

Concurrent Structures and Effect Handlers:
A Batch Made in Heaven

Lee Koon Wen

Capstone Final Report for BSc (Honours) in

Mathematical, Computational and Statistical Sciences

Supervised by: Ilya Sergey

AY 2022/2023

Yale NUS College Capstone Project ‐

DECLARATION & CONSENT

1. I declare that the product of this Project, the Thesis, is the end result of my own work and that

due acknowledgement has been given in the bibliography and references to ALL sources be they
printed, electronic, or personal, in accordance with the academic regulations of Yale NUS College.‐

2. I acknowledge that the Thesis is subject to the policies relating to Yale NUS College Intellectual ‐
Property (Yale NUS HR 039). ‐

ACCESS LEVEL

3. I agree, in consultation with my supervisor(s), that the Thesis be given the access level specified

below: [check one only]

 Unrestricted access
Make the Thesis immediately available for worldwide access.

 Access restricted to Yale NUS College for a limited period ‐
Make the Thesis immediately available for Yale NUS College access only from ___03/2023___ ‐
(mm/yyyy) to _____06/2023_____ (mm/yyyy), up to a maximum of 2 years for the following
reason(s): (please specify; attach a separate sheet if necessary):
____To avoid conflict with anonymous paper submission made to ICFP on the same topic______

After this period, the Thesis will be made available for worldwide access.

 Other restrictions: (please specify if any part of your thesis should be restricted)

Name & Residential College of Student

___________________________________ __________________________
Signature of Student Date

___________________________________ __________________________
Name & Signature of Supervisor Date

Lee Koon Wen, Saga

01/03/2023

Ilya Sergey 01/04/2023

i

ii

Acknowledgements
I owe the completion of this project to a team of outstanding people. Thank

you to my supervisor, Dr. Ilya Sergey, whose tutelage and guidance have been

instrumental in getting me to this point. His ability to bring together amaz-

ingly talented people – namely, Dr. Seth Gilbert and Kiran – has made this

project more thorough than I could have managed. Above all, he has provided

me with opportunity after opportunity, pushing me to be successful in this

area.

To Kiran, thank you for your energy, enthusiasm, and wisdom. Your pa-

tience and generous counsel have helped me to clarify my doubts and grow

my knowledge. Without your hard work, none of this, nor GopCaml, would

be possible. Your passion for OCaml ignites my own.

I have also been blessed with the opportunity to surround myself with the

people at Tarides and the OCaml community. Of these, I would especially

like to mention Arthur Wendling, whose valuable advice pushed me in the

direction I needed.

To my parents, thank you for always keeping me well and nourished. You

guys never ask for anything other than for me to do my best. To my suitem-

ates and friends – Lucas, Gary, Jon, Gayle, and Claudia – thank you for being

staples in this process. For the friendship, laughter, and memories that kept it

lighthearted. Finally, to Misaki, thank you for believing in me, for the continu-

ous support, and for seeing me through it all.

iii

YALE-NUS COLLEGE

Abstract

B.Sc (Hons)

Concurrent Structures and Effect Handlers: A Batch Made in Heaven

by Lee KOON WEN

Batch parallelism is a technique for developing highly efficient concurrent

data structures. It is based on the observation that processing a batch of a priori

known operations in parallel is easier than optimizing performance for an arbi-

trary, asynchronous stream of requests. Despite their simplicity and efficiency,

batch-parallel data structures remain unpopular in practice for two reasons.

Firstly, their implementation requires careful interleaving of sequential and

concurrent code, making them prone to bugs. Secondly, their usage requires

users to manually batch data structure operations, making them unnatural to

use and challenging to integrate into existing codebases. This paper presents

OBATCHER, a Multicore OCaml library that streamlines the design, implemen-

tation, and testing of concurrent batch-parallel structures. With OBATCHER,

one can take a sequential data structure and easily transform it into its equiva-

lent that supports batch-parallelism and then from there, incrementally retrofit

on parallelism. Furthermore, OBATCHER makes batching operations implicit,

meaning that the fact that the underlying data structure works on batches is

opaque to the user. The benefit of this is that now no change in the program

HTTPS://WWW.YALE-NUS.EDU.SG/

iv

structure is required whilst users get to enjoy the performance gains of batch-

parallelism working under the hood. This paper showcases one case study of

how we can take an instance of a set based on a skip list and convert it with

OBATCHER into an efficient concurrent batch-parallel version. We demon-

strate that this implementation outperforms the corresponding coarse-grained

lock-based implementations in OCaml and has predictable throughput scaling

with the number of processors.

v

Contents

Acknowledgements ii

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Approach . 3

1.3 Contributions . 5

2 Overview 6

2.1 Surveying our synchronization options 6

2.2 Going Batch-parallel . 8

2.3 Back to Direct-Style . 10

2.4 Putting It All Together . 13

3 Design 16

3.1 A Library for Batch-Parallel Data Structures 16

3.1.1 Extended data type . 18

3.1.2 Worker function . 18

3.1.3 Direct-Style interface . 19

3.2 Testing . 19

vi

4 Case study 22

4.1 Batch-Parallel Skip List . 22

4.1.1 Sequential skip list overview 23

4.1.2 Batch-parallel skip list . 24

4.1.3 Experiments . 27

4.1.4 Comparison with a fine-grained skip list 28

5 Discussion 30

5.1 Optimal Batch Sizes . 30

6 Related Work 33

6.1 Continuations, effect handlers, and concurrency 33

6.2 Batch parallelism and data parallelism 34

6.3 BATCHER . 35

7 Conclusion 36

Bibliography 37

1

1 Introduction

1.1 Motivation

Hardware has evolved over time to give us the multicore architectures we

have today. A direct result of that is the ability to speed up our programs

by distributing the work between its cores, effectively running work in paral-

lel. A useful abstraction for designing parallel programs that have access to

shared memory are data structures that are appropriate for use in concurrent

environments, in other words, they are thread-safe. Thread-safety means that

parallel access to these data structures are guranteed not to result in an invalid

state of the data structure. Unfortunately, designing efficient concurrent data

structures that utilize high degrees of parallelism are challenging because of

the intricate invariants that must be preserved by possibly overlapping con-

current operations. The two common approaches to convert a sequential data

structure into a concurrent version are illustrated next.

