⇝ {emp}

⟨OPEN sll(x, S)⟩

⟨EMP⟩

{emp}⇝ {emp}

⟨READ x, 1,nxt , nxt⟩

{
[x, 2] ∗ x 7→ v ∗ (x + 1) 7→ nxt

∗ sll(nxt, S1)

}
⇝ {emp}

{
[x, 2] ∗ x 7→ v ∗ (x + 1) 7→ nxt

∗ sll(nxt, S1)

}
⇝ {emp}

⟨CALL (sll(nxt, S1)), [x 7→ nxt, S 7→ S1], list_free⟩

{[x, 2] ∗ x 7→ v ∗ (x + 1) 7→ nxt}⇝ {emp}

⟨FREE ([x, 2] ∗ x 7→ v ∗ (x + 1) 7→ nxt),x⟩

{emp}⇝ {emp}

⟨EMP⟩

Figure 3.4: Derivation tree constructed to synthesise list_free

via σ, which is also applied to the procedure f ’s postcondition. Existential variables in the procedure’s

environment are renamed to fresh ghost variables in the second premise of the rule. Formal parameters

xi of f are mapped to program expressions e[Γ] using program variables of Γ, and ghosts νj are

mapped to logical terms κ using any variables of Γ. The rule Emp is a terminal one, and, when applied,

corresponds to a successful synthesis of a program branch: empty heaps in both pre/postconditions

mean that there is nothing more for a program to do, assuming the constraints ϕ⇒ ψ accumulated in

pure parts hold. Finally, the rules Frame and Close are structural ones: they do not emit a part of the

program but rather change the shape of the goal, possibly making other rules applicable. For instance,

Frame removes similar parts of the symbolic heap from the pre/postcondition, eventually enabling Emp,

while Close unfolds a predicate instance in the goal’s postcondition, replacing its occurrence pα(ti) by

p’s jth clause (for some j), thus revealing more information about the structure of the final heap.

To see these rules in action, consider again the synthesis of list_free, as referenced in the introduction.

Figure 3.4 depicts a simplified derivation tree as constructed by SuSLik when synthesising this function.

Initially, the synthesis starts with the goal {sll(x, S)}⇝{emp}| c, that represents the entire specification

for the function, as provided by the user. By searching through the space of possible rules to be applied,

the synthesiser discovers that for this goal the OPEN rule can be applied to “unfold” the definition of the
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sll(x, S) predicate in the precondition. This introduces the if condition on x == 0 seen in the generated

program, and produces two subgoals to synthesise the bodies of the branch, one for each case of the

inductive predicate. In the first case, where the linked list is empty, the goal is simply {emp}⇝{emp}| c,

indiicating that there is no more list to free, and so the the synthesiser is able to easily complete this

branch using the EMP rule. In the second case, the list is non-null and the precondition is expanded to

reveal the heaplets constituting the head: {[x, 2] ∗ x 7→ v ∗ (x + 1) 7→ nxt ∗ sll(nxt , S1)}⇝{emp}| c.

From here, the synthesiser non-deterministically chooses a READ rule to move the nxt variable from the

logical to the program context, and invokes the CALL rule with list_free recursively on the tail of the

list, sll(nxt , S1), to free it, leaving the residual goal as {[x, 2] ∗ x 7→ v ∗ (x + 1) 7→ nxt}⇝{emp}| c.

At this point, the precondition consists purely of the memory block at x, and so the entire synthesis

can then be completed by simply applying the FREE rule to x and dispatching the trivial remaining

obligation with EMP. Finally, SuSLik simply traverses over this derivation tree, mapping each rule to a

program statement and thereby produces the correct-by-construction implementation of list_free.

3.1.3 From Synthesis to Verification

Can the programs produced by SuSLik really be trusted? Automated program synthesisers are complex,

and it is naturally quite hard to guarantee that they are free of bugs. Moreover, a realistic verification

project will almost certainly have portions that are beyond the capabilities of any synthesiser, and hence

there is a need to make sure that synthesis results will integrate well with parts of the system that are

implemented and verified manually. A promising approach to addressing both of these concerns is to

make the synthesiser produce certificates, allowing for independent checking of its results w.r.t. user-

ascribed specifications in foundational verification tools, which can be embedded into proof assistants

such as Coq and thereby provide the highest assurance guarantees with a minimal trusted code base.

In theory, it should be easy to generate certificates for deductive synthesisers: after all, they synthesise

programs together with their “proofs”! In practice, however, this is far from straightforward, because

synthesis proofs are fundamentally structured very differently from the proofs used in foundational

verifiers. SL verifiers typically work by using symbolic execution to propagate the symbolic state

from the precondition forward through the program, and only at the end do they check that the final

symbolic state entails a given postcondition. On the other hand, a deductive synthesiser is forced to

use information from both the pre- and the post-condition, manipulating both in the process, as it

cannot rely on the program to guide the search. Aside from this discrepancy, there are many low-level

differences in the structure of the proofs between synthesis and verification, as well as between different
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embeddings, which make generating certificates for a deductive synthesiser a non-trivial task.

To address these issues,Watanabe et al. introduced the novel technique ofmodular proof interpreters [130]

for certifying the results of deductive synthesis algorithms against custom verification backends. The

technique itself is inspired by continuation-passing programming style, and allows proof engineers to

write proof translation logic for different verification frameworks in a uniform and modular way.

The core of Watanabe et al.’s proof interpreters technique revolves around the following key insights:

• Deferred Proof Steps - The naive approach to translating a source proof generated by the

synthesiser into a target proof understood by the verifier would involve mapping each individual

application of a source inference rule in to a sequence of applications of target inference rules.

This, however, does not work for this application due to the aforementioned non-local differences

in the rule application order employed by the synthesiser versus other verifiers.

The first key idea is to equip a proof translator with a way to define the order in which the

translated results of synthesis rule applications are executed in the script of the back-end verifier.

To do this, Watanabe et al. introduce the notion of deferred proof steps, wherein the proof

translator will perform the translation from applications of inference rules from one backend to

the other, but also simultaneously collect deferred target proof steps as it traverses the source

proof tree. Then, when the translator reaches the leaves of any generated target proof tree, it will

retroactively apply these deferred steps at the end, bridging differences in application order.

• Backend Proof Context - As it turns out, simply deferring certain target proof steps is unfortu-

nately not sufficient: any changes in the target proof context since the moment at which certain

deferred steps were scheduled, can render those steps invalid at the point of their application.

The second key idea in Watanabe et al.’s work is in allowing their proof translators to define the

logic for maintaining a backend-specific proof context, and also to pass it as an argument to the

deferred proof steps at the time of their applications, making their treatment similar to that of

composed continuations in interpreters for programs written in continuation-passing style.

Composing both these insights together, Watanabe et al. define a generic and general framework for

implementing a certification backend for a deductive synthesiser — in order to translate a synthesis

derivation tree into a certificate, the user must provide first, a mapping from synthesis proof steps to a

tuple of, firstly, a corresponding program statement in the target language and secondly a sequence of

one or more immediate and deferred proof steps for the verification backend. Once again, the reader is
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void list_free(loc x) {

if (x == NULL) { return; }

else {

loc nxt = READ_LOC(x, 1);

list_free(nxt);

free(x);

return;

}

}

Definition list_free_spec :=

DECLARE _list_free

WITH x: val, s: (list Z), a: sll_card

PRE [ (tptr ssl_val) ]

PROP(is_pointer_or_null(x))

PARAMS(x)

SEP ((sll x s a))

POST[ tvoid ]

PROP( )

LOCAL( )

SEP ().

Figure 3.5: Definition of list_free in C (left) and corresponding specification in VST (right)

referred to the corresponding paper for more details as a full coverage is outside the scope of this thesis.

▶ 3.2 Certifying the Synthesis of C Programs

Returning once more to the overarching aims of this chapter – that is, to automatically synthesise

certified executable programs from their specifications – this section presents the main results of this

chapter which are to build upon Watanabe et al.’s technique of modular proof interpreters and use it to

extend SuSLik to produce real-world executable and certified C code as a synthesis output.

In particular, Watanabe et al.’s initial case studies looked primarily at verifying SusLang programs

according to various “C-like” DSLs within Coq, not actual executable code. The work presented in this

chapter builds upon Watanabe et al.’s framework and asks whether it be used to produce proofs for the

real deal—executable C? In this case study, this question is answered in the affirmative, implementing a

certification backend for the Verified Software Toolchain [8], using it to translate SusLang programs

into C and certify their correctness with regards to a simplified semantics of C.2 In the rest of this

section, the narrative will provide an overview of this extension, focusing on the additional changes

that had to be made to make SuSLik and SusLang conform to the constraints of real executable code.

3.2.1 SusLang on Metal: Converting Programs to C and Specifications to VST

Before setting about certifying programs, it is necessary to first translate SusLang functions into C

and their specifications to VST. This translation has some subtleties. For instance, Figure 3.5 lists

the translated program and specification for the running example list_free, which follows closely

2Due to limitations of SuSLik’s memory model, the implementation makes the simplifying assumption that malloc
never returns NULL.
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from the original definitions, but make use of some custom data types (such as loc) and operations to

manipulate memory (READ_LOC, free). As it turns out, these small modifications are actually crucial

for faithfully realising the simplified memory model assumed by SusLang programs on real hardware.

In particular, a fact that has been glossed over in the prior sections has been the way in which SusLang

arrays can freely contain pointer and integer values, side by side, without issue. More generally, by

allowing these kinds of constructs, SusLang implicitly makes the assumption that integer and pointer

values occupy exactly the same amount of space on the heap, and while, in terms of C code, this might

not at all be an uncommon assumption, it is an assumption nonetheless, carelessly introducing unsafe

and potentially unexpected implementation-specific behaviour into the generated program.

typedef union

sslval {

int ssl_int;

void *ssl_ptr;

} *loc;

The solution then is quite natural: this assumption must simply be encoded

within the C type system. In the translation, it is enforced that all allocations,

reads and writes to and from the heap will be done exclusively to terms of a

custom type sslval, defined (left) as a union of integer and pointer values.

Wrapping this up in a type alias, typedef union sslval *loc, and pairing it with corresponding read

and write macros that transparently handle the coercion between types (i.e., defining the operation to

read locations as a compile-time macro #define READ_LOC(x,y)(*(x+y)).ssl_ptr), the generated

programs thereby both syntactically look and semantically behave exactly as the SusLang programs

they represent, simplifying the subsequent translation of VST specifications and proofs.

3.2.2 Getting Real: Impedance Mismatching Between SusLang and C Semantics

Having translated SusLang programs to C, the real question is whether these programs can actually be

verified as correct using information from SuSLik’s synthesis trees. Thankfully, as VST uses the same

standard forward-execution style of reasoning as all the other frameworks considered byWatanabe et al.,

much of the form of these proofs still end up following the same broad strokes, requiring changes only

to account for discrepancies in their semantic models. The rest of this section will highlight the most

significant areas in which the two semantic models diverged and thus posed issues for the translation.

Ternary Expressions

Consider the following program statement: *m = (x < y ? 3 : 1); In programming languages with

an absence of uncontrolled side-effects such as SusLang, it would always be safe to treat the evaluation

of the entire statement as a single step, i.e., a program operation writing the value of the expression
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(x < y ? 3 : 1) directly into the memory at locationm. In fact, SSL proofs take this even further, treating

ternary expressions as single values within logical specifications, and using them as such within spatial

assertions, as inm 7→ (x < y ? 3 : 1)). Switching back to the semantics of C, where expressions can

have arbitrary effects, such treatment of ternaries is clearly no longer valid. This is reflected in VST,

where the evaluation of a ternary sub-expression is interpreted as an if statement, branching the proof

into two separate control flow paths for each case, in contrast to direct execution in SSL proofs. To

thereby keep the SSL and VST proof contexts synchronised and avoid divergence, the translation adds

additional logic to the proof interpreter to transparently handle such statements. Whenever an ternary

expression is evaluated during a SSL proof, the generated VST proof branches on each cases of the

ternary but also provides a unifying post-condition to the branch that then joins both cases together

immediately afterwards using the fact that the result of the expression is equivalent to a logical ternary

expression, using tactics provided by VST to automatically dispatch the generated obligations.

Splitting and Recombining Memory Blocks

Another translation aspect that required special care was in managing the particularly loose treatment

of memory in SSL. Recall that a contiguous block of allocated memory in SSL is represented by the

spatial assertion [x, n], with the contents of this block captured separately as (x+ i) 7→ − for each

element. This encoding of allocations as separate blocks and mappings allows SSL proofs to easily mix

between single cells in memory x 7→ − and individual elements of larger blocks [x, n] ∗ x 7→ −, so that

synthesised programs can pass pointers from the middle of blocks of memory freely to procedures that

expect lone pointers. While mixing these kinds of pointers is valid according to the semantics of C,

and this work ran into difficulties when certifying such programs in VST, where blocks of memory and

their contents are encoded as a single assertion and can not easily be split. Having experimented with a

number of non-trivial logic memory transformations available in VST (e.g., logically splitting memory

blocks into individual segments and then recombining them back), this translation opts for a simpler

and more principled solution: constraining SuSLik’s proof search to reject programs that mix pointers

from different-size blocks, allowing pointers to unify only if their associated blocks are of the same size.

This restriction did not prevent any known SuSLik benchmarks from being synthesised.

Integer Semantics and Overflows

As the only backend in Watanabe et al.’s framework beholden to the constraints of real-world hardware,

VST is uniquely challenged amongst the other instantiations in that it must necessarily reason about
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overflow semantics. This poses a fundamental problemwhen translating integer-manipulating programs

from SusLang, as SuSLik proofs do not consider overflow, and synthesised programs may sometimes

perform unsafe (bounded-)arithmetic operations. In particular, any numbers that arise during the

execution of programs, intermediate or otherwise, in VST must always be guaranteed within the valid

ranges of integers before the proof may continue. This constraint of tracking overflow bounds causes

issues even when verifying programs with numeric variables that only rely on comparisons, i.e., having

no chance of overflow—as the overflow bounds on these numeric variables must first be established

before one can reason about the behaviour of any comparisons over them. While the differences in the

overflow semantics between SusLang and C are too large to handle in the general case, by adjusting

the synthesised program specs to include assumptions on numeric bounds, and using VST’s native

tactics to dispatch overflow obligations, the case study were able to certify programs that only rely on

arithmetic comparisons, e.g., finding the maximum or the minimum of a list of integers.

▶ 3.3 Evaluation

Component Scala Coq

Proof evaluator 1042 -

VST support 1887 166

The rest of SuSLik 5508 -

The entire extension for translating SSL proof trees to certified

executable C programs has been implemented as an instanti-

ation of Watanabe et al.’s framework for SuSLik, written in a

combination of Scala (for the individual VST interpreter) and

Coq (for VST specific automation and written primarily in Ltac).

The table on the right summarises the overall implementation

effort of the extension in terms of lines of code, and in comparison to Watanabe et al.’s core proof

interpreter. The implementation and benchmarks are open source and are publicly available [129]. The

Coq automation library for the backend can also be installed via the opam package manager.

The translation described in this section works for unaltered SusLang programs, and the synthesis

algorithm has been slightly restricted to suit particular patterns in the certification backend (cf. Subsec-

tion 3.2.2). Bearing this in mind, the aim with the evaluation was to answer the following questions:

1. How efficient is the certification: what are the sizes of the generated Coq specs and proofs, and

how long does it take to check them via the corresponding SL embeddings?

2. What design choices in SusLang/SSL and the languages and logic of the VST verification backend

might pose obstacles to automated certification of synthesised heap-manipulating programs?
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Group Description Synthesis Time VST
Spec Proofs Time (s)

Integers

max <0.1 21 20 6.4
min <0.1 21 20 79.2
swap2 <0.1 20 14 132.7
swap4 <0.1 20 22 649.6

Singly-
Linked
Lists

length 0.6 - - -
maximum 0.5 21 57 244.8
minimum 0.5 21 57 242
append 0.2 23 52 312.9
copy 0.4 33 63 370.1

two-element 0.3 34 36 171.5
dispose <0.1 31 28 7.8
singleton <0.1 34 26 127.4

DLLs append 2.3 24 97 594.6
singleton <0.1 34 27 128.3

Trees

copy 1.3 32 77 516.5
flatten 0.2 58 76 685.7
dispose <0.1 31 32 10.8
size 0.5 - - -

Table 3.1: Statistics for synthesised programs from SuSLik’s benchmark suite. Sizes of generated Coq
artefacts are in lines of code. Last column reports the checking times for the generated proof scripts.

Table 3.1 summarises the evaluation results on programs manipulating with individual pointers and

integers, singly- and doubly-linked lists, and binary trees, taken from SuSLik’s benchmark suite. The

reported sizes of Coq artefacts do not include translated heap predicates and their inversion lemmas as

those are shared between specs of multiple programs. All runtimes are obtained on a 1.90GHz Intel

Core i7-8665U machine with 40GB RAM running Ubuntu 18.04 and Coq 8.11.2.

With regard to Question (1), Table 3.1 demonstrates that all generated proofs are relatively concise,

typically ranging from around 20 to 100 lines, which are more than in line with the corresponding

proofs that a human might have hand-written instead. Secondly, in terms of the checking times for the

generated proof scripts, the VST proofs do take considerable time to verify, with a substantial number

of scripts taking in the order of minutes to be checked by Coq. The significantly longer checking times

for these proofs are primarily due to the generality of VST’s entailer! tactic [23], which is frequently

used in the proof to dispatch heap entailments. This tactic internally performs a sophisticated proof

search and has complexity that grows exponentially with the number of variables and theorems in the

proof context, expecting that human written proofs will take care to keep the number of these low.

Unfortunately, this is not typically the case for synthesised proofs, as SuSLik’s proof search mechanism

may end up generating scripts with unused variables and lemmas in the proof. In the future, the

performance of the proof scripts might be improved by optimising the proof scripts to follow structures

and patterns closer to human-written ones (which is not currently the case for the auto-generated ones).
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As for Question (2), Table 3.1 indicates a couple benchmarks that failed to verify in the VST backend. In

particular, the two case studies that could not be handled in the VST backend were the programs to

calculate list length and tree size. This arose because of the discrepancy between SuSLik’s logic and

VST in their handling of integer overflows. As SuSLik’s logical formalism doesn’t reason about integer

overflows at all, the generated programs for list length and tree size can not be easily translated to

any correct implementation in real-world C, where integers may overflow. As a result, the backend is

fundamentally unable to produce a proof script that will be accepted by the Coq proof assistant. This

shortcoming can be addressed by modifying SusLang and its synthesis rules to account for backend

specific constraints, making the synthesiser language closer to an intermediate representation, serving

multiple backends. This is an interesting potential extension, and has been left as future work.

▶ 3.4 Related Work

Certifying compilers and proof-carrying code The work presented in this chapter is a spiritual

successor to a 25 year-long line of research on Proof-Carrying Code (PCC) started by Necula and Lee

[97]. The original PCC proposal by Necula [96] was to supply proofs, in a logic embedded into Edinburgh

Logical Framework [58], for executable binaries in DEC Alpha assembly language. This would allow

the users of the binaries to independently check, that, upon execution, the code does not violate basic

type and memory safety properties. In a follow-up work, Necula and Lee [99] have designed a certifying

compiler, which would automatically generate such proofs when producing low-level assembly from

code written in a high-level language. The ideas of PCC and certifying compilation have been studied

extensively in the past two decades, in application to, e.g., validation of temporal properties of systems

code [62], hardware synthesis [54, 84], static analysis via abstract interpretation [15], refinement

types [28], information flow control [13], security policies in software-defined networks [122], and

other classes of statically enforceable program properties. Further research has also been conducted

into minimising the size of the trusted code base required to validate the corresponding proofs [6].

There has also been a rich line of work that has investigated embedding the certified compilation

process entirely within the automation facilities of a theorem prover that is relevant to this chapter.

Li et al. [78, 79, 80] describe a strategy to compile functions in HOL to low level executable ARM

assembly. Their work is based on the idea of embedding compilation steps as manually proven rewrite

lemmas and then using automation to search and apply these rules to the initial program to generate and

certify executable code automatically. The work by Myreen et al. [94] propose a translation-validation
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approach in HOL instead, first compiling the input to machine-code and then performing a proof-search

using a number of user-supplied lemmas to attempt to prove the equivalence of the two programs,

a process that may fail. Lammich et al. [72, 73] consider a refinement-based approach and compile

a functional HOL program into LLVM assembly by using automation to search for a sequence of

refinements that map from one to the other. In all these works, while the initial functional program is

compiled to an imperative low-level format, in order to facilitate their automation these developments

all assume a light-weight compilation process that does not significantly alter the control flow of the

input program nor deal with complex heap-based data-structures as in the work in this chapter.

The research on verified extraction as part of the CakeML [71] project also touches on related themes.

In particular, in their work, Myreen et al. [93] describe a technique for mapping a restricted subset

of HOL expressions into the AST of an executable ML language with a proof certificate ensuring the

equivalence of the two programs. A subsequent follow up [63] then extends this work to handle monadic

functions using IO and state. As the input and output languages are restricted by design to be similar,

the translation does not need to significantly alter the program and can be performed mechanically

through a recursive traversal of the subterms of the input, with the main challenge being in correctly

constructing the proof of equivalence rather than synthesising the resulting program as in this work.

This work presents an application of the ideas of PCC and certifying compilation—coupling generation

of code and a machine-checked proof of its safety specification—to the area of automated program

synthesis. Unlike the original work on PCC [96], which targeted basic type- and memory safety

properties, this proposal instead focuses on a richer class of full functional correctness specifications.

Certified interactive program synthesis The Fiat framework [30, 37] implements a certified

interactive program synthesiser for abstract data types (in OCaml), by embedding a synthesis procedure

directly into the Coq proof assistant. Unlike in SuSLik, the specifications in Fiat are represented by

high-level non-deterministic programs, which are then refined [60], in a step-wise fashion, to more

realistic implementations. Fiat facilitates certified synthesis by refinement: it provides tactics for

synthesising refined implementations for certain restrictive domains and a library of lemmas that can be

used by the clients for verifying derivations of more advanced implementations. In contrast with Fiat’s

approach to synthesis, which requires one to interactively verify a sequence of semantics-preserving

optimisations, SuSLik’s synthesis is based on a fully automated proof search in a domain-specific logic.
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▶ 3.5 Takeaways and Main Insights

This chapter has presented the second case study of this thesis, an investigation into the use of synthesis

for verified software evolution through the design and implementation of an extension to the SuSLik

program synthesiser to produce real world executable C code. The chapter began with a gentle tutorial

on Watanabe et al.’s technique of proof interpreters, providing the appropriate background context

and then describing the core idea behind proof interpreters themselves. The chapter then introduced

the main contribution of this work, and described how Watanabe et al.’s framework was instantiated

to make SuSLik produce executable C code and bridge the semantic gap between SusLang and C.

Finally, the chapter presented an evaluation of this extension, and highlighted how it is able to produce

reasonably sized proof scripts for almost all tasks in SuSLik’s benchmark suite.

The construction presented in this chapter demonstrates the efficacy of synthesis for verified software

maintenance. For a large portion of common programming tasks (cf. Table 3.1), one can augment a

deductive synthesiser to generate executable implementations alongside proofs of correctness. Applying

this methodology to functions whose specifications change frequently, these results demonstrate how

synthesis can reduce the maintenance burden for verified software, as implementation and verification

can be fully automated. The main downside however is the lack of control: auto-generated programs,

while functionally correct, may suffer from other non-functional issues, such as making use of counter-

intuitive logic or exhibiting poor runtime performance or memory usage, however, with this setting,

the verified code cannot be modified without breaking their corresponding proofs — this leads to the

natural follow up question: might there be a way to repair proofs over such changes?
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This chapter presents the last case study of this thesis, the design and implementation of

Sisyphus, a tool to automatically repair proofs of verified OCaml programs over changes in their

implementation, and through it, investigates the use of repair for verified software maintenance. The

chapter starts by introducing the common problem of maintaining the implementations of verified

software, and discusses the challenges with updating verified source code without breaking their

corresponding proofs of correctness. As an investigation into how best to mitigate the maintenance

burden this can impose, the main technical result of this work, Sisyphus, is introduced: an automated

tool that utilises the inherent information within proof scripts to automatically repair proofs of

OCaml programs over a range of modifications of this kind. The remainder of the chapter presents

the technical details of the design and implementation of Sisyphus. Finally, the chapter ends with a

review of the main insights and takeaways gained from this investigation.

How can one maintain verified software systems as they experience code evolution and change?

The previous two chapters have investigated this problem through a preventative lens, proposing

methodologies of structuring verification efforts to minimise the effects of modifications or entirely

outsourcing both the verification and implementation of the aforesaid software to program synthesisers.

Unfortunately, however, sometimes these preventative solutions are not sufficient, and instead a reactive

approach is needed — sometimes, it may be more practical to directly repair the proofs themselves.

Consider the automatically generated list_free function from the previous chapter (cf. Figure 4.1,

left). While this implementation is functionally correct — the constructions from the previous chapter

were even able to automatically verify it as such — the program itself happens to suffer from a subtle

limitation that makes it ill-suited for real-world applications: it is not stack safe. More specifically, as
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void list_free(loc x) {

if (x == 0) {}

else {

let nxt = *(x + 1'';

list_free(nxt);

free(x);

}

}

void list_free(loc x) {

if (x == 0) {}

else {

let nxt = *(x + 1);

free(x);

list_free(nxt);

}

}

Figure 4.1: An optimisation to make list_free stack safe. Original on left, optimised on right.

the implementation recursively frees the tail of the linked list before freeing the head, the program will

require stack frames to be allocated for each element of the linked list, and thus will use stack space

linear to the length of its input, potentially causing stack overflows for large lists. Thankfully, this

program is not beyond salvage — in fact, the fix is fairly simple: there is no need to wait for the tail to

be deallocated before freeing the head, so simply swapping the these two statements (cf. Figure 4.1,

right), makes the whole program tail recursive, enabling most reasonable compilers to apply tail call

optimisations to make the implementation use constant stack space. While intuitively it’s fairly clear

that this optimisation does not affect the semantics of this implementation at all, unfortunately, this

intuition is not sufficient to convince an interactive theorem prover, and thus the associated proofs of

correctness will now fail to hold, leaving the developer with the laborious task of manually fixing them.

The focus of this work is on automated techniques for repairing proofs about imperative programs in

response to local changes in their code while their specifications remain unchanged, and determining a

practical solution to this problem. While there has been growing interest within the community into

techniques for the repair of proofs, most notably the line of work by Ringer et al. [113, 114, 115] who

introduced the very term, proof-repair, to the best of the author’s knowledge, the problem of handling

arbitrary changes in the implementation logic, has been largely unexplored from this perspective.

To explore this question, this chapter will investigate automating proof repair for verified OCaml

programs. In particular, user-facing libraries form a significant class of programs whose specifications

and data types change infrequently. By their nature, to enable forward-compatibility, library functions

are expected to preserve their API and the contracts describing their interaction with the user code.

Because of this, verified software libraries [9, 26, 106] are a sweet spot for proof repair: it is not

uncommon for library functions to undergo changes in their bodies for the sake of improved performance

or readability, whereas conversely modifications in their type definitions and specifications are relatively
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rare. This work introduces Sisyphus, the first mostly automated tool for performing proof repair for the

changes in implementations of imperative OCaml programs verified in the CFML Coq framework, and

uses it to demonstrate the efficacy of using repair for the purposes of verified software maintenance.

The main technical contributions of the work presented in this chapter are as follows:

• Proof-driven testing—a novel approach to test properties of data and programs for validity by

extracting tests from proofs of higher-order facts that rely on those properties. This work provides

the intuition and formal description of the proof-driven testing methodology and shows how to

use it to prune the search-space of candidate invariants required for proof repair (Section 4.3).

• Sisyphus—a proof repair tool for OCaml programs verified in Coq. This work evaluates Sisyphus

on a suite of 14 evolved programs, of which 10 were drawn from popular OCaml libraries, and

found that all inferred invariants for new versions were valid and required relatively small

amounts of manual effort to prove in comparison to the original programs (Section 4.4).