The first approach, known as coarse-grained concurrency, involves synchro-

nizing all operations of the data structure, which is protected by a single lock

that must be acquired before any operation is invoked and released afterwards.

Although this approach is mostly mechanical for making sequential data struc-

tures support concurrency, it removes the opportunity for parallelism within

Chapter 1. Introduction 2

the data structure, making operations mutually exclusive and introduces se-

quential bottlenecks. As a result, the performance of coarse-grained concur-

rent structures does not scale linearly with the number of processors due to

contention when multiple threads try to access the same memory fragment.

The second approach, fine-grained concurrency, requires careful considera-

tion of possible interactions between multiple concurrent operations of a data

structure that can overlap in time. Synchronization is introduced sparingly to

ensure the correctness of updates and query results, allowing multiple threads

to execute the data structure’s operations in parallel, improving its throughput.

However, this approach significantly increases conceptual complexity and re-

quires non-trivial expertise (Herlihy and Shavit, 2008), as fine-grained concur-

rent data structures are known to be extremely difficult to design and imple-

ment correctly. Their formal verification is still an active research field. (Sergey,

Nanevski, and Banerjee, 2015; Feldman et al., 2020; Mulder, Krebbers, and

Geuvers, 2022; Meyer, Wies, and Wolff, 2022; Öhman and Nanevski, 2022)

Both these approaches represent two extremes in the trade-off between par-

allel performance and implementation complexity. However, is there a third

option that meets us in the middle? In this paper, we explore batch-parallelism,

a design pattern slated to offer us this balance. Unlike traditional concurrent

data structures that handle arbitrary asynchronous requests one by one, batch-

parallel data structures are handed a batch of operations to process. Only a

single batch runs at a time and these structures can exploit parallelism by dy-

namically spawning asynchronous computations within the batch. We identify

three distinct advantages of such an approach:

1. Greater opportunities for optimization

2. Control over processing order of operations in the batch

Chapter 1. Introduction 3

3. Systematic derivation from sequential data structures and incremental

retrofitting of parallelism

Unfortunately, these benefits come at the cost of the program needing to be

structured to explicitly supply batches. In practice, this is often impractical and

awkward to adapt in common asynchronous contexts. To address this issue,

(Agrawal et al., 2014) proposes a technique called implicit batching, which

uses a custom scheduler that transparently batches individual requests made

by client threads before sending them to a batch-parallel data structure.

Currently, the only existing prototype implementation of implicit batch-

ing in Cilk-5 involved modifying its runtime schedulers’s internals, making

it a heavyweight solution that is difficult to reproduce in most modern pro-

gramming languages. Additionally, their implementation only allows for one

batch-parallel data structure per program instance.

Given the state of the art, we ask the following question:

Can we use existing mechanisms of higher-order programming

with composable effects to implement efficient, easy-to-understand,

and easy-to-use concurrent data structures via

batch-parallelism?

In the rest of this paper, we answer this affirmatively, in OCaml.

1.2 Approach

OCaml is a variant of the ML family of programming languages. This year, the

language releases its latest version, OCaml 5, also known as Multicore OCaml.

This version adds support for writing parallel and concurrent programs via the

new domains and effect features respectively. Domains are OCaml’s abstraction

Chapter 1. Introduction 4

over kernel threads. These heavyweight threads run on separate cores and per-

form work truly in parallel. Effects and effect handlers on the other hand, are

designed to give users the flexibility to build non-local control flow abstrac-

tions. They enable, among others, implementations of lightweight threading

such as coroutines, green threads, and async/await. Our main observation is

that the effect handler mechanism, is sufficient to address the two main block-

ers that prevent batch-parallelism from becoming a mainstream technology for

implementing efficient concurrent data structures. Those challenges being:

1. Supporting implicit batch-parallelism without having to modify the un-

derlying runtime scheduler;

2. Accommodating multiple batch-parallel concurrent structures within a

single program, and ensuring that computational resources are shared

fairly between them.

We address challenge 1 by observing that implicit batching can be emulated

in lightweight form without modifying to the system scheduler. We achieve

this by requiring the client code of a data structure to provide a continuation

to the rest of its computation that will be invoked once its request to the data

structure has been served. The ability to capture continuations and run them

later are the facility that effect handlers provide, allowing us to elegantly im-

plement this solution whilst retaining our direct style of programming.

We solve the challenge 2 by leveraging the concept of a scheduler library (Dolan

et al., 2017; Modelski, 2022; Li et al., 2007). Typically schedulers for lightweight-

threading are integrated as part of a programming language’s runtime envi-

ronment. In OCaml, effects give us the ability to now define custom sched-

ulers as a user-level library that wraps our concurrent programs. We design

Chapter 1. Introduction 5

the implicit-batching mechanism such that it can be transparently integrated

on top of these user-level schedulers, relying on it’s default scheduling policy

to distribute the batch-parallel data structure(s) work.

By putting the two together, we are able to decompose the task of design-

ing and integrating batch-parallel data structures into a lightweight and mod-

ular library. With our library, users can expect to design batch-parallel data

structures in an incremental fashion and have a seamless way of integrating

them into their programs. Furthermore, since our framework decouples the

scheduler from the implicit batching mechanism, this enables them to be indi-

vidually optimized for their specific usecase.

1.3 Contributions

Implementing concurrrency control with control operators is not a novel con-

cept. Before effect handlers, it was shown that one could implement a task

scheduler using first-class continuations (Reppy, 1992; Kiselyov and Shan, 2007).

The fact that the same can be done with effect handlers, which are capable of

capturing and running one-shot continuations, should come as no surprise.

Our key conceptual contributions are thus, (a) the observation that scheduling

via effects lifts implicit batching support outside of the runtime. and (b) demon-

strating how this can be done in OCaml. Our key practical contribution is

OBATCHER, an OCaml library for batch-parallel concurrent structures, which

facilitates their implementation and testing while making their usage transpar-

ent to the clients. We showcase OBATCHER with a case study of one instance

of a concurrent set structure: a skip list (Sec. 4.1), which we have adapted from

the literature (Agrawal et al., 2014). Our implementation demonstrates that it

outperforms its coarse-grained version under diverse concurrent workloads.

6

2 Overview

In this overview, we illustrate one use case of OBATCHER: migrating a sequen-

tial program into a concurrent one. As an example, consider the following

simple webserver logic that counts the number of requests that it has served.

let c = Counter.init ()

let handle_request = fun _ ->

Counter.incr c;

printf "you are the %d’th visitor!" (Counter.get c)

Our current program keeps a global instantiation of a counter and has a request

handler that increments the counter when invoked. Subsequently, the server

retrieves the current count from the data structure and forwards a message to

the client, informing them of their visitor number. To safely port this code to

run in a concurrent environment, the first order of business is to ensure that

our underlying Counter module is thread-safe.

2.1 Surveying our synchronization options

OCaml programs have traditionally expected to only run under a single-

thread of execution. As such, it is entirely safe to have had the Counter module

be a simple wrapper over a mutable reference as shown in Fig. 2.1a. In a con-

current setting however, this is vulnerable to data races where multiple threads

Chapter 2. Overview 7

1 module Counter = struct
2 type t = int ref
3 let init () = ref 0
4 let incr c =
5 c := !c + 1
6 let get c = !c
7

8 end

(A) Sequential counter

1 module CoarseCounter = struct
2 type t = int ref * Mutex.t
3 let init () = ref 0, Mutex.make ()
4 let incr (c, l) = Mutex.with_lock l
5 (fun () -> c := !c + 1)
6 let get (c, l) = Mutex.with_lock l
7 (fun () -> !c)
8 end

(B) Coarse-grained counter

FIGURE 2.1: A sequential and a coarse-grained
lock-based counter.

have modifying access to a piece of shared memory without proper synchro-

nization - potentially leading to unexpected behaviour.

A quick workaround is to employ the coarse-grained locking strategy to

guard access to shared memory (Fig. 2.1b). Our new Counter implementation

now includes a Mutex that must be acquired before any modifications to the

data structure can be performed, ensuring mutual exclusion. Whilst this generic

approach solves the problem, it leaves us with a data structure without capac-

ity for concurrent operations and having poor scaling behaviour as increasing

core count increases contention for the lock. Conversely, designing a counter

that uses fine-grained synchronization may mitigate our performance concerns

but inevitably require a more careful hand to design and reason about. The im-

plementation complexity also becomes exponentially harder as the data struc-

ture in question becomes more intricate. Different contexts favor one over the

other, but wouldn’t it be nice if we had something in between?

Cue batch-parallelism, a design pattern that offers us this middleground. In

contrast to our coarse-grained solution where lock contention is the killer, batch-

parallelism solves this by drawing from the architecture of Hendler et al.’s flat-

combiner. The idea here is that we can reduce overhead by altering the way

Chapter 2. Overview 8

client threads interact with the data structure. In the coarse-grained implemen-

tation, each concurrent thread races to claim the lock to run it’s own operation,

spinning if unsuccessful. Alternatively, in the flat-combiner, threads are orga-

nized to work collaboratively. Each thread submits its operation to a ledger

before trying to grab the lock. If successful, the thread holding the lock be-

comes responsible for processing all submitted requests sequentially. If not, it

waits for the result that another thread will fulfill for it, thereby reducing con-

tention. Crucially, this construction is also what enables dynamic "batches" to

form. The advantage of batches is that now we can have prior knowledge of

the operations that will be executed, providing opportunities for optimization.

Batch-parallelism takes this one step further by additionally supporting dy-

namic multi-threading within a batch execution. Together, we retain the ben-

efits of the flat-combiner while now also being able to spawn asynchronous

computation. Overall, with batch-parallel data structures, we can already ex-

pect to have better scaling behaviour and opportunities for parallelism out of

the box compared to the coarse-grained solution. As we will discover in later

sections, we will see that it is also mechanical to derive a bare-bones batch-

parallel data structure from a sequential data structure using OBATCHER. Sub-

sequently, parallelism can be added in an incremental fashion, making them

substantially easier to construct than a full blown fine-grained data structure.

2.2 Going Batch-parallel

By convention batch-parallel data structures have a small interface. Typically,

they expose the types of operations that the data structure can handle and a

Chapter 2. Overview 9

main function that implements the batch processing. In OCaml, we have cho-

sen to encode operations as variants, where the constructors represent the op-

eration names and their arguments represent their parameters. Each operation

also includes a callback used to provide a convenient way to return the result

of the operation to the caller and trigger the rest of the computation that de-

pends on the result. To keep their usage simple, the type of the callback is a

function which takes as input the result of the operation and returns unit.

type op = Get of int -> unit | Incr of unit -> unit

val run_batch: t -> op array -> unit

let run_batch counter batch =

let vl = !counter in

let delta = parallel_reduce

(function

| Get kont -> kont vl; 0

| Incr kont -> kont (); 1

) (+) batch in

counter := !counter + delta

FIGURE 2.2: Batch executor

The above signature is an example of

how we would declare the interface of a

batch-parallel Counter. What’s left is to

provide the implemention of the batch

processing logic run_batch. In our case,

we use a map-reduce style helper func-

tion, parallel_reduce to process the batch

of operations asynchronously. Internally,

parallel_reduce partitions the batch of operations into chunks, maps them into

integer deltas that are summed together. The total delta is then added to the

overall count, reflecting the state of the counter at the end of the batch pro-

cess. The mapping function applied to each operation works by running the

callback kont with some result and then returning the value the operation con-

tributes to the delta. The careful readers might have noticed that Get often

recieves stale values. However, this is not a problem from the perspective of

linearizability (Herlihy and Wing, 1990) — a consistency model often used as a

criterion for concurrent data structures. This model, declares that the state of

the data structure is valid as long as there exists some sequential history that

Chapter 2. Overview 10

produces the same result. Here, our corresponding sequential ordering for our

batch process is that all Get’s happens before before all Incr’s.