The remainder of this chapter will present the technical details of this case study, starting with a step

by step walk through of the overall repair process, before detailing the individual components of the

implementation itself. Finally, the chapter ends with an evaluation of the tool on a representative set

of 10 real-world OCaml programs. The technical content of this chapter is a revision of work that has

been published before at the PLDI conference series and can be found here [49].

▶ 4.1 The Labours of Sisyphus

This section presents an overview of Sisyphus by means of an illustrative example: repairing the proof

of correctness between two versions of a real-world program from a widely-used OCaml library. The

program in question is the function Seq.to_array, which converts a lazy sequence to an array,

taken from the popular containers library between versions 3.61 and 3.7,2 wherein it was updated to

improve its performance. The initial version of to_array was manually verified in Coq via CFML;

Sisyphus was then used to automatically generate a repaired proof for the updated program.

1to_array in containers 3.6: https://github.com/c-cube/ocaml-containers/blob/v3.6/src/
core/CCSeq.ml#L397

2to_array in containers 3.7: https://github.com/c-cube/ocaml-containers/blob/v3.7/src/
core/CCSeq.ml#L415
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1 let to_array s =
2 match s () with
3 | Nil -> [| |]
4 | Cons (hd, _) ->
5 let sz = length s in
6 let a = Array.make sz hd in
7 iteri
8 (fun i vl ->
9 a.(i) <- vl) s;
10 a

Figure 4.2: Original to_array

4.1.1 An Initial Verified Seq.to_array

Figure 4.2 presents the original implementation of the OCaml library function to_array, which

converts a sequence into an array, where a sequence of type 'a t is encoded as a thunked list:

type 'a t = unit -> 'a node

and 'a node = Nil

| Cons of 'a * (unit -> 'a node)

Here, a sequence is represented by a function that, when evaluated, either returns the constructor Nil

for the empty sequence, or returns a Cons cell with a head element and a tail that can be evaluated

on-demand to retrieve the rest of the sequence. This encoding of sequences can even be used to represent

lists of infinite length or encode arbitrary side-effects within the thunks of a sequence, however, for the

purposes of this work, the narrative will be restricting its focus to the case in which these sequences

are finite and side-effect free, since to_array has undefined behaviour for other cases.

The implementation of to_array is then simply as follows. If the sequence input contains at least

one element the function calculates its length using a helper function and allocates a fresh result array

with the capacity to store all of the elements of the sequence. The function then calls the higher-order

iterator function iteri, whose argument function successively assigns elements of the sequence

to the corresponding slots of the allocated array, which is eventually returned as the result. Now,

having stepped through the function, it seems reasonable to believe that to_array is correct, and

the containers library itself comes with an extensive test suite. But if the goal is to truly ensure the

correctness of this implementation of to_array, then one must really formally prove its correctness.

Specification of Seq.to_array

Before verifying any code, it is necessary to first decide upon a specification to capture what exactly it

means for this implementation to be correct. In order to faithfully specify the effect of to_array on
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the heap, one can return back to Separation Logic (SL) [100, 112] as discussed in the previous chapter.

In this formalism, to_array can be ascribed the following SL specification:

∀s ℓ, {s 7→ Seq ℓ} (Seq.to_array s) ∃a, {a 7→ Array ℓ} (4.1)

The precondition, {s 7→ Seq ℓ}, states that the payload of the (universally quantified) input sequence s

is modelled by a logical list ℓ, where the predicate Seq captures the fact that s is a finite sequence without

side-effects. The postcondition, ∃a, {a 7→ Array ℓ}, adopts the CFML framework’s convention of using

existential quantifiers to encode return values and asserts that the function will return some pointer a

that points to an array with contents described by ℓ, where the predicate Array encodes the fact that a

points to an array on the heap.3 In other words, the specification (4.1) asserts that to_array indeed

converts a sequence to an array with the same payload, and now, if proven, provides a meaningful

guarantee about the correctness of this function. Finally, note that while the post-condition does not

constrain the input sequence s, this does not actually affect the usability of this specification as such

sequences have been defined, as mentioned before, to be pure and effect-free, so they are immutable

and thus allowed by CFML’s affine logic to be duplicated before passing them to the function.

A mechanised proof for Seq.to_array

Having introduced the prerequisites, it is now time to verify the original to_array function in Coq.

When proving properties about these kinds of heap-manipulating programs in a proof assistant, the

corresponding proofs follow by stepping through the code using the reasoning rules of the program

logic to symbolically evaluate how its individual statements update the symbolic state.

Figure 4.3 shows the correspondence between to_array and the Coq proof (done using the CFML

embedding of SL) that establishes that the program indeed satisfies the specification (4.1). As is common

with such SL implementations, each rule of the logic comes with an associated Coq tactic that applies

the rule, automatically determining which heaplets are affected by the rule (i.e., its footprint). As an

example, consider the generic rule xapp from the CFML framework for verifying an application of a

function f with a continuation c (ignoring the highlighted premise for now):

xapp
{P} (f v) ∃x, {Q′x} ∀x, {Q′x} c x {Q}

{P} (let x = f v in c x) {Q} (4.2)

3This assumes an OCaml-style memory model, where locations can store arbitrary values, e.g., arrays.
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let to_array s =
match s () with
| Nil -> [| |]
| Cons (hd, _) ->
let sz = length s in
let a =

Array.make sz hd in
iteri

(fun i vl ->
a.(i) <- vl) s;

a

Lemma to_array_spec : ∀ s ℓ,

{s 7→Seqℓ} (to_array s) ∃a,{a 7→Arrayℓ}.

Proof.

xapp.

case nxt as [ | hd _].

- xvalemptyarr.

- xapp.

xalloc a.

xapp (iteri_spec (fun t ⇒

a 7→ Array (

t ++ drop (length t)

(make (length l) hd)))).

xvals. ... Qed.

Figure 4.3: Proof of to_array in CFML.

In a Coq embedding of CFML, this rule is implemented as a tactic xapp, which applies a lemma that

discharges the conclusion of the rule by emitting verification conditions as per its premise.

{s 7→ Seq ℓ}
let a = Array.make sz hd in
{s 7→ Seq ℓ ∗ a 7→ Array (repeat sz hd)}

Figure 4.4: Example application of the xapp tactic.

Consider the call to Array.make in to_array and the corresponding fragment in the proof in

Figure 4.3. In the program, this expression allocates an array of size sz initialised with the value

hd in the heap and returns a pointer to the freshly allocated and initialised block of memory. In the

corresponding proof step, reasoning about this computation is handled using a tactic xalloc, which

updates the symbolic program state (and is captured correspondingly by the Coq proof context) to

reflect the semantics of the operation, as shown in the proof snippet in Figure 4.4.

Under the hood, the xalloc tactic itself operates by applying a corresponding reasoning rule for function

application, xapp (4.2), to the specification of the library function Array.make:

∀sz v, {sz > 0; emp} (Array.make sz v) ∃a, {a 7→ Array (repeat sz v)} (4.3)

In particular, the spec (4.3) asserts that when calling Array.make with a size sz and value v where

sz > 0, the return value of the function will be a pointer a to an array, whose contents are described by

the logical expression repeat sz v; that is, the array has sz copies of v.
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The most interesting part of the proof is reasoning about the use of the higher-order function iteri,

which takes as arguments a possibly-effectful function f and a sequence s, and iterates through the

sequence, calling f on each element. In order to characterise the state of the heap after its invocation,

the specification (4.4) of iteri requires an invariant I that must be maintained by f:

∀I f s ℓ, (∀t v, {I t} (f v) {I (t++ [v])})→ {I [] ∗ s 7→ Seq ℓ} (iteri f s) {I ℓ ∗ s 7→ Seq ℓ} (4.4)

Here, invariant I characterises the heap in terms of the prefix t of the sequence that has been visited

by iteri. The premise of the specification asserts that the function call f v preserves the invariant I

after visiting v, i.e., I now holds over an extended prefix. The conclusion of the specification (in grey)

states the effect of iteri on the state. Initially, none of the elements of s have been seen, so I must

hold on the empty list [] in the precondition, constraining the corresponding part of the heap. As per

the postcondition, after executing iteri f s, every element in the sequence has now been visited, and

so the specification asserts that I now holds over all elements in the sequence, ℓ.

The proof in Figure 4.3 makes use of the conclusion of the specification (4.4), referred to as iter_spec

in the Coq code, by providing it as the highlighted premise of the rule (4.2). To do so, it instantiates

iter_spec with a suitable invariant I . This invariant argument does not directly follow from the syntax

of the program like other components of the proof, but, rather, must be explicitly provided by the user.

The invariant provided in this proof states that at each iteration of iteri, the allocated array a will

always start with the sequence of elements t that have been visited by the iteration:

fun t⇒ a 7→ Array (t++ drop (length t) (repeat (length ℓ) hd)) (4.5)

In particular, this invariant asserts that the value a, previously returned by the call to Array.make, will

point to an array with the same length as ℓ, where the contents of the array start with t, the prefix of

visited elements, and the remaining elements are all hd. At the precondition of iteri’s specification,

the proof instantiates this invariant with the empty list, where a points to a list whose length is equal

to that of ℓ and whose elements all have the value hd. Having executed iteri, the invariant in its

postcondition is instantiated with the full sequence ℓ, and so it is revealed learn that the final contents of

the array a must have the same length as ℓ, with its contents starting with the sequence ℓ and followed

by an empty suffix. Therefore, it can then be shown that the contents of a are exactly the sequence ℓ,

thereby satisfying the post-condition of to_array and concluding the proof.
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1 let to_array s =
2 let sz, rls =
3 fold (fun (i,ls) x ->
4 i+1, x::ls) (0, []) s in
5 match rls with
6 | [] -> [| |]
7 | init :: rest ->
8 let a = Array.make sz init in
9 let idx = sz - 2 in
10 let _ = List.fold_left
11 (fun i x -> a.(i) <- x;
12 i - 1) idx rest in a

Figure 4.5: New version of to_array

4.1.2 A Recipe for Proof Repair

The proof in Figure 4.3 serves as a certificate of correctness for to_array, but, alas, only for one

particular version of the function: if the implementation of to_array were to later change, then this

certificate would no longer hold, and the developer would have to prove correctness of the program

again. This definition of to_array in the containers library was later updated to the implementation

in Figure 4.5, adopting a radically different, but more efficient implementation that avoids repeated

evaluation of the input sequence. In the new implementation, the function first traverses the entire

sequence in a single pass (line 3) using the fold iterator to fold over the elements of the sequence, using

a pure function to accumulate a tuple of the length of the sequence and the elements of the sequence in

reverse (line 4). Then, having allocated a result array of a suitable length, the program simply iterates

over the reversed list of elements using List.fold_left (line 10), and assigns the elements to its result

array in reverse (lines 11-12), gradually increasing the suffix of the array that is shared with the input.

In this way, while both versions traverse the elements twice, the two implementations differ in the

number of times the lazy sequence is “forced”: in the original version the sequence is forced twice (by

length and iteri), while the updated implementation only forces it once (using foldi). This can have

significant performance benefits when the elements themselves capture expensive computations.

While this new version significantly differs from the original implementation of Seq.to_array from

Figure 4.2, one can observe some striking similarities in their implementations. Most significantly,

both programs follow the same high-level steps: first (1) to calculate the length of the sequence, then

second (2) to allocate a result array with an appropriate size, and finally (3) to populate this array with

the elements of the sequence. For example, in the old implementation, step (1) is completed using a

dedicated length function, while in the new program, this is achieved in parallel with accumulating a

reversed list of the elements of the sequence using fold. Can these similarities between the versions

of the program be somehow used to thus repair the correctness proof from Figure 4.3?
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Old Proof

Specification

Skeleton

Invariants

Obligations

New Program

Old Program

New Proof

Specification
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Skeleton Generation §4.2.1

Sisyphus

Alignment §4.2.2

Invariant Synthesis §4.2.3

Invariant Testing §4.3
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(2)

(3)

Proof Term Reduction §4.3.2Proof Term Instantiation §4.3.1 Candidate Pruning §4.3.3

Figure 4.6: Sisyphus overview. White boxes represent user-provided components. Light-green boxes
represent outputs generated by the tool with the dashed border around obligations representing a
best-effort attempt at dispatching residual goals using user_solve or otherwise leaving them as admits.
Solid arrows indicate inputs and outputs, and the dashed arrow encodes that specifications are copied.

The remainder of this section describes the tool Sisyphus developed in this work that does exactly that.

Overview of Sisyphus The high level overview of Sisyphus is shown in Figure 4.6, which highlights

the three main stages in Sisyphus’s proof repair process:

1. First, following the syntactic structure of the new program, Sisyphus constructs its proof skeleton,

with holes for the parts that cannot be immediately inferred (item 4.1.2).

2. Next, Sisyphus compares traces of the old and new programs on the same random inputs in order

to recover high-level relations between the individual steps in their implementations. It uses

these relations to discover relevant sections of the old proof, which are then used to synthesise

candidate expressions to fill holes in the new proof skeleton (Section 4.1.2).

3. Finally, Sisyphus uses a fast dynamic test to prune the space of synthesised expressions, instanti-

ating the holes in the proof-skeleton and attempting to dispatch the resulting obligations using

user-provided proof automation, thereby completing the proof script (Equation 4.1.2).

In this way, Sisyphus implements a mostly-automated proof repair procedure — the tool will generate

a proof-skeleton and invariants for the new proof, but residual obligations are handled in a best-

effort fashion. In particular, pure domain-specific logical obligations often remain in SL proofs after

symbolically reasoning about the program (e.g., proving that a particular integer is a valid index into a

list). Sisyphus allows the user to supply a tactic (which is referred to as user_solve), that is invoked

during repair to dispatch any such obligations. In order to construct such a tactic, one will typically use

a mixture of Coq’s hint databases and proof search such as auto/eauto. If the tactic fails to dispatch a
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Lemma to_array_spec : ∀ s ℓ,

{s 7→ Seq ℓ} (to_array s)

∃a, {a 7→ Array ℓ}

Proof.

(* .. *) xapp (* .. *).

(* .. *) case ls as [ | init rest].

- (* .. *) xvalemptyarr. {

user_solve. }

- (* .. *) xalloc a. (* .. *)

xapp (list_fold_left_spec

(fun (acc: int) (t: list A) ⇒ □)

).