Although what we currently have is sufficient to function as a batch-parallel

counter, it suffers from two usability issues. Firstly, users must now write code

interfacing with the data structure in callback-oriented style which is notori-

ously hard to structure. On top of that, using callbacks to return the result of an

operation eagerly gives control back to client code. This could amount to a sit-

uation where the client code runs indefinitely long, starving the batch process-

ing thread. Secondly, in order to interface with our batch-parallel data struc-

ture, client code has to manually collect and launch the batch process — an

overall undesirable usability requirement. Acknowledging these challenges,

can we do better to give users a direct-style of interacting with batch-parallel

data structures? Can we also abstract the work of batching, making their usage

even more seamless? Turns out that with algebraic effects, we can.

2.3 Back to Direct-Style

Algebraic effects offer us a modular way of designing custom control flow ab-

stractions, paving the way for something more ergonomic than the current

callback mechanism. Practically, effects work like first-class restartable excep-

tions by separating the handling of effects from their invocation. The main

interface for working with effects is through the ’a Effect type which repre-

sents an effect with the return type ’a.

effect Await: ’a promise -> ’a Effect.t

Chapter 2. Overview 11

Here we have declared an effect Await which expects an abstract type ’a promise,

representing some deferred computation that resolves to ’a. To evaluate the ef-

fect, we use the built-in perform keyword to retrieve its result.

let await (promise: ’a promise) : ’a = perform (Await promise)

try f () with

| effect Await promise k ->

let v = (* run promise *) in

continue k v

FIGURE 2.3: Await’s effect handler

Under the hood, when an effect is per-

formed, the computation is suspended and

jumps to the nearest enclosing handler

exemplified on the right. The syntac-

tic support for effect handling is synony-

mous to exception handling with the additional continuation object k of

type (’a, ’b) continuation. The continuation represents the suspended

computation which can be resumed via the continue function of type

(’a, ’b) continuation -> ’a -> ’b. we might implement the Await effect

(Fig. 2.3) such that when the effect is raised, the handler forces the deferred

computation and then resumes the continuation with the produced value.

Our short description above is particularly relevant as it demonstrates how

algebraic effects can be utilized to design readable non-local control flow logic.

This feature is especially beneficial when developing various types of concur-

rency control mechanisms. OCaml currently does not provide any lightweight

threading support (i.e.greenthreads), instead the language provides a thin wrap-

per over system threads called Domains. Users are encouraged instead to use a

combination of algebraic effects and domains to build their own thread pool-

like mechanisms, with promise-like abstractions to express scheduling of con-

current work across system threads.

The standard implementation of a thread-pool in OCaml is presented in

the design of Fig. 2.4. Here, we declare the type promise that refers to the

Chapter 2. Overview 12

1 type ’a promise
2 type ’a callback : ’a -> unit
3 val run_promise : ’a promise -> ’a callback -> unit
4

5 let worker () =
6 while true do
7 let work = next_work () in
8 try work () with
9 | Await pr k ->

10 let callback v = schedule_work (fun () -> continue k v) in
11 schedule_work (fun () -> run_promise pr callback)
12 end
13

14 let resolve pr v = iter (fun callback -> callback v) pr

FIGURE 2.4: Worker thread of thread pool

deferred computation that relies on some result. The thread pool maintains

some number of domains where each domain runs the worker function to con-

tinously draw tasks from the pool and execute them (lines 6-7). The execution

of a task is wrapped in a handler which implements the control logic for the

deferred computation. If an execution of some work performs the Await effect

on a promise object, the worker suspends itself and schedules a new task to

work on that promise (line 11). When evaluating the promise, a callback is

supplied that will schedule the original task once the promise has completed.

Optionally, a promise can also be manually set via the resolve function (line

14) which will also schedule it’s associated callback. Given this thread pool ab-

straction, users can now enjoy expressing concurrency with a direct-style API

and leave the scheduling of the underlying promises to the worker.

We are now equipped to walkthrough the core of OBATCHER (Fig. 2.5).

When a client calls an operations on the batched data structures, it either gets

temporarily promoted to become the thread responsible for launching the batch,

or it runs the underlying effects mechanism to suspend itself. Note that for our

Chapter 2. Overview 13

module type S = sig
type t
type ’a op

type wrapped_op =
Mk of (’a op * (’a -> unit))

val init: unit -> t
val run_batch: t -> pool ->

wrapped_op array -> unit
end

(A) An explicitly-batched interface

module BatchedCounter : S = struct
type t = int ref
type ’a op = Get: int op

| Incr: unit op
type wrapped_op =

Mk of ’a op * (’a -> unit)
let init () = ref 0
let run_batch counter pool batch

= (* use parallel sum *)
end

(B) An example instantiation

FIGURE 2.6: OBATCHER’s interface for explicitly-batched data
structures and an instantiation

set-up, we need to use manual resolution (line 8) since the suspended compu-

tation relies on the batch processing thread to trigger its callbacks.

1 let incr t (* : counter and a channel *) =

2 if (* no currently running batch *) then

3 let batch = Chan.collect_all t in

4 run_batch t pool batch

5 else

6 let promise : unit promise =

7 (* create promise *) in

8 Chan.send t (Incr (resolve pr));

9 await promise

FIGURE 2.5: Batched increment with a promise

Using effects to build our

promise abstraction, not only

do we have a direct-style of

expressing concurrency, our

callback resolver now does

not directly invoke the client

code, but reschedules it to

prevent returning control to

the client code. Finally, we

use a channel to implement implicit batching so that interfacing with the ex-

plicit batched data structure can be done with atomic requests.

2.4 Putting It All Together

OBATCHER conveniently bundles all this functionality together into a small

library. We generalize the explicit batched data structure interface into the

Chapter 2. Overview 14

module signature shown in Fig. 2.6a. Type ’a op is used to represent the oper-

ation where wrapped_op is neccessary for tying the return type of the operation

to its resolver. Notably, run_batch now includes a pool parameter which is used

internally by the data structure to dynamically spawn asynchronous work.

module Make : functor (Struct : S) -> sig

type t

type ’a op = ’a Struct.op

val init : pool -> t

val apply : t -> ’a op -> ’a

end

FIGURE 2.7: Functor interface

OBATCHER exposes a functor

Make which is applied to a mod-

ule implementation of type S (the

explictly batched data structure).

Doing so automatically generates

an implicitly batched version of

the data structure that is integrated with the scheduler. The apply function

is the new entry point for submitting requests to the batched data structure.

module Counter = OBatcher.Make(BatchedCounter)

let pool = (* new thread pool *)

let c = Counter.init pool

let handle_request = fun _ ->

Counter.apply c Incr;

printf "you are the %d’th visitor!"

(Counter.apply c Get)

FIGURE 2.8: OBATCHER in action

Returning to our origi-

nal example of the count-

ing web server, we can use

OBATCHER to easily auto-

mate the process of con-

verting the explicitly batched

counter presented in Fig. 2.6b

into an implicitly batched counter. Our newly minted data structure now

posesses better scaling properties than it’s coarse-grained counterpart and re-

quires minimal changes to the original code base.

From a another perspective, OBATCHER is also simpler to use than per-

forming a careful full-blown re-implementation of a data structure into it’s

fine-grained form. This is because batching allows us to easily optimize our

data-structure based on the high-level properties of it’s operation. Taking a

Chapter 2. Overview 15

more complex data structure like a Set. Suppose that our web server would

now like to keep track of the number of unique visitors.

let handle_request = fun req ->

if not (Set.apply seen_users (Insert (ip_addr req)))

then Counter.apply c Incr;

printf "you are the %d’th visitor!" (Counter.apply c Get)

With OBATCHER, we could wrap the vanilla Set module provided in the OCaml

standard library and exploit the fact that membership queries do not mutate

the data structure and therefore making them parallelizable. Concretely, we

could run membership queries first in parallel and then process all remaining

operations sequentially. Afterward, more parallelism and optimizations can

be retroactively fitted to the data structure, further improving its performance.

16

3 Design

Our artifact for this work, the OBATCHER framework, consists of three main

components. First, a library that automates the process of integrating the

scheduler and the explicitly batched data structure, enabling it’s direct-style

use as presented informally in Sec. 2.4. Second, a testing harness to check

the linearizability of the batch-parallel data structure. Finally, an example im-

plementation of a batch-parallel skip list using our framework. This section

will cover the technical implementation of OBATCHER and illustrate how each

modular component interacts with one another. The details of the concrete

example of the batch-parallel skip list are later discussed in the Ch. 4.

3.1 A Library for Batch-Parallel Data Structures

Visually, Fig. 3.1 outlines how OBATCHER connects the user program with the

scheduler and batch-parallel data structures. To the left of the diagram, the

client application can spawn asynchronous tasks on the thread pool and di-

rectly recieve their results. If a client now makes requests to the data structure

through the OBATCHER interface, behind the scenes, it gets implicitly batched

and scheduled to run on the thread pool. The result of the operation is returned

to the client at a later time. Separately, the data structure itself has access to

dynamically spawning asynchronous computation that returns to itself. The

thread pool used in OBATCHER is a fork of the OCaml community’s defacto

Chapter 3. Design 17

Multicore OCaml Runtime

DS1

DSn

…

OBatcher

Client Application
Channel

Explicitly-Batched
Implementation

WorkerDSn

Thread Pool

Thread Pool

FIGURE 3.1: High-level design of OBATCHER. Boxes with white
background contain user-provided components. Light-green boxes
are the components that come with default implementations but can
be redefined. Purple boxes are data structure instances obtained by
instantiating OBATCHER’s functor. Solid blue arrows correspond
to direct calls; dashed arrows are callbacks. Interaction between a

thread pool and the runtime is not elaborated.

standard Domainslib 1. Importantly, OBATCHER is implemented entirely using

a small subset of the API’s exposed by the scheduler. This way, we can keep

OBATCHER loosely coupled and thereby easily portable over other schedulers

that expose the same interface. The right side of Fig. 3.1 is a more detailed look

into how the OBATCHER functor works. For illustration, we deconstruct it into

3 distinct components: (1) The extended type definition of the data structure,

(2) The worker function that encapsulates the logic to launch the batch process,

and (3) the entry point function that enables the direct-style interface with the

data structure. We now address each component individually:

1https://github.com/ocaml-multicore/domainslib, last accessed on 23 February 2023.

https://github.com/ocaml-multicore/domainslib

Chapter 3. Design 18

3.1.1 Extended data type

type t = {

data: (* underlying data type *)

container: Chan.t;

is_running: bool Atomic.t

pool: Task.pool

}

The Make functor provided by

OBATCHER performs the transforma-

tion on a batched data structure by

bundling it with a three extra fields.

These are specifically, a container

used for storing and retrieving the batch, an atomic boolean used to synchro-

nize the launching of a batch, and a task pool used for dynamically spawnning

tasks within the batch process. Currently, our implementation uses a channel

borrowed from Domainslib’s Chan module to encode what is essentially a thread

safe container. Take note that whilst this solution works well, they have been

left configurable so that users can customize them to perform more complex

preprocessing of the batch that may suit their batch-parallel data structures.

3.1.2 Worker function

let rec worker t =

if has_requests t.channel &&

Atomic.cas t.running false true

then begin

let batch =

Chan.get_all t.channel in

run_batch t.data t.pool batch;

Atomic.set t.running false;

Task.async t.pool

(fun () -> worker t)

end

The worker function encodes the

logic of how clients are promoted

to become the thread responsible for

launching the batch process. We de-

scribed a simplified version earlier in

Fig. 2.5, but more care must be taken

to ensure that threads are not starved

and no data races are present. When

a client invokes the worker function,

the thread first checks whether the batch is non-empty and whether another

thread is currently the worker. If not, it uses an atomic compare and swap to

Chapter 3. Design 19

try and set the flag before retrieving the batch to run the batch process. To

ensure that all operations are eventually picked up and processed, the worker

function finally schedules a task on the pool which is a call to itself again. Note

that the worker function does not simply recursively call itself to avoid star-

vation. This can happen if the data structure continuously recieves requests,

preventing the worker thread from resuming its client code.