{ user_solve. }

(* .. *) xvals. { user_solve. }

Qed.

Figure 4.7: Proof skeleton for new to_array

goal, Sisyphus emits an admit for that subgoal, and the user should fill it in to complete the proof.

Building a proof skeleton

As has been seen in Equation 4.1.1, when verifying programs using SL program logics in Coq, the

structure of the corresponding proof scripts will often mirror the structure of the program being

verified. Applying this insight in reverse, Sisyphus starts its own repair process by first constructing an

initial skeleton proof script for the new program, traversing the program body and mapping program

constructs to the corresponding relevant tactics to symbolically execute them. Any residual logical

obligations that remain following this process are delegated to a user-provided solver tactic to dispatch

(here, user_solve), or admitted and left for the user in cases when the solver fails. Using this strategy,

Sisyphus can automatically generate a proof skeleton for the new to_array function (Figure 4.7). Each

program statement in Figure 4.5 maps to a particular tactic application in the proof skeleton: function

applications to xapp (lines 4 and 8), array allocation to xalloc (line 7), creating an empty array to

xvalemptyarr (line 6), and branching in the program is mirrored by a case analysis in the proof (line 5).

While this strategy automatically handles a large component of the burden of writing the new proof

script, there may still be certain parts of the new proof which cannot be immediately filled in and

must be left as holes. For the running example, such a hole must be left when reasoning about the

application of List.fold_left in the program, as its specification (4.6) takes an explicit invariant

74



Chapter 4. Evolution Through Repair 4.1. The Labours of Sisyphus

I to characterise how the program state is updated and maintained through its execution.

∀I f s acc′ ℓ, (∀ acc t v, {I acc t} (f acc v) ∃res, {I res (t++ [v])})→

{I acc′ [] ∗ s 7→ List ℓ} (List.fold_left f s) ∃res, {I res ℓ ∗ s 7→ List ℓ}
(4.6)

The specification (4.6) of fold_left is fairly similar to the previously seen specification (4.4) of

iteri; the key difference between the two being that the invariant used to constrain the behaviour

of the user-supplied function f now takes two parameters: an accumulator value acc, and a list t. As

before, the t parameter represents a logical variable, the prefix of the sequence of elements that have

been visited so far. The acc parameter represents a program-level value, which is the result accumulated

by the fold. The invariant provided to this specification must capture the shape of the heap that evolves

over the execution of the fold at each iteration, and it does not easily follow from the program syntax,

so Sisyphus leaves a hole (□) in the proof (Figure 4.7) in place of the invariant body to be filled in later.

Transplanting invariants across proofs

To fill the remaining holes in the proof, Sisyphus builds upon a fairly rudimentary observation: different

versions of a particular program will more often than not share similar logical invariants in their proofs

of correctness. More precisely, the statements between different versions of a program that perform

similar operations (e.g., populating an array), will often in turn share similarities in the assertions used

to reason about the state they alter in their corresponding proofs, as in the snippets in Figure 4.8.

(* old: populate prefix of array *)
iteri (fun i vl -> a.(i) <- vl) s

(* new: populate suffix of array *)
List.fold_left (fun i x -> a.(i) <- x; i-1) idx rest

Figure 4.8: Old and new operations to populate the buffer in to_array

Following this intuition to its conclusion leads to a natural two-step process for instantiating holes in

the new proof-skeleton: first, (1) in order to determine which statements in the new program perform

similar operations to those from the old program, and then (2) to use relevant invariants from the old

proof to guide the generation of invariant candidates to fill the holes in the new proof.

Discovering similar computations Next, in order to instantiate holes in the proof skeleton, a

mapping between the high-level steps of old and new programs is required. In other words, what is

needed is a program alignment between the two programs that will relate individual statements of both

programs that correspond to the same high-level steps. These relations between the high-level steps in
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let to_array s =
match s () with
| Nil -> [| |]
| Cons (hd, _) ->

let sz = length s in
let a =

Array.make sz hd in
iteri

(fun i vl ->
a.(i) <- vl) s;

a

let to_array s =
let sz, rls =
fold (fun (i,ls) x ->
i+1, x::ls) (0, []) s in

match rls with
| [] -> [| |]
| init :: rest ->
let a =

Array.make sz init in
let idx = sz - 2 in
let _ =

List.fold_left
(fun i x -> a.(i) <- x;

i - 1) idx rest in a

Figure 4.9: Alignment between two versions of to_array

a given program technically capture deep semantic properties of the implementation that might be hard

to determine statically, but, as it turns out, can actually be discovered dynamically using a fairly simple

strategy. Consider the old and new versions of to_array, which adopt the same general strategy to

implement the conversion from a sequence to array (Figure 4.9): (1) compute the length of the input

sequence, (2) allocate an array for the result, and (3) populate the elements of the array. While both

programs use the same steps, the implementations of these individual steps can significantly differ

in execution. For example, when populating the result array in step (3), the original implementation

fills the array from the beginning, while the new implementation does it by assigning elements from

the end. However, after executing this step in both programs, the result array will contain exactly the

elements of the input sequence—a fact that is easy to capture during executions of both programs:

{sz = 3; a 7→ Array ([1; 1; 1])}

iteri (fun i vl -> a.(i) <- vl) s{
sz = 3; a 7→ Array ( [1; 2; 3] )

}
{sz = 3 ∧ idx = 1; a 7→ Array ([3; 3; 3])}

List.fold_left (fun i x -> a.(i) <- x; i - 1) idx rest{
sz = 3 ∧ idx = 1; a 7→ Array ( [1; 2; 3] )

}
In order to exploit this insight for generating new invariants, Sisyphus executes both versions of the

program in question on the same randomly generated inputs and records observations of the concrete

runtime program states at each program point. These observations between the traces are ranked

based on their similarity by using certain metrics to compare the values of program variables in each

observation. In particular, Sisyphus uses two such metrics: comparing exact matches in runtime values,

and barring an exact match, comparing the sizes of collections such as lists, albeit with a lower priority.

That is, if many program variables have the same runtime values, then two observations are considered

to be highly similar. A statement in one program is considered as similar to a statement in the other

program when the observations at points surrounding the respective statements are similar.

In this way, Sisyphus builds up an alignment between the individual statements of both respective

programs. For example, in the code in Figure 4.9 the call to iteri on the left is discovered by Sisyphus

76



Chapter 4. Evolution Through Repair 4.1. The Labours of Sisyphus

to be similar to the call to fold_left on the right as both produce arrays with the same payload,

even though they do so in different directions, hence both statements are marked as aligned.

Generating invariant candidates When instantiating a hole in the new proof skeleton, Sisyphus

first uses the calculated alignment to find the relevant statements of the old program that plausibly

correspond to the same high-level step as the current statement in the new program being analysed that

needs an explicit invariant in its proof. BY considering the respective proof steps from the old proof that

correspond to these statements, Sisyphus then collects any expressions that occur in symbolic states

preceding these steps and produces a family of sketches that are likely to capture the similarities in the

invariants between the old and new proofs by replacing sub-expressions within those invariants with

holes (_). For example, when looking to synthesise an invariant for the call to fold_left in the proof

of the new program, Sisyphus discovers an aligned statement—a call to iteri—and the invariant (4.5)

used to verify it in the corresponding proof (Figure 4.3). It then extracts from the old invariant a number

of sketches, one of them being (_ ++ drop _ _), which captures the prefix/suffix argument from

the proof of the old program and contributes the following (simplified) invariant template:

fun (acc: int)(t: list A)⇒a 7→ Array (_ ++ drop _ _) (4.7)

Finally, Sisyphus uses this template (amongst others), along with any logical functions and constants

in state assertions in the proof of the old and new program, to bootstrap an enumerative synthesis

procedure for generating concrete invariant candidates for the current hole in the proof in Figure 4.7.

Validating invariant candidates

The last step in Sisyphus’ repair process is to validate the generated invariants and identify suitable

candidates to instantiate the holes in the proof skeleton. As the enumerative synthesis based generation

strategy can produce quite large numbers of candidates, validating each candidate individually by trying

to prove its correctness would quickly become intractable. As such, Sisyphus implements its candidate

validation step in two phases, first running a fast dynamic test to quickly prune generated candidates,

and then using the user-provided solver to actually prove the invariant. The key insight powering

Sisyphus is that while such dynamic tests for invariants may be challenging to generate from scratch,

one can actually automatically construct these tests from information hidden within the proofs of the

higher-order functions, using a novel technique this work names as proof-driven testing.

Consider the invariant candidates for the call to fold_left in the new program generated from the
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Number Logical embedding as Coq predicate Executable embedding as OCaml function Valid?

(1)
(fun acc t => a 7→

Array (repeat (acc + 1) init ++
drop (acc + 1) ℓ))

(fun acc t -> Array.to_list a =
(repeat (acc + 1) init ++

drop (acc + 1) ℓ))
Yes

(2)
(fun acc t => a 7→

Array ([] ++ drop 0
(repeat (length t) init)))

(fun acc t -> Array.to_list a =
([] ++ drop 0

(repeat (length t) init)))
No

Table 4.1: Mapping from Coq invariants to OCaml tests

template (4.7) and listed in Table 4.1.4 The first candidate accurately describes the invariant that holds

for one iteration of fold_left’s argument function, while the second invariant is incorrect.

Following the intuition presented in the earlier sections, the first invariant asserts that during the

execution of fold_left, the contents of the array a will share an increasing suffix with the contents ℓ

of the original sequence. The second invariant asserts that the contents of a will always be described

by repeat (length t)init—that is, all elements in the array will always have the same value. The

goal is to test these invariants and quickly distinguish between the invalid invariant (2) and the correct

invariant (1). To do this, one needs to convert the logical state properties asserted by the invariant and

expressed as propositions in Coq’s logic (second column of Table 4.1), into executable OCaml tests (third

column) that check the program values of the program via a direct syntactic translation. Combining

this with a suitable instantiation for the free variables in the expressions (i.e., a and ℓ), it would then be

possible to construct an executable reference program that could test the invariants.

let ℓ = [ 1; 2; 3 ] in
let a = [| 3; 3; 3; |] in
let f i x = a.(i) <- x; i-1 in
let len = 3 - 2 in
let inv = (* .. *) in
(* a = [ 3; 3; 3 ] *)
assert (inv len []);
let acc = f len 2 in
(* a = [ 3; 2; 3 ] *)
assert (inv acc [2]);
let acc = f acc 1 in
(* a = [ 1; 2; 3 ] *)
assert (inv acc [2;1])

Figure 4.10: A concrete invariant test

Now, suppose one had access to the testing program presented in Figure 4.10. This program encodes a

particular concrete execution trace of List.fold_left within the new implementation of to_array

called on a sequencewith the elements [1, 2, 3], annotatedwith appropriate assertions (inv). Specifically,

after each individual step in the trace, the test program includes an additional assertion that an invariant

4It is assumed that the invariants are used in an environment where a and ℓ are bound, e.g., the proof in Figure 4.7.
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let rec fold_left (* I *) f acc ls =
(* assert (I acc []); *)
let rec loop (* t *) acc ls =
match ls with
| [] -> acc
| hd :: tl ->
let acc' = f acc hd in
(* assert (I acc' (t ++ [hd])); *)
loop (* (t ++ [hd]) *) acc' tl in

loop (* [] *) acc ls

Figure 4.11: Implementation of fold_left

function invmust hold with the current value of accumulator variable acc and the prefix of the elements

that have been visited so far. If one were to use the first invariant candidate as the definition of the inv

function, then this testing function will execute without raising an exception, as each time inv is called,

the contents of the array a will indeed match the state expected by the invariant. Conversely, if this

program is executed with the definition of inv assigned to the second invariant candidate, then the

program will fail to execute to completion, as at the second call to the inv function, the contents of the

array will be [3; 2; 3] while the invariant will expect all elements to be the same.

The challenge with constructing such a test program is that it manipulates logical variables and performs

invariant checks that do not occur in the implementation of fold_left (as given in Figure 4.11).

Note however that these properties could actually be obtained if considering the execution trace of a

suitably annotated ideal version of fold_left (cf. the comments in Figure 4.11) that was parameterised

by additional logical parameters (i.e., t) and contained explicit invariant checks.

The key insight of Sisyphus is that one does have access to these very annotations: they are in fact

contained within the proof of correctness for fold_leftwith regard to the specification (4.6), which itself

has to manipulate and maintain these variables and checks in order to establish that the invariant holds

over the course of the entire program. Sisyphus evaluates proof terms of specifications for higher-order

functions (as well as correctness proofs for rules of a program logic) on concrete inputs, extracting test

specifications from the resulting reduced proof terms as presented in Figure 4.10, the aforementioned

process this work dubs proof-driven testing. Using these generated tests, Sisyphus can quickly prune

the generated candidates and suggest valid invariants necessary to complete the repaired proof.

Putting it all together

Recall that the starting point of this section was simply an old program, its SL specification, and a

Coq proof of its correctness (Subsection 4.1.1). Taking those artifacts and running them through the
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v variable names
c ::= v | fun v⇒ c | assert c

| c c | let v = c in c

| if c then c else c
| match v with Ci vi → ci

T ::= xval. | xif. {T}
| xletval v. | xmatch. {T}
| xapp. | xapp v (fun v⇒ □).

Figure 4.12: OCaml programs and Coq tactics

sequence of steps described in item 4.1.2–Equation 4.1.2, Sisyphus produced a nearly complete repaired

proof with explicitly-stated high-confidence invariants for calls to higher-order functions and loops. To

fully complete the proof, the user has to mechanically establish the validity of the suggested invariants.

These residual proof obligations typically boil down to proving new facts about (a) entailment of SL

assertions and (b) mathematical properties of involved data types (e.g., a new lemma relating list reversal

and concatenation)—all outside of the scope of the original proof, and, therefore, beyond the reach of

Sisyphus’s proof repair capabilities.

In the remaining sections this chapter will provide detailed descriptions of the outlined algorithms for

reconstructing proof skeletons, computing program alignment, and synthesising invariant candidates

(Section 4.2), formally define proof-driven testing via Coq proofs (Section 4.3), and elaborate on the utility

aspects of Sisyphus, including the proof burden for the residual verification conditions (Section 4.4).