3.1.3 Direct-Style interface

let apply t op =

let pr, set = Task.promise () in

let req = Mk (op, set) in

Chan.send t.channel req;

worker t;

Task.await t.pool pr

To expose an idiomatic way of

interacting with our data structures,

OBATCHER provides the apply func-

tion that can be used across all sup-

ported operations. We are able to

make this generic by creating empty promises along with their manual re-

solvers, akin to Java’s explicit futures. Next, we submit our request to the

channel and then attempt to become the worker. If unsuccessful, we immedi-

ately await on our promise which will "under the hood" saves it’s continuation

to be executed at a later time when the result is available. From here, the thread

can return to helping out with work in the main thread pool.

3.2 Testing

While batch-parallel data structures are typically simpler to design than their

fine-grained counterparts, this does not remove the fact that they are concur-

rent algorithms that are hard to reason about. In response, OBATCHER in-

cludes an automated testing framework to help users build confidence in the

Chapter 3. Design 20

let api = [
val_ "insert" Skiplist.insert (fun resolve vl -> Mk (Insert vl, resolve))

(t @-> int @-> returning unit);

val_ "get" Skiplist.get (fun resolve key -> Mk (Get key, resolve))
(t @-> int @-> returning (option int))

]
let init () = Skiplist.init ()
let () = QCheck.run_tests ~count:100 (init,api)

FIGURE 3.2: Testing Skiplist Using OBATCHER

correctness of their batch-parallel data structure implementations.

Earlier, in Sec. 2.2, we discussed reasoning about batch-parallel data struc-

tures using the linearizability consistency model (Herlihy and Wing, 1990). It

turns out that batch-parallel data structures, by design, enable a convenient

way to test for linearizability. The testing framework included in OBATCHER

builds upon the idea that we can validate if some set of concurrent operations

are linearizable by identifying if some sequential ordering exists to explain the

results. Specifically, in the case of batch-parallel data structures, the test gener-

ates a random set of operations that is submitted to the batched data structure

for processing. Subsequently, each result is recorded and upon completion the

tool walks through the search space to find a sequential ordering that is able to

reproduce the same result. If no sequence is found, a error is raised indicating

that the implementation is non-linearizable.

OBATCHER testing harness is adapted from an off-the-shelf linearizability

tester, multicoretests 2. To set-up the data structure with the testing suite, the

user needs to supply information of the data structure’s operations through

their DSL described in Fig. 3.2. To declare our batch-parallel skip list for test-

ing, the api illustrates the interface that the user needs to provide. (1) The name

of the operation "insert", (2) declare the type of the operation and it’s return

2https://github.com/ocaml-multicore/multicoretests, last accessed on 20 February
2023.

https://github.com/ocaml-multicore/multicoretests

Chapter 3. Design 21

value, t @-> int @-> returning unit, (3) the reference to the sequential imple-

mentation of the operation. Skiplist.insert (4) The function that constructs

the corresponding reified operation for the interface Mk (Insert vl, resolve).

Given this specification, the testing harness will automatically run a series of

random tests described previously and check that the data structure’s run_batch

function is linearisable. Furthermore, by hooking into multicoretests’s frame-

work, OBatcher also gets shrinking of test-cases for free, so when a linearis-

ability violation is found, the counterexample is usually of a reasonable size.

22

4 Case study

4.1 Batch-Parallel Skip List

To demonstrate OBATCHER’s capability to encode batch-parallel data struc-

tures, we implement an efficient concurrent skip list. Even though skip lists

were designed by Pugh with concurrency in mind, optimised for data local-

ity and parallelism, turning the original sequential data structure into the one

that admits both concurrent search and update operations while reducing con-

tention is not a trivial task. That said, Java’s lock-free ConcurrentSkipListMap

data structure, implemented by Doug Lea using the design by Fraser (2004)

is amongst the most efficient and popular container implementations in the

java.util.concurrent library. The goal of our case study is not to surpass Lea’s

implementation in its efficiency. Rather, we are aiming to demonstrate that

the batch-parallel design allows one to obtain an implementation that exhibits

performance trends comparable with those of Fraser-Lea’s construction at a

fraction of its design complexity. Performance-wise, we observe that with

OBATCHER, we manage to reduce contention on the skip list and get good

scaling properties: its throughput increases with the number of domains, even-

tually outperforming its coarse-grained counterpart.

Chapter 4. Case study 23

4.1.1 Sequential skip list overview

NIL

FIGURE 4.1: Searching in a skip list

Skip lists are collections of ordered

lists that allow for logarithmic-time

inserts, search, and deletion. They

are often used to implement sets and

dictionaries (indices). The power of

skip lists lie in their traversal pattern. Unlike vanilla lists that only permit

walking through the entire list to reach some node, the skip list algorithm finds

a faster path by skipping nodes. This is possible thanks to the logical grouping

of pointers in skip lists as “levels” whereby each higher level is a sub-list of

the level right below it. With this design, the highest level offers is the shortest

path to the end of the list, the next one “halves” the step distance, etc. This pro-

vides the structure suitable for a binary search-like traversal pattern — starting

from the highest level and moving “right-and-down”.

Skip list is a probabilistic data structure: its implementation features a pa-

rameter that controls the randomness determining the highest level that each

newly added node appears in it, with all nodes appearing at least at the lowest

level in the structure. We do not consider probabilistic aspects of skip lists in

this work, as they are orthogonal to the concerns of making them concurrent.

Search To find a node within the skip list, the search operation begins by

traversing the highest level, progressively checking if the key is smaller than

the next node. It keeps advancing while the key is smaller, and once it becomes

larger than the next node’s value, the search procedure moves the traversal to

a more densely populated level below, starting from the last visited node with

a smaller key (cf. Fig. 4.1). It proceeds by moving down the levels until it either

Chapter 4. Case study 24

encounters the sought node or reaches the lowest level. At that point, the node

is either located on the last level of traversal, or it is discovered that the desired

key is not present in the list.

Insert The insert operation works in the same way as the search except that

it must keep track of all previous nodes that will have their forward point-

ers adjusted to the inserted node. Therefore, a node with n levels where n is

randomly determined, will have to equivalently adjust n pointers.

4.1.2 Batch-parallel skip list

Our batch implementation adopts the skip list implementation in Cilk-5 from

the work by Agrawal et al. (2014) on implicit batching and faithfully repro-

duces it in OCaml by suitably instantiating OBATCHER’s functor.

Search Search operations, being read-only, are safe to run in parallel with

each other in a thread-safe manner, without any need for synchronisation. In

our implementation, all search operations in a batch are scheduled to execute

and terminate before we start executing insertions.

Insert The batch-parallel implementation of insertion for skip-lists runs in

three steps: (1) build an intermediary skip list from the batch; (2) perform a

parallel search to find the actual slots in the original lists where the new nodes

should go, and (3) merge the intermediary list into the original list. Below, we

explain all of these steps in detail.

(1) Intermediary skip list creation We begin preparing the batch by perform-

ing a parallel sort, dropping any duplicates in the process (skip lists implement

Chapter 4. Case study 25

N1 N2 N3

N1 N2 N3

NIL

N1 N2 N3

Level N1 N2 N3
5 N/A
4 N/A N2
3 N/A N2
2 N/A N2
1 N/A N1 N2

Back Pointer Table

(3) Intermediary skip
list creation

(A) Generating intermediary skip list from a
batch

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Concurrent Data Structures for OCaml: The Good Batch 1:13

(a) Generating intermediary skip list from a batch (b) Parallel search and update of an intermediary list

Fig. 11. Two first stages of batch-parallel insertion into a skip list

Consider the example depicted in Fig. 11. In our illustration, the lines in red, blue and green
represent di�erent threads that are running in parallel to perform the search. The solid lines are
pointers that are installed fully and the dotted lines are pointers that are going to be installed.
Notice that the new node #1 to be added has no back pointer (Fig. 11a). Our parallel search-and-
update procedure identi�es $1 in the original list is the back pointer for #1 and updates the table
correspondingly. Regarding the forward pointers of #1, notice the link #1 ! #2 in the intermediary
list should be broken to incorporate the node $2 from the original list, as shown in Fig. 11b.

It crucial that no modi�cations are made to the original skip list during the parallel search and
update. If that were not the case, data races in the original list would a�ect the algorithm’s ability
to �nd correct slots. At the same time, it is safe to modify the intermediate skip list because no
memory sharing occurs between parallel threads that handle the case of each of the new nodes.

(3) Merge. The last step is to sequentially walk over the back pointer table and perform the
linking into the original skip list. This step can also be performed in parallel since all the correct
mappings have been found. However, since this is an inexpensive procedure compared to searching
for locations to install nodes, we have left it sequential.

4.1.3 Experiments. The benchmarks by Agrawal et al. (2014) for the skip list of the same design run
on top of the implicit batcher in Cilk-5 consider varying numbers of initial elements from 25,000 to
a 100,000,000 using a �xed workload of 100,000 inserts. In our evaluation of OB������, we chose
instead to �x the initial payload to 1,000,000 and vary the workload proportions of some 2,000,000
million operations. Our four di�erent setups include inserts only, searches only, 90/10 and 50/50
search/inserts split. Each data point takes the average of 5 runs per con�guration. Furthermore, our
testing extends to compare the performance of the batched skip list not only with the sequential
version, but also a coarse-grained wrapper over the sequential skip list implemented by us and the
OCaml standard library’s Set implemented as a self-balancing tree.

Our �ndings demonstrate that OB������ exhibits good performance with the batched skip
list. In all setups, as we increase the number of domains up to the maximal number of available
CPUs, lock contention shows performance degradation in both the coarse-grained implementations.
Conversely, our batched skip list shows good scaling properties. On diverse workloads, we observe
that the batched skip list consistently outperforms even the sequential version at around 5 domains
or more. At best, topping out at about 2x speedup over the sequential with 15 domains.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: September 2023.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Concurrent Data Structures for OCaml: The Good Batch 1:13

(a) Generating intermediary skip list from a batch (b) Parallel search and update of an intermediary list

Fig. 11. Two first stages of batch-parallel insertion into a skip list

Consider the example depicted in Fig. 11. In our illustration, the lines in red, blue and green
represent di�erent threads that are running in parallel to perform the search. The solid lines are
pointers that are installed fully and the dotted lines are pointers that are going to be installed.
Notice that the new node #1 to be added has no back pointer (Fig. 11a). Our parallel search-and-
update procedure identi�es $1 in the original list is the back pointer for #1 and updates the table
correspondingly. Regarding the forward pointers of #1, notice the link #1 ! #2 in the intermediary
list should be broken to incorporate the node $2 from the original list, as shown in Fig. 11b.

It crucial that no modi�cations are made to the original skip list during the parallel search and
update. If that were not the case, data races in the original list would a�ect the algorithm’s ability
to �nd correct slots. At the same time, it is safe to modify the intermediate skip list because no
memory sharing occurs between parallel threads that handle the case of each of the new nodes.

(3) Merge. The last step is to sequentially walk over the back pointer table and perform the
linking into the original skip list. This step can also be performed in parallel since all the correct
mappings have been found. However, since this is an inexpensive procedure compared to searching
for locations to install nodes, we have left it sequential.