▶ 4.2 Proof Reconstruction and Synthesis of Invariant Candidates

This section formal describes the algorithm used by Sisyphus to reconstructing the initial proof skeleton

for the updated program, and the invariant generation algorithm used to fill the holes in the skeleton.

4.2.1 Generating Proof Skeletons

Figure 4.12 provides a subset of OCaml terms (ranged over by c) and CFML proof tactics (T ), which

will be used for the presentation in the remainder of the chapter. For the sake of a uniform treatment,

Sisyphus requires loops in OCaml programs to be encoded as applications of higher-order combinators

that take a function, representing the loop’s body, as their argument. This reduces the problem of

inferring loop invariants to inferring invariants for higher-order function applications. In practice, this

convention poses little problem: most idiomatic OCaml programs that involve loops are either already

implemented using higher-order combinators or can be easily rewritten to do so. Of note in the syntax,
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xif
{v = true;P}{Q} ct ⇝x Tt ;φt

{v = false;P}{Q} cf ⇝x Tf ;φf

{P} {Q}; if v then ct else cf
⇝x xif. {Tt}{Tf}; (φt, φf )

xmatch
{v = Ci vi;P}{Q} ci ⇝x Ti ; φi

{P} {Q}; match v with Ci vi ⇒ ci
⇝x xmatch. {Ti}; φi

xval

{P} {Q}; v ⇝x xval.; P ⊢ Q v

xapp
E [f ] = ∀ x, ψ → {P} f x ∃x {Q′ x}
{(Q′x)[v/x]}{Q}; c x ⇝x T ; φ

{P} {Q}; let x = f v in c x ⇝x xapp. T ;

(ψ[v/x], φ)

xapp-hof
E [f ] = (s : ∀F, x, I, ψ → {P} f F x ∃x {Q′ x}) d is first-order
{(Q′ x)[v/x, (fun w ⇒ d)/F, (fun q ⇒ □)/I]}{Q}; c x ⇝x T ; φ

{P} {Q}; let x = f (fun w ⇒ d) v in c x ⇝x

xapp s (fun q ⇒ □). T ; (ψ[v/x, (fun w ⇒ d)/F, (fun q ⇒ □)/I], φ)

Figure 4.13: Transformation from OCaml to CFML proof scripts (sequences of tactics)

the tactic xapp that implements the CFML logic rules for function applications has two forms—the

former handles first order functions while the latter tackles higher-order functions and requires an

explicit invariant, which is initially represented by a “blank” fun v ⇒ □ to be elaborated later.

Figure 4.13 shows Sisyphus’ rules for proof skeleton reconstruction. It is implemented as a syntax-based

translation⇝x from OCaml programs to sequences of Coq tactics. It takes the verification goal (i.e.,

pre-/postcondition of the residual program to be traversed) and emits a list of residual obligations φ

that should be discharged separately. For example, the obligation emitted in the conclusion of xval,

typically applied at the end of the proof (cf. Figure 4.3), is the heap entailment P ⊢ Q v, which is

derived immediately from the residual goal {P} {Q}. Both rules xapp and xapp-hof deal with function

applications (for first-order and higher-order functions respectively), using the function dictionary E to

retrive function specifications and adding their side conditions to the list of residual obligations. In

addition to that, xapp-hof generates a “blank” invariant fun q ⇒ □, whose hole □ is going to be filled

up later with candidates. The next step in Sisyphus’ repair process is to mine the building blocks for

constructing such candidates from the old program’s proofs using the program alignment technique.

4.2.2 Computing Program Alignment

Program alignment is the mapping from program points in the new program to those in the old one

that exhibit similar program states in their executions—a crucial component in determining possible

invariant candidates to fill holes in the reconstructed proof script. Note that alignment is a many-

to-one correspondence: many new program points can map to one old program point (but not vice

versa). Algorithm 4.2.1 shows the main step of computing the alignment. To measure similarity of

two program states, it uses a simple Score function that only takes into the account the sizes of the

aggregate values (e.g., arrays and lists) present in both program states. Prior to computing the score,

the Normalize function transforms aggregate data types with known canonical projections to a unified
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representation. For instance, both arrays and sequences are represented as lists; the user can supply

their own projections. This enables Sisyphus to compare program states bearing the same logical values

represented in different OCaml datatypes (e.g., seq and array in to_array).

Algorithm 4.2.1: Dynamic Program Alignment
Procedure DPA(p, p′)

Input: Old program p, and a new program p′

Output: Map α from program points in p′ to p
R,R′ ←
ProgramPoints(p),ProgramPoints(p′)

for input in GenRandInputs(p) do
tr , tr ′ ← Trace(p, input),Trace(p′, input)
for ⟨ρ, ρ′⟩ in R×R′

do

ps ← ProgramStateAt(tr , ρ)
ps ′ ← ProgramStateAt(tr ′, ρ′)
scores[ρ′][ρ]← Score(ps, ps ′)

for ρ′ in R′
do

α[ρ′]← HighestScore(scores[ρ′])
return α

Procedure Score(ps, ps ′)
Input: Old and new program state ps, ps ′
Output: Integer score
H,H ′ ← Heap(ps),Heap(ps ′)
S, S′ ← Stack(ps),Stack(ps ′)
vals ← Normalize(H ∪ S)
vals ′ ← Normalize(H ′ ∪ S′)
score ← 0
for val in vals do

if val ∈ vals ′ then
score ← score + Size(val)

return score

To compute the alignment α, Sisyphus generates a series of random inputs and simultaneously executes

both old and new versions of the program on them to obtain execution traces tr and tr ′ correspondingly.

During the execution, it records the program state at each program point, computes the similarity to

program points in the alternative version via the Score function, and finally associates each program

point in the new program with the most similar program point in the old program.

4.2.3 Synthesising Invariant Candidates

Algorithm 4.2.2: Synthesis of invariant candidates
Procedure MakeTemplate(ρ′, vs)

Input: New program point ρ′, invariant parameters vs
Output: Invariant template I□
I□ ← emp
for v 7→ Π ei in Heaplets(ρ

′) do

I□ ← I□ ∗ (v 7→ Π _)
for v in vs do

I□ ← I□ ∧ (v = _)
return I□

Procedure SynthesizeCandidates(I□, α,P, p′, ρ′)
Input: Invariant template I□, DPA α, old proof P ,
new program p′, new program point ρ′
Output: List of invariant candidates matching I□
Iold ← GetInvariant(α(ρ′))
sketches ← GetExpressionSketches(Iold)
atoms ← CollectConsts(P)∪CollectFuns(P)

logvars ← LogicalVars(specification of P)
return

EnumSynthesis(sketches, atoms ∪ logvars, I□)

Algorithm 4.2.2 provides an overview of the algorithm for template-based invariant synthesis. In this

approach, invariants are encoded as Coq functions that take one or more parameters and construct a

logical proposition that constrains the symbolic SL state (e.g., the invariant (4.5)).

Recall that, as detailed in Subsection 4.2.1, Sisyphus generates a “blank” invariant for every application

of a higher-order function. Initially, this “blank” invariant consists purely of a single empty hole. To aid
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the synthesis, in its first step (Algorithm 4.2.2, left), the algorithm constructs an invariant template I□ for

a program point ρ′ in the new program. It does this by collecting all heaplets in the program’s symbolic

state, obtained by symbolic execution, immediately before ρ′. Each heaplet has the shape v 7→ Π ei,

where v is a logical or program-level variable, and Π is an OCaml data type constructor (e.g., Array or

ref), possibly applied to arguments ei that are being replaced by a hole _. The template heaplets are

then conjoined using the SL ∗ connective. Additionally, for every parameter to the invariant (obtained

from the type of the corresponding lemma that requires it), the tool generates equality propositions of

the form v = _. For example, the template that was elaborated into the form (4.7) is

fun acc t ⇒(a 7→ Array _) ∧ (acc = _) ∧ (t = _) (4.8)

After inferring the template I□ of the desired invariant, Sisyphus constructs concrete candidates by

filling it (Algorithm 4.2.2, right). To do so, the algorithm first retrieves the corresponding invariant from

the aligned location in the old program and uses it to construct a set of sketches (i.e., expressions with

holes). It then collects constants and function symbols from the old proof, as well as logical variables

from the ascribed specifications and uses those to fill the holes in the sketches, themselves used to

instantiate holes in the template, thus completing the enumerative synthesis of candidates.

▶ 4.3 Proof-Driven Invariant Testing

This section will describe the technique at the heart of Sisyphus, proof-driven testing, a means to test

the validity of invariant candidates. This goal is achieved by automatically generating tests to check

computable properties of program values and states, from proofs of higher-order lemmas.

To build an intuition for this process, it would behoove the reader to start an exploration by considering

a simple computable property P on natural numbers, defined as P n ≜ 1 + n = n+ 1. A standard

way to prove that P holds on all natural numbers is by induction, i.e., by providing proofs of the facts

H0 : P 0 (i.e., the induction base) and Hi : ∀i, P i→ P (i+ 1) (i.e., the induction transition).

H0 and Hi are proof terms: following their types, one can compose them into the expression

Hi 2 (Hi 1 (Hi 0 H0))) : P 3 (4.9)

whose type will be P 3, therefore making it a proof term for the fact that the property P holds on

the number 3. The proof of P 3 is, therefore, constructed by applying Hi, an inductive step, to two
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v variable names
t ::= v | t t′ | ∀x : t, t′ | fun x : t⇒ t′

| C t | match t with Ci vi ⇒ ti

| fix f vi : ti : t⇒ t′

Figure 4.14: Syntax of selected CICω terms

arguments: a concrete value 2, and a sub-term constructed to have the type P 2. This sub-term proving

P 2 recursively is also constructed by applying Hi again, but this time to 1 and (Hi 0 H0). The

remarkable observation supported by this example is that this proof, i.e., that P holds on the value 3,

contains within it the information that P must necessarily also hold on the values 2, 1, and 0—from the

fact that within its construction, it contains sub-terms proving P i for i ∈ {0, 1, 2}.

What does this have to do with testing invariants? Imagine that one doesn’t know if P holds for all

numbers. A natural (pun intended) thing to do in this case would be to first test that P holds on some

numbers, e.g., 0, 1, 2, etc., up to some large number (e.g., 3). On the other hand, assuming that P can

be proven by induction, it would be known that there must be witnesses (i.e., proof terms) H0 and

Hi for statements P 0 and ∀i, P i → P (i + 1), correspondingly, such that for any concrete n, P n

can be derived by repeated application of Hi to smaller numbers and H0, as demonstrated by (4.9).

By combining these two observations, it leads to the main revelation of this work: For any concrete

n, the proof term tn for the proposition P n contains sub-terms of types P i for i < n within itself;

by traversing tn, one can identify each of those types P i and convert it into a dynamically checkable

assertion over a boolean expression P (i), which must not fail if P holds universally.

As it turns out, the same observation, i.e., that a proof-term for a higher-order lemma about a property

can be used for extracting tests for this property, is not just specific to statements about natural numbers!

In fact, exactly this very principle can be applied in anger to test the properties of program executions,

e.g., when P is a guessed invariant over program states parameterised by program and logical variables.

In these cases, concrete values of both program and logical variables can be effectively supplied by

subterms of the corresponding lemma proofs that are partially evaluated on concrete inputs.

4.3.1 Instantiating Proof Terms with Concrete Inputs

For the rest of this section, for simplicity, the narrative will restrict its language to a subset of CICω , the

calculus of Coq, its syntax adopted from Timany and Jacobs [128] and given in Figure 4.14.

The first step in this proposed testing process is to instantiate higher-order lemmas with concrete

arguments and reduce their proof terms to a head-normal form using rules from Figure 4.15. Once
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red-app
(fun x : T, t) t′ ⇓r t[t′/x]

red-constr
ti ⇓r t′i

C ti ⇓r C t′i

red-match
(match Ck tj with Ci xj → t′i) ⇓r t

′
k[tj/xj ]

red-fun
t ⇓r t′

(fun x : T ⇒ t) ⇓r (fun x : T ⇒ t′)

red-fix
t′0 = C t′ F = (fix f xi : Ti ⇒ t)

F t′i ⇓r t[F/f, t′i/xi]

Figure 4.15: Selected reduction rules for CICω

an expression has been reduced to its head-normal form, the types of its non-reducible subterms will

contain the property of interest applied to concrete values, allowing for further test extraction.

As an example, consider instantiating and reducing the induction principle nat_ind for natural numbers.

The induction principle is implemented as a higher-order lemma whose type is

∀(P : nat→ Prop), P 0→ (∀i, P i→ P (i+ 1))→ ∀(x : nat), P x (4.10)

and whose proof term is a recursive function that pattern-matches over two constructors of nat:

fun P H0 Hi ⇒ fix F (n : nat) : P n⇒ match n with | 0⇒ H0 | S n′ ⇒ Hi n
′ (F n′) (4.11)

According to its (dependent) type (4.10), nat_ind takes four parameters, of which the first three are

either properties or their proofs (which is indicated by their types), while the fourth one has type

nat. In the scenario of interest for this work, lemmas are applied to concrete (i.e., non-proposition)

arguments, as those correspond to values that can be used for testing the validity of propositions (in

this case, passed as arguments to P ). Therefore, to formally replicate the example (4.9), nat_ind should

be instantiated with three symbolic values P , H0, and Hi indicating proof terms or properties whose

values are irrelevant for test generation (but whose types are important), and the fourth argument

being the concrete value 3. By repeatedly applying the rules red-app, red-fix, and red-match to this

expression, it can be reduced to the following partially-evaluated form:

nat_ind P H0 Hi 3 ⇓∗r Hi 2 (Hi 1 (Hi 0 H0)) (4.12)

The reduced form on the right reveals the familiar sub-terms whose types contain applications of P to

concrete values. The next section will use this result to extract a testable specification for P .
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vanilla-app
Γ; t⇝v c Γ; t′ ⇝v c

′

Γ; t t′ ⇝v c c
′

vanilla-ind
C ti : τ Γ; ti ⇝v ci

Γ;C ti ⇝v C ci

vanilla-fun
x,Γ; t⇝v c

(fun x : T ⇒ t)⇝v (fun x⇒ c)

vanilla-match
t⇝v c xi,Γ; t

′
i ⇝v ci

Γ; match t with Ci xi : Ti → t′i ⇝v
match c with Ci xi → ci

vanilla-erase
t : τ τ : Prop

t⇝v ()

vanilla-fix
f, xi,Γ; t⇝v c Γ; t′i ⇝v c

′
i

Γ; (fix f xi : Ti ⇒ t) t′i ⇝v

let rec f xi = c in f c′i

extract-prop
Γ ⊢ t : τ

τ = t1 . . . tn → τ ′ τ ′ : Prop

Γ; t⇝e (fun x1 . . . xn ⇒ ())

extract-test
Γ ⊢ t : τ τ : Prop

Γ ⊢ τ ⇝t p Γ; t⇝e c

Γ; t⇝e assert p; c

extract-gen
Γ; v ti ⇝f c

Γ; v ti ⇝e c

Figure 4.16: Vanilla extraction rules from CICω to OCaml (top) and new rules for test extraction (bottom).
Highlighted premises are domain-specific and are instantiated for a particular set of properties.

4.3.2 Extracting Tests from Reduced Proof Terms

The top part of Figure 4.16 presents a simplified form of the extraction relation (⇝v) from Coq to

OCaml [77]. The key rule that is relevant for this work is vanilla-erase, which handles the removal of

logical parameters for the sake of producing efficient executable OCaml code: when a Coq expression t

happens to have type in Prop, i.e. meaning that it is a computationally-irrelevant proof term, then Coq’s

vanilla extraction simply returns the unit value () without even inspecting t’s structure. As the goal is

to visit the sub-terms of logical properties to generate tests, this rule must be suitably adapted.

The extraction mechanism (Figure 4.16, bottom) developed in this work, updates the relation⇝v with

three additional new rules: extract-test, extract-prop, and extract-gen (which will be explained

in Subsection 4.3.3). The rule extract-prop extends the extraction making it traverse terms with

type in Prop. The key addition is the rule extract-test, which implements the earlier intuition that

sub-terms witnessing a property can encode dynamically checkable assertions for which the property

must hold. In particular, whenever the extraction process visits a sub-term inhabiting a type τ that can

be converted into an executable test p (via a reflection step⇝t), it emits an assertion that p must hold

within the extracted computation. The heavy lifting in this translation is done by the⇝t reflection rule,

which is domain-specific and is instantiated by the user for a particular set of decidable properties.

nat-refl-eq
Γ; t⇝v c Γ; t′ ⇝v c

′

Γ; (t = t′)⇝t c = c′

To wrap up this section, consider again the running example. In this case, one can instantiate⇝t with
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refl-emp

Γ; emp⇝t true

refl-sep
Γ; t⇝t c Γ; t′ ⇝t c

′

Γ; t ∗ t′ ⇝t c && c′

refl-pts
Γ; t⇝t c R(f) = F

Γ; v 7→ f t⇝t F v = c

extract-xapp
Γ;Hc ⇝e c Γ;P ⇝t p

Γ; xapp P Q′ Q f v b Hf Hc ⇝f assert p; let x = f v in c x

Figure 4.17: A reflection for SL properties (top); An extraction rule for xapp (bottom)

the bespoke reflection function (above) tailored for the property P n ≜ 1 + n = n+ 1, and use the

extraction rules to convert the normalised proof term (4.12) into the test-specification (4.13).

Hi 2 (Hi 1 (Hi 0 H0)) ⇝∗
t

assert (1 + 3 = 3 + 1);assert (1 + 2 = 2 + 1);assert (1 + 1 = 1 + 1);assert (1 + 0 = 0 + 1)

(4.13)

Notice that the four asserts in the OCaml program above correspond to the subterms (Hi 2 . . .),

(Hi 1 . . .), (Hi 0 H0), and H0, as each one inhabits the type of a concrete instantiation of P .

4.3.3 Testing Properties in Separation Logic

Leaving the world of properties over nat, it is now time to tackle the original goal of this section, using

proof-driven testing to efficiently test separation logic properties, such as invariants. In particular, this

section will consider an embedding of CFML in Coq, and present how the previously introduced custom

extraction rules for Coq (cf. Figure 4.17) can be extended to be used in this domain.

Consider a prototypical CFML rule xapp for function applications, as seen in Equation 4.1.1. When

embedded as a lemma (xapp) within Coq, xapp happens to take the following dependent type:

∀(P : hprop) Q′ Q f v b, ({P} (f v) ∃x, {Q′ x})→ (∀x, {Q′ x} b x {Q})→

{P} (let x = f v in b x) {Q}
(4.14)

That is, the xapp lemma takes eight arguments, where the first three are properties over the symbolic

heap (with type hprop), the next three take values, and the last two take SL proofs. Notice that, from

the type of xapp, for the heap properties that are passed as input (i.e., P , Q′, and Q) no witness is

passed to the lemma. Rather, the lemma expects proofs of Hoare triples such as {P} . . . ∃x, {Q′ x}.

This section will not show the proof term of xapp here, but it does not construct proof terms inhabiting

P , Q, etc., either; instead, it composes the witnesses for the lemma’s argument Hoare triples. As such,

if one were to apply the extraction rules from cf. Figure 4.17 to a concrete instantiation of xapp, the
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Algorithm 4.3.1: Invariant testing
Procedure TestInvariant(p′, f, tf , I)

Input: Program p′, HOF f , proof term for f tf : args → I → Spec, invariant I
Output: Passes if no assertion is violated
st , args ← RunUpto(p′, f,GenInput(p))
t← Instantiate(tf , args, I)
Reduce(t ⇓r t′)
Extract(t′ ⇝e δ)
RunFromState(st, δ ())

resulting program would not include any explicit assertions about properties over the heap.

The goal is to extend the test extraction to test SL properties that hold over the heap. To do this, one can

first instantiate the reflection relation⇝t with the rules refl-emp, refl-sep, and refl-pts (cf. Figure 4.17,

top) to handle terms in hprop, CFML’s encoding of heap properties. The key rule in this encoding

is refl-pts that uses a mapping R to extract heap predicates (e.g., Array) to corresponding OCaml

functions that manipulate their logical contents (e.g., of_list). Applying these rules, it is possible to

reflect logical assertions over the heap into executable OCaml tests similar to the program in Figure 4.10.

To assert these SL properties within Sisyphus’ tests, the extraction procedure must be tuned such that

the test programs appropriately update and maintain the heap, testing the predicates derived from the

passed heap assertions at the correct respective program points. For this purpose, one can turn to the

extract-gen rule (cf. Figure 4.16), and instantiate it for CFML, extending F to map CFML’s reasoning

rules to transformations that capture their semantics. For example, extract-xapp (cf. Figure 4.17,

bottom) presents the corresponding instantiation for xapp. The essential part of the rule is the bespoke

invocation of the⇝t procedure that converts the precondition P to the assertion assert p installed

right before the call to f. The rule extract-xapp does not convert the other two argument properties

of xapp, Q′ and Q, which both take value arguments, into assertions. This extension is straightforward

but would require to generalise⇝t to handle parameterised properties; in the interest of time this was

not implemented in this version of Sisyphus. The encodings for the remaining rules of CFML follow

the same strategy and are not presented here, but can be found in the implementation.

Putting it all together, Algorithm 4.3.1 describes the overall process whereby Sisyphus uses proof-driven

testing to prune candidate invariants when instantiating holes in the generated proof skeleton for a

given program. When testing an invariant candidate I for a higher-order function f , whose application

occurs in the code of the new program p′, TestInvariant first executes the enclosing program p′ on

a randomly generated input and observes both the program state st at the call site and the concrete

arguments to f . The concrete arguments and the invariant are passed to tf to construct an instantiated
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reduced proof term t, which is extracted into a OCaml test program δ, which is executed in the context st .

If δ raises an exception during its execution, then I is invalidated and can be pruned away.

▶ 4.4 Implementation and Evaluation

Component LOC

Proof-skeleton generator (§4.2.1) 2700

Program alignment (§4.2.2) 1400

Enumerative synthesis (§4.2.3) 1600

Modified Coq reduction (§4.3.1) 7600

Proof-driven test extraction (§4.3.2) 2000

Reflection & extraction for CFML (§4.3.3) 1600

Miscellanea (e.g., logging, stats, etc) 1900

Total 18800

Sisyphus has been implemented in 19k lines of OCaml. The

table on the right summarises the distribution of implemen-

tation effort, in terms of the approximate lines of code of

each component of the development.5 In order to implement

proof-driven testing, the project includes a lightly modified

version of Coq’s reduction algorithm to allow reduction

within proof terms. Note that the CFML instantiation of

proof-driven testing only requires around 1600 specific LOC,

which is likely a good estimate of the additional effort that

one might expect in order to extend Sisyphus to handle proof repair in other Coq embeddings of

Separation Logic. In order to dispatch any obligations generated during the repair process, this work

implemented a domain-specific solver as a small collection of Ltac-based tactics (∼700 LOC). An initial

implementation of the tool used Z3 [34] for this purpose; however, it was found that it was not effective

at reasoning about the generated obligations, taking several minutes on even simple goals.

This work conducts an empirical evaluation of Sisyphus to answer the following research questions:

• RQ1: Is Sisyphus effective at repairing proofs for real world programs: can it find correct

invariants and how much manual effort is required to complete the proof?

• RQ2: How efficient is Sisyphus: does it generate invariants in a reasonable amount of time?

• RQ3: What are the classes of changes in programs that Sisyphus handles poorly or not at all?

Benchmarks In order to answer these questions, a benchmark suite of 14 evolved OCaml programs

was collected for the evaluation, with the details as summarised in Table 4.2. Of these programs, a

majority, 10, were drawn from real-world code-bases, found by mining the version control of popular

OCaml libraries (e.g., Jane Street’s base, containers, etc.—cf. the accompanying artefact for their

exact provenance), with the remaining ones constructed by the author.

Programs were selected to exhibit the use of a diverse range of refactorings. In particular, the changes

5The accompanying artefacts, Sisyphus implementation and benchmarks, are available online [50].
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Table 4.2: Categorisation of benchmark programs by the type of change and language features and
data structures used (left); Comparison of additional effort required to dispatch the obligations in proof
scripts produced by Sisyphus (right). † indicates when the new version of the program was constructed
by the authors, and ‡ indicates when both versions of the programs were constructed by the authors.

Example Data Structure Refactoring Time (old) Time (new) # Admits /
# ObligationsSpec Proof Total

seq_to_array Array, Seq IterOrd, DataStr 1hrs 1hr 2hrs 17m 3/5
make_rev_list† Ref Mutable/Pure 5m 5m 10m - 0/2
tree_to_array† Array, Tree IterOrd, DataStr 4hrs 1hr 5hrs 18m 2/4
array_exists Array Mutable/Pure 10m 20m 30m 12m 2/4
array_find_mapi Array, Ref Pure/Mutable 30m 1hr 1.5hrs 12m 2/5
array_is_sorted Array Pure/Mutable 1hr 3hrs 4hrs 2m 2/5
array_findi Array Pure/Mutable 30m 1hr 1.5hrs 9m 3/7
array_of_rev_list Array DataStr 5m 1hr 1hr 3m 2/3
array_foldi Array Pure/Mutable 10m 5m 15m - 0/1
array_partition Array DataStr 30m 2hrs 2.5hrs 5m 3/3
stack_filter‡ Stack DataStr 1hr 30m 1.5hrs 11m 3/3
stack_reverse‡ Stack DataStr 1.5hrs 30m 2hrs 30s 1/1
sll_partition‡ SLL Mutable/Pure, IterOrd 1hr 1hr 2hrs - 0/2
sll_of_array‡ Array, SLL IterOrd 1.5hrs 30m 2hrs - 0/1

of programs considered in the benchmarks can be classified into four classes: (1) IterOrd, for changes in

iteration order (cf. the change in to_array), (2) DataStr, for changes in intermediate data structures,

(3) Mutable/Pure for the transformation of programs using loops with mutation to pure variants, and

(4) Pure/Mutable for the converse. The benchmarks being considered manipulate a representative range

of common OCaml data-structures: arrays, lazy sequences, mutable singly-linked-lists (SLL), stacks,

queues and trees. The main roadblock in tackling larger classes of data structures for the case studies

was in the lack of available verified implementations of these data structures. For example, though the

CFML development provides a simplified version of the OCaml Map data structure, implemented using

a balanced binary tree, it does not verify most of its associated functions.

Methodology The methodology used to evaluate Sisyphus on these benchmark programs was as

follows: For each library function in the benchmark suite, first, the function and its dependencies were

extracted into a standalone file, manually replacing the use of for- and while-loops with suitable

higher-order loop combinators (cf. Subsection 4.2.1). Then, in order to construct the initial proofs for

each program, the author manually verified the implementations of each of the benchmark programs

and recorded the time taken. Sisyphus was then invoked to construct proofs for the new versions of

each benchmark program. Finally, any residual obligations that were left as admits by the tool were

proven manually by a co-author of this work and timed. Both the author and the co-author were equally

familiar with Coq/CFML before writing any proofs, and the primary purpose of this experiment was to

evaluate the manual effort in proving the remaining obligations in relation to the initial proof effort.
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Table 4.3: Statistics of Sisyphus when repairing proofs of verified OCaml programs. The first 3 columns
list the total invariant candidates that were generated and their breakdown by heap and pure parts, to
be tested independently. The last 5 columns describe the time taken by Sisyphus, with the breakdown
per individual component: generation of candidates, extraction of tests, running the tests, and the
remaining tasks, which include computing program alignment and interaction with the Coq runtime.

Example Candidates Time (s) Total (s)
Heap Pure Total Generation Extraction Testing Remaining

seq_to_array 3.4× 107 1.8× 104 6.2× 1011 28.57 1.95 20.36 5.28 58
make_rev_list - 30 30 ≤ 10ms 3.36 ≤ 10ms 11.95 15
tree_to_array 5.0× 106 8.2× 103 4.0× 1010 6.75 1.95 2.98 13.32 25
array_exists - 25 25 ≤ 10ms 3.30 ≤ 10ms 13.23 17
array_find_mapi 13 34 442 ≤ 10ms 2.13 ≤ 10ms 13.95 17
array_is_sorted 64 70 4.5× 103 ≤ 10ms 2.04 ≤ 10ms 15.38 18
array_findi 4.9× 103 34 1.7× 105 ≤ 10ms 2.13 ≤ 10ms 19.07 22
array_of_rev_list 1.5× 106 - 1.5× 106 1.72 2.82 0.96 15.62 21
array_foldi 24 - 24 ≤ 10ms 488.89 ≤ 10ms 15.00 504
array_partition 1.6× 106 - 1.6× 106 3.51 69.73 2.62 17.53 95
stack_filter 71 - 71 ≤ 10ms 81.88 ≤ 10ms 21.53 104
stack_reverse 22 - 22 ≤ 10ms 88.42 ≤ 10ms 16.94 105
sll_partition 630 - 630 ≤ 10ms 426.62 ≤ 10ms 16.43 443
sll_of_array 2.4× 104 - 2.4× 104 0.02 55.98 0.01 13.33 69

RQ1: Effectiveness and Utility The experiments demonstrate that Sisyphus is effective at repairing

the proofs of real world programs. Sisyphus was able to automatically construct new proofs for all

programs in the benchmarks: all synthesised invariants were valid, and the author was able to manually

prove any remaining proof obligations. The fourth to the sixth columns of Table 4.2 describe the

comparison of the manual effort, in terms of the time taken, to prove and specify the original programs

in comparison to using Sisyphus and manually dispatching remaining obligations. The last column

of the table (# Admits / # Obligations) describes the number of verification conditions that Sisyphus

was unable to dispatch automatically and were left as admits for the user to prove. It was possible to

construct Coq proofs for all such remaining sub-goals manually.

As can be seen from the table, all obligations took fewer than 20 minutes to dispatch, while specifying

and proving the original programs took considerably longer, demonstrating the utility of Sisyphus for

maintaining verified code-bases. It was found that most of the challenge in completing proofs was in rea-

soning about properties of the involved functions that were not considered in the original development

but relied on by the generated invariants. For example, in the case study for array_partition,

the generated invariant made use of an expression of the form filter p (filter p ℓ). Since filter-

ing is idempotent, such repetition is redundant, but no such property had been proven before in the

development, so dispatching the remaining obligation required the developer to prove it manually.

RQ2: Efficiency The experiments were conducted on a commodity laptop (3.5 GHz Apple M2

MacBook Air with 8GB RAM). Overall, Sisyphus was found to be reasonably efficient at repairing
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proofs, taking fewer than 2 minutes to execute on almost all examples in the benchmarks.

In the two cases where Sisyphus takes longer than 2 minutes, array_foldi and sll_partition, most

of the time is spent on performing the extraction of tests itself, rather than generating and pruning

candidates. It should be noted that the implementation of proof-driven testing in this work has not

been particularly optimised, simply reusing Coq’s infrastructure to implement extraction, so further

improvements could be obtained by adopting a more specialised implementation. The second to fourth

columns of Table 4.3 list the number of generated invariant candidates; Sisyphus uses a lazy generation

strategy, so the table only records the number of candidates until Sisyphus finds a suitable invariant

or gives up. Note that for many of the benchmarks, Sisyphus is able to use program alignment to

considerably reduce the space of candidates, often leaving fewer than 100 candidates. Furthermore,

whenever possible Sisyphus conducts testing of pure and heap-related parts of invariant candidates

independently, rather than by taking their product, thus contributing to the efficiency of the search.

RQ3: Failure Modes An important assumption of Sisyphus’s repair process is that components

of the old proof, such as the lemmas and functions that it uses, will be sufficient to prove the new

program correct. As has been mentioned, this is not always the case. Recall that in the case of

array_partition, Sisyphus was unable to fully automatically repair the proof, as the new proof

required a lemma about repeated filters that had not been present in the old proof. In cases where the

new program requires use of a function not present in the old proof, Sisyphus’s search space will not

even contain an invariant that can pass proof-driven testing, and the repair process will fail entirely.

let batches = (* .. *) in
let res =

Array.make (* .. *) in
List.iter (fun batch ->
let dst = (* .. *) in
Array.copy batch res dst)
batches

Figure 4.18: Batched implementation of to_array

For example, consider another version of to_array as presented in Figure 4.18 that uses a batching

strategy: instead of collecting the elements of the sequence into a list, it accumulates a list of batches of

elements and then separately inserts each batch into the result array as on the right. Sisyphus will fail

to repair this program as its invariants will require an operation to reason about flattening lists of lists;

however, the old proof for to_array does have any functions that can capture this operation.
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▶ 4.5 Related Work

The work presented in this chapter touches upon the three actively developed research themes: SL-based

deductive verification of heap-manipulating programs, invariant inference, and proof repair. Below,

this section outlines the connections to the most closely related work in those three directions.

Proof repair Thework by Ringer [113] focuses on proof repair in two particular scenarios: (i) synthesis-

by-example of patches to proofs of theorems whose statements were changed to use new data types [115]

and (ii) equivalence-preserving changes in data types used by a verified functional program and its

specification [114, 116]. These approaches do not address arbitrary local changes in the code of a

verified program, nor do they consider foundational verification of imperative programs.

Techniques from non-dependently typed provers. This work draws some parallels with earlier research

in non-dependently typed proof assistants by Matichuk [88] on automatic extraction of function

annotations for programs in Isabelle/HOL. Matichuk describes a technique that operates on proofs about

stateful programs in monadic Hoare logic to extract intermediate state assertions into a standalone set

of function annotations, that can then be re-used to verify other inter-dependent properties. While this

approach has similarities to the proof-driven-testing algorithm of this work, there are some constraints

arising from the non-constructive setting that limit the generality of this technique.

In particular, Matichuk’s approach requires proofs to use a particular monadic Hoare logic imple-

mentation that has been adjusted to collect intermediate assertions, while proof-driven testing allows

extracting tests from a larger class of theorems in pre-existing logics and is able to obtain this infor-

mation for free by simply introspecting the proof terms “as is”. Furthermore, the machinery in the

2012 paper only considers first-order imperative programs, while proof-driven testing’s mechanism

enables inferring invariants for higher-order programs with combinators. That said, assuming that

Matichuk’s approach could be extended to proofs about higher-order combinators such that it stored

annotations describing how those proofs instantiate the invariants (as in Figure 4.11), it seems likely

that such annotations could be used to generate tests similar to the one in Figure 4.10.

KeYTestGen [5] and StaDy [103] take advantage of annotations required by correctness proofs to

generate tests with a high degree of coverage. By taking annotated Java and C programs respectively,

these tools generate unit tests that exercise the programs’ behaviour with a high degree of coverage. On

a conceptual level, in contrast with KeYTestGen and StaDy, the approach in this work is inherently

higher-order, as it extract tests for invariants (i.e., properties of programs) from proofs of lemmas that
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use those invariants, while the mentioned tools target testing of programs themselves.

Invariant inference. Inference of loop invariants for imperative programs using static [45, 61, 109] and

dynamic [42, 43] analysis, as well as machine learning techniques [121] is a well-studied research topic.

Magill et al. [85] were amongst the first to describe a heuristic procedure for inferring SL invariants

via static analysis relying on predicate abstraction [33, 55] for programs manipulating linked lists. In

contrast with Magill et al.’s work, this approach is based on dynamic analysis and does not require a

predefined set of predicates, neither heap- nor pure ones, as those are drawn from the old proofs.

The data-driven tools Locust [21] and SLING [74] use dynamic analysis to derive SL formulas describing

the shape of a state manipulated by a C program as well as the program’s loop invariants. Both of these

tools target proofs of memory safety and do not consider correctness w.r.t. arbitrary specifications,

limiting the language of pure assertions to the first-order logic with arithmetic comparisons. For the

validation of inferred invariants, Locust relies on the automated non-foundational verification tool

GRASShopper [104], while the authors of SLING report poor experience with SMT solvers and had to

resort to manual (i.e., non machine-assisted) invariant checking (cf. Sec. 5.3 of Le et al. [74]).

Of the state-of-the-art deductive verification tools, onlyWhy3 [44] allows for any form of invariant

inference, in this case over limited class of numeric abstract domains, and does not support arbitrary

effectful functions or statements about shape properties of data (e.g., constraining contents of an array).

At the time of writing, the author is not aware of any approach comparable to Sisyphus in its ability to

automatically infer complex invariants which constrain both heap and data for higher-order imperative

programs, and then use these invariants to reconstruct proofs for modified programs.

Automated foundational proofs in Separation Logic. Foundational approaches to program verification

encode the meta-theory and the rules of a domain-specific logic (e.g., a version of SL) in terms of the

logic of the host verifier (e.g., Coq). This work considered libraries written in a higher-order imperative

language and verified in a foundational encoding of SL into Coq, which enabled proof reconstruction

and efficient pruning of invariant candidates as described in Section 4.2 and 4.3. The contributions of

this work are complementary to efforts in automated foundational verification of sequential [48, 119]

and concurrent [91] heap-manipulating programs, as those tools require explicit invariants.

Finally, even though the current implementation of Sisyphus only supports a particular Coq-embedded

SL, namely, CFML [25], it seems reasonable to expect that the approach in this work would be applicable

to many other foundational SL implementations: HTT [95], Bedrock [29], VST [7], CHL [27], FCSL [120],
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and the large family of logics based on the Iris framework [67]. As explained in Subsection 4.3.3, to

support a custom SL embedding, one would have to elaborate test extraction by implementing reflection

procedures for embedding-specific encodings of SL assertions and rules.

▶ 4.6 Takeaways & Main Insights

This chapter has presented the final case study of this thesis, an investigation into the use of repair for

verified software evolution through the design and implementation of Sisyphus, a partially-automated

tool to repair proofs of verified OCaml programs over changes. The chapter began by motivating the

problem of proof repair, illustrating how developers will often need optimise or update verified software

while preserving the existing specifications in real world code. The chapter then introduced Sisyphus,

the main contribution of this chaptre, as a tool developed to address this problem, and presented a high

level overview its repair process, before detailing the technical details of its implementation. Finally, the

chapter presented the evaluation of the tool on a benchmark suite of real world OCaml programs and

demonstrated how it is able to effectively reduce the human effort involved in software maintenance.

Ultimately, the results from this case-study demonstrate the efficacy of repair-based methodologies for

verified software maintenance — in this case, for handling changes in the implementation of certified

programs. In particular, the experimental results show how the combination of repair techniques

used in Sisyphus makes the tool particularly effective at constraining the search space of repairs, and

allows it to produce repaired proofs in only a few minutes for most cases. Furthermore, while the

generated proofs are sometimes incomplete, the remaining proof obligations are typically of a reasonable

difficulty and pose significantly less challenge than writing the initial proof. While the implementation

described in this chapter only supports the CFML embedding of SL, the techniques themselves have are

generally parametric over the particular choice of logic, so it seems reasonable to expect that they can

be generalised to repairing proofs of programs in other logics and programming languages.
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5

AUNIFIED FRAMEWORKFOR
VERIFIED SOFTWAREEVOLUTION

Combining the findings from the previous case studies, this chapter presents a general unified

framework for managing the evolution of verified software and demonstrates its use through a

hypothetical example – the maintenance of a verified static web page server. The chapter first

introduces the overall framework and reviews how each of the prior techniques, that of composition,

synthesis and repair, can each be used to tackle different aspects of verified software evolution. The

chapter then describes the verified software system used as an example, and details the high-level

design and implementation of the web server. The remaining sections in the chapter each consider a

different way in which this verified system experiences change and describes how the components

of this framework can be used to mitigate the human effort in maintaining the system.

Drawing back from the individual case studies seen earlier in this thesis, it is now time to unify these

findings under a overarching umbrella framework. In this chapter, building on insights from each of

the three previous case studies, a general framework that incorporates the techniques of composition,

synthesis and repair for handling the maintenance of verified software is proposed, and its efficacy

demonstrated by means of walking through its application on a representative example software system.

Broadly speaking, the framework proposed by this thesis consists of a series of guidelines for structuring

and updating a verified software system to minimise the cost of maintenance. More specifically, this

thesis recommends the following general principles for handling changes in a software system:

• Changes in Data Structure: This thesis recommends handling changes in data through the

use of composition, using functors to ensure that the proofs of properties are parametric over

the particular representation of their data-structures, and thereby allowing for for reduction

arguments to be used to transport old proofs to new data-structures as seen in Chapter 2.

• Changes in Specifications: This thesis recommends handling changes in specification through
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the use of verified synthesis, outsourcing the implementation and verification of components

of the system whose specifications change frequently to a certifying synthesiser, and thereby

automatically regenerating programs and proofs when specifications change, as in Chapter 3.

• Changes in Implementation: Finally, for programs whose implementations rely on complex

intricate logic beyond the capabilities of a synthesiser and thus that have to be verified manually,

the thesis recommends the direct use of proof repair strategies, utilising information within

proofs of existing programs to repair the verified implementation as it changes as in Chapter 4.

In their totality, this thesis conjectures that the combination of these principles will capture the majority

of ways in which real-world verified software can evolve and change, and thereby forms a principled

and overarching solution to the general problem of verified software maintenance in practice.

To see this framework in action, the remainder of this chapter will provide a high level walk through of

applying these rules on a hypothetical verified software system, a verified static web page server, and

demonstrate how each of the guidelines can be used to maintain the system as it experiences change.

▶ 5.1 A Representative Verified Web Server

In order to illustrate the application of this framework in practice, the following sections in this

thesis will consider the maintenance of a hypothetical verified server for serving static web pages.

Figure 5.1 presents the core implementation for this application, with state as captured by the variables

pages, stats, bf, and the method handle_requests that handles incoming requests.

This code snippet describes a fairly rudimentary static web page server. The server maintains a list of

web pages, in the pages variable, and when a client requests a url that matches one of these pages, it

returns the contents of the page. The server uses an array, stats, mapping each page by its index in

pages to an integer representing the number of requests it has received, and bf is a Bloom Filter that

is used as a cache to speed up queries for non-existent pages. For the purposes of clarity, boilerplate

code such as for state initialisation, starting the web server, or data type definitions have been omitted.

The function handle_request (line 5-32) contains the main implementation of the server, and

serves as the target of verification in the subsequent narrative. Upon receiving a request for a particular

url, the function handles the query in three steps. First, the server checks if the requested url is present

in the cache (line 7-9), using the No False Negatives property of the Bloom Filter to return early if this

query returns negative. If the url is reported as present by the cache, the server then calls a helper
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1 List<Page> pages;
2 Array<int> stats;
3 BloomFilter bf;
4

5 int handle_request(string url) {
6 // check if in cache
7 if(!bf.contains(url)) {
8 return NOT_FOUND;
9 }
10

11 // retrieve respective page
12 Page page =
13 find_oldest_matching_url(url);
14 if (page == null) {
15 return NOT_FOUND;
16 }
17

18 // find page index
19 var ind =
20 pages.find((i, p) =>
21 if(p == page) {
22 return Some(i);
23 } else {
24 return None;
25 }
26 ).unwrap();
27 // update stats
28 stats[ind] += 1;
29

30 write(page.data);
31 return OK;
32 }

Figure 5.1: Initial Web Server Implementation

function find_oldest_matching_url to retrieve the oldest page with a matching url (line 12-13).

If no such page is found, i.e. the cache returned a false positive, then the server returns early again with

NOT_FOUND (line 14-16). Next the program invokes a higher-order method pages.find(f), that

traverses over the list and returns the first element on which the function f returns Some, in this case

instantiating f with a lambda such that it retrieves the index of the first page with a matching url (lines

19-26). This index is then used to update the corresponding element in the stats array (line 28). Finally,

the program writes the contents of the page to the client before completing the request (line 30-31).

For the purposes of verification, assuming a suitable embedding of a Separation Logic-based program
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logic, handle_request is required to satisfy the following SL specification:

∀uℓ, {pages 7→ List ℓ ∗ bf 7→ BF ℓ ∗ stats 7→ Array (. . . )}

handle_request(u)

∃res, {pages 7→ List ℓ ∗ bf 7→ BF ℓ ∗ stats 7→ Array (. . . )} ∧ (res = OK⇔ u ∈ ℓ)

In other words, when handle_request is invoked in a state where pages contains a list with

contents ℓ, and bf contains a Bloom Filter initialised with the same contents, then the function will

leave pages and bf unchanged and return OK if and only if the requested url is indeed in the server’s

state. To avoid complicating the presentation, the constraints on the stats state variable have been

omitted in this description, although it would follow a similar form as seen in previous chapters.

The helper functions used within handle_request are given more precise specifications. While this

chapter will not discuss details of the actual verification of this program w.r.t. the above specification,

the proof and its subsequent repairs will assume that the helper functions have also been verified. For

example, the correctness of this program depends on the no false negatives property of the Bloom Filter:

∀bf, u, ℓ, {bf 7→ BF ℓ}

bf.contains(u)

∃res, {bf 7→ Bf ℓ} ∧ (res = false⇔ u ̸∈ ℓ)

That is, the Bloom Filter will return a negative result, iff the element being queried for is not present.

Similarly, the helper function find_oldest_matching_url should return a url if present:

∀u, ℓ, {pages 7→ List ℓ}

find_oldest_matching_url(u)

∃res, {pages 7→ List ℓ} ∧ (res = null⇔ u ̸∈ ℓ)

The above formula, while under-constrained, is sufficient to prove the correctness ofhandle_request.

A stronger specification that strictly constrains the implementation of this function will be shown later.
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3 BloomFilter bf;
4

5 int handle_request(string url) {
6 // check if in cache
7 if(!bf.contains(url)) {
8 return NOT_FOUND;
9 }
10

11 ...
32 }

CountingFilter cf;

int handle_request(string url) {
// check if in cache
if(!cf.contains(url)) {
return NOT_FOUND;

}

...
}

Figure 5.2: An Example Change in Data Structure

▶ 5.2 Handling Changes in Data Structures

Suppose, for example, the web server were to be extended with page deletion and removal capabilities.

This prompts a need to update the caching mechanism of the implementation: as Bloom filters don’t

support removal of previously inserted elements, the performance of this initial cache would progres-

sively degrade as more and more pages were removed, and more queries produced false positives. A

natural solution in this case, is to change the data structure, and replace the Bloom filter with a Counting

filter, an alternative data structure that does indeed support removing elements (cf. Section 2.4).

Figure 5.2 presents the corresponding diff for this modification; the old program on the left, updated

version on the right, and red and green highlights to indicate the updated code. The modification to the

implementation is fairly minimal, and consists of replacing the contains membership query of the

Bloom filter at line 7 with a corresponding call to the membership query of the Counting filter. With

respect to verification, for the new implementation to remain certified, the user must ensure that this

updated membership query still satisfies the same No False Negatives property of the Bloom filter:

∀cf, u, ℓ, {cf 7→ CF ℓ} cf.contains(u) ∃res, {cf 7→ CF ℓ} ∧ (res = false⇔ u ̸∈ ℓ)

As shown earlier, this property still holds for Counting filters and so the system can be verified again.

Following the guidelines of the framework, this thesis recommends that changes of such form are

handled through the use of composition, using reduction arguments to transport and reuse proofs from

the old data structure to the new one. In this case, by developing a reduction from Counting filters to

Bloom Filters, mapping non-zero counters to raised bits, as seen in Chapter 2, the proof engineer can

easily re-establish the No False Negative property for Counting filters without rewriting the original

proof, and thereby the framework is effectively able to minimise the verification burden.
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▶ 5.3 Handling Changes in Specifications

Having queried the cache, the server handles a request by retrieving a page with a matching url (lines

12-13), breaking ties by some arbitrary heuristic — here, this is done by choosing the oldest such page.

This component of the server serves as an excellent source for the second kind of program change, that

of changes in specification, as such heuristics themselves are frequently changed, and it is not difficult to

imagine that a later version of the server might be changed to instead choose the newest page instead.

5 int handle_request(string url) {
6 ...
7

11 // retrieve respective page
12 Page page =
13 find_oldest_matching_url(url);
14

15 ...
32 }

int handle_request(string url) {
...

// retrieve respective page
Page page =
find_newest_matching_url(url);

...
}

Figure 5.3: An Example Change in Specification

Figure 5.3 presents the corresponding diff for implementing this change: as the implementation is

entirely encapsulated within the helper method find_oldest_matching_url, this change can be

handled by simply updating the code to call out to an updated function with the new semantics. In order

to gracefully handle this change, following the principles of the framework, this thesis recommends

that both the implementation and verification of both the old and new versions of this frequently

changing function be entirely outsourced to a deductive synthesiser. In particular, in accordance with its

oldest-first heuristics, find_oldest_matching_url can be assigned the following specification:

∀u, ℓ, {pages 7→ List ℓ}

find_oldest_matching_url(u)

∃res, {pages 7→ List ℓ} ∧ (res = maxp.age {p | p ∈ ℓ ∧ p.url = u} ⇔ p ∈ ℓ)

Passing this more precise specification to a certified deductive synthesiser such as SuSLik will allow

it to automatically generate a suitable implementation and also prove it correct, as seen in Chapter 3.

With this adapted workflow, when the heuristic is inevitably changed, such as to select the newest
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5 int handle_request(string url) {
6 ...
7

18 // find page index
19 var ind =
20 pages.find((i, p) =>
21 if(p == page) {
22 return Some(i);
23 } else {
24 return None;
25 }
26 ).unwrap();
27 // update stats
28 stats[ind] += 1;
29

30 ...
32 }

int handle_request(string url) {
...

// find page index
var ind = -1;
pages.iter((i, p) =>

if (p == page) {
ind = i;
return false;

} else {
return true;

}
);
// update stats
stats[ind] += 1;

...
}

Figure 5.4: An Example Change in Implementation
matching page instead, the system can be appropriately updated by simply changing the post-condition:

∀u, ℓ, {pages 7→ List ℓ}

find_newest_matching_url(u)

∃res, {pages 7→ List ℓ} ∧ (res = minp.age {p | p ∈ ℓ ∧ p.url = u} ⇔ p ∈ ℓ)

▶ 5.4 Handling Changes in Implementation

To investigate the final kind of software evolution, now consider a change in implementation in the web

server, for example, such as changing the code for calculating statistics (cf. Figure 5.3).

In particular, in this new implementation, instead of using the helper function pages.find to retrieve

the appropriate index, the code now uses a different method pages.iter to iterate over the list of

pages instead, using a callback to test for the correct page, and a mutable variable ind into which the

index is written during the iteration. A practical motivation for this transformation could arise from the

fact that pages.find requires its callback to return an optional result on each invocation, resulting

in unnecessary allocations, whereas the new implementation avoids this by exploiting mutation.

This thesis recommends that such changes in the implementation of the verified server should be

automated through proof repair techniques. In this case, the main challenge with the verification

of this snippet revolves around the choice of invariant to describe the callbacks to the higher order

function. Adopting the techniques of program alignment and proof-driven testing as seen in Chapter 4,

an automated tool such as Sisyphus could automatically infer an invariant and repair the proof over

these changes, again minimising the maintenance burden on the software engineer.
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▼CHAPT ER

6

CONCLUSION&FUTUREWORK

The aim of this thesis was to investigate techniques for scaling the evolution of verified software

systems. This chapter concludes the thesis, discussing the main findings of this investigation, the

limitations and any directions for future work. The thesis begins with a review of each of the

previous chapters, presenting the main ideas and results, and their implications as to verified

software evolution. The chapter then summaries the main takeaways from these case studies and

the efficacy of the overall framework, considering any limitations and threats to validity to the

results. Finally, the chapter ends with a discussion of potential directions for future work.

▶ 6.1 Conclusions

This thesis began with an innocent question: can real-world verified systems be effectively maintained?

As researchers have shifted their ambitions towards the verification of larger and more grandiose

software systems over the past few years, this very question has only grown in prominence and urgency

within the community, with an increasing number of projects brushing up against the pains of preserving

their proofs in the face of the inevitable code evolution of real world programs. To avert this oncoming

crisis, this thesis has conducted a series of three methodological investigations into different approaches

for maintaining a verified system as it experiences change, and through this process developed a general

framework for how proof engineers can handle the evolution of their verified software systems.

Chapter 1 presented a general overview of the thesis, introducing the reader to the broad context

surrounding the work, motivating how existing techniques fail to appropriately solve the problem of

verified software maintenance, and proposing the general three-pronged framework argued by this

thesis: that of handling verified software evolution through a combination of composition, synthesis

and repair. Chapter 2 introduced the first case study of the thesis, demonstrating the efficacy of

composition for verified software maintenance through a methodological investigation into how it
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could be used to scale up the verification of a class of probabilistic membership-query data structures,

AMQs. Chapter 3 then presented the second case study of this work, investigating the use of synthesis

for maintaining verified software by developing an extension to the deductive program synthesiser,

SuSLik, to automatically produce certified executable code in a popular real-world language, C, when

given only a specification in Separation Logic. Finally, Chapter 4 covered the last technique considered

by this thesis, and explored the application of repair-based software engineering techniques to verified

software, developing the first mostly-automated tool for the repair of verified OCaml program over

changes in their implementation and demonstrated its efficacy through an evaluation on to repair the

proofs of correctness of a number of real-world programs from widely-used libraries in the OCaml

ecosystem. Unifying the findings from each of these prior case studies, Chapter 5 presented the general

framework proposed by this thesis to handle verified software evolution, and then demonstrated its

efficacy by considering its application on a hypothetical representative example, a verified web server.

The main contribution of this thesis is in this development of a scalable framework for verified software

maintenance, capable of tackling the types of code evolution found in real world software systems.

In contrast to the existing state of the art on proof engineering which has primarily considered the

maintenance of mechanised proofs in isolation, i.e. without reference to an executable program being

verified, the studies in this thesis have explored this problem taking account of changes in both the

proofs and programs, taking significant steps towards bringing verified software evolution to practice.

▶ 6.2 Limitations & Future Work

Though this thesis purports to provide a general strategy for verified software maintenance, there are a

number of limitations that should be noted which constrain the breadth of its applicability. This section

details the most pertinent of these and proposes potential follow up directions that could address them.

Proof Repair in Exotic Logics While the first case study into the verification of AMQs encroached

upon the realm of probabilistic programming, for the most part, the results of this thesis have been

broadly focused on the context of proof maintenance for sequential straight-line single-threaded

programs. For larger software systems that rely on more complex and nuanced behaviours, such as

concurrent, distributed or randomised programs for example, it is not clear that the same techniques will

perform as well, or whether they will require adjustments. As such, one promising direction for further

research is into extending the techniques presented in this thesis for such domains — for example,

would it be possible to extend a deductive synthesiser to produce certified concurrent code? or how can
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the techniques of proof-driven testing be applied to the verification of randomised systems?

Beyond Constructive Proof Assistants A more pressing and subtle limitation of the framework

presented in this research is its implicit focus on software verified in constructive proof assistants,

namely, for the purposes of this thesis, the Coq proof assistant. In particular, most of the techniques

presented in this document, i.e. functors, proof terms, tactic automation, etc., have been based on the

facilities provided by the Coq proof assistant, and certain techniques, such as proof-driven testing,

have inherently depended upon operating within such a constructive setting, assuming the existence of

proof terms for example. While a substantial number of verified software projects have indeed been

constructed using such or similar tooling, the same can not be said for all verified software projects and

increasingly so. In particular, one alternative approach to formal verification that has seen growing

popularity over time has been certifying software using automated verifiers, such as Dafny [75] or

Viper [92] — verification tools that use external solvers, such as SMT solvers, to automatically dispatch

many proof obligations that arise when verifying a program, and delegate other components that can

not be inferred, such as invariants or specifications, to the user to provide as annotations. As such, an

interesting direction for future work is to investigate whether the techniques that have been developed

in this thesis in the basis of a constructive proof assistant could somehow be extended to work for

this automated setting where constructive proof terms are no longer available, and if not and more

generally, how verified software maintenance can be supported for these tools.

Of course, while the work presented in this thesis alone certainly can not hope to solve all the problems

of verified software maintenance in their entirety, it is the author’s belief that the insights and findings

from this research serve as a key step on the path towards the wider goal of bringing scalable and

maintainable formal verification to the masses, paving the way for future work to build on.
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