4.1.3 Experiments. The benchmarks by Agrawal et al. (2014) for the skip list of the same design run
on top of the implicit batcher in Cilk-5 consider varying numbers of initial elements from 25,000 to
a 100,000,000 using a �xed workload of 100,000 inserts. In our evaluation of OB������, we chose
instead to �x the initial payload to 1,000,000 and vary the workload proportions of some 2,000,000
million operations. Our four di�erent setups include inserts only, searches only, 90/10 and 50/50
search/inserts split. Each data point takes the average of 5 runs per con�guration. Furthermore, our
testing extends to compare the performance of the batched skip list not only with the sequential
version, but also a coarse-grained wrapper over the sequential skip list implemented by us and the
OCaml standard library’s Set implemented as a self-balancing tree.

Our �ndings demonstrate that OB������ exhibits good performance with the batched skip
list. In all setups, as we increase the number of domains up to the maximal number of available
CPUs, lock contention shows performance degradation in both the coarse-grained implementations.
Conversely, our batched skip list shows good scaling properties. On diverse workloads, we observe
that the batched skip list consistently outperforms even the sequential version at around 5 domains
or more. At best, topping out at about 2x speedup over the sequential with 15 domains.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: September 2023.

(B) Parallel search and update of an interme-
diary list

FIGURE 4.2: Two first stages of batch-parallel insertion into a skip list

sets). Next we pre-allocate nodes corresponding to each value to be inserted.

The level of the allocated node is determined at random. Lastly, we construct

the internal links between nodes and, for each node, store its back pointers (i.e.,

the nodes that precede it in the list) for all the levels it’s present at. An example

is shown in Fig. 4.2a: given node N1 that precedes N2, N1 is the back pointer

for N2. Care is required for two edge cases: nodes that have no next (forward)

pointer at certain levels (e.g., N3 at the topmost level), and nodes that have no

back pointers (e.g., N1 at any level except for the lowest). For the former, we

default to the end of the original skip list. For the latter, we mark it to indicate

that a back pointer is not found from the current batch of inserts, to handle

such cases during the next stage.

(2) Parallel search and update The next stage prepares the intermediary skip

list for being merged into the original one. The goal of our parallel search is

two-fold: (a) to find the back pointers (preceding nodes) for those nodes in the

intermediary list that have none and (b) readjust the links in the intermediate

list that should point to nodes from the original list.

Chapter 4. Case study 26

To implement this logic, we run a non-mutating parallel search that looks

for an appropriate slot for each new node in the original list whilst additionally

keeping track of the back pointers for all nodes from the original list. As a

byproduct of this search, we also obtain forward pointers for each new node

based on its discovered location in the original list. In the case where we find a

new forward pointer at a corresponding level in the original list, we check if the

target node value in the intermediate list is smaller than the target value in the

original list. If this the case, we know that after merging two lists these links

will be preserved, hence no action is required; if not, we perform the necessary

remapping from a target node in an intermediary list into the original list.

Consider the example depicted in Fig. 4.2. In our illustration, the lines in

red, blue and green represent different threads that are running in parallel to

perform the search. The solid lines are pointers that are installed fully and

the dotted lines are pointers that are going to be installed. Notice that the

new node N1 to be added has no back pointer (Fig. 4.2a). Our parallel search-

and-update procedure identifies O1 in the original list is the back pointer for

N1 and updates the table correspondingly. Regarding the forward pointers

of N1, notice the link N1 → N2 in the intermediary list should be broken to

incorporate the node O2 from the original list, as shown in Fig. 4.2b.

It crucial that no modifications are made to the original skip list during the

parallel search and update. If that were not the case, data races in the original

list would affect the algorithm’s ability to find correct slots. At the same time, it

is safe to modify the intermediate skip list because no memory sharing occurs

between parallel threads that handle the case of each of the new nodes.

(3) Merge The last step is to sequentially walk over the back pointer table and

perform the linking into the original skip list. This step can also be performed

Chapter 4. Case study 27

2 4 6 8
0

1

2

3

4

5

6
·105

T
hr

ou
gh

pu
t(

op
s/

s)
Inserts only

Skip list (sequential) Skip list (batched) Skip list (coarse-grained) Set (coarse-grained)

2 4 6 8
0

1

2

3

4

5

6
·105 Searches only

2 4 6 8
0

1

2

3

4

5

·105

Domains

Th
ro

ug
hp

ut
(o

ps
/s

)

(90/10) Searches/Inserts

2 4 6 8
0

1

2

3

4

5

·105

Domains

(50/50) Searches/Inserts

FIGURE 4.3: Comparison of OBATCHER’s skip list versus other
concurrent data-structures

in parallel since all the correct mappings have been found. However, since

this is an inexpensive procedure compared to searching for locations to install

nodes, we have left it sequential.

4.1.3 Experiments

In our evaluation of OBATCHER, we investigate the effect of varying the num-

ber of domains with a fixed 2 million initial elements and a workload size 1

million. We consider four different setups which include inserts only, searches

only, 90/10 and 50/50 search/inserts split. Each data point takes the average

of 5 runs per configuration. Furthermore, our testing extends to compare the

performance of the batched skip list not only with the sequential version, but

Chapter 4. Case study 28

also a coarse-grained wrapper over the sequential skip list implemented by

us and the OCaml standard library’s Set implemented as a self-balancing tree.

These changes were made in order to demonstrate how the batched skip list

fares against other concurrent skip lists under diverse workloads.

Our findings demonstrate that OBATCHER exhibits good performance with

the batched skip list. In all setups, as we increase the number of domains

up to the maximal number of available CPUs, lock contention shows perfor-

mance degradation in both the coarse-grained implementations. Conversely,

our batched skip list shows good scaling properties. On diverse workloads, we

observe that the batched skip list consistently outperforms the coarse-grained

and even the sequential implementation, topping out at about 2x speedup over

the sequential with 15 domains. We have run these experiments in OCaml 5.0.0

executed on a PC with a 8-core AMD Ryzen 7 5700G CPU and 32 GB of RAM

running on Debian 5.10.136.

4.1.4 Comparison with a fine-grained skip list

2 4 6 8
0

2

4

6

8
·105

Domains

(90/10) Searches/Inserts

Fine-grained
Batched

Coarse-grained

FIGURE 4.4: Fine-grained skip list

Encouraged by the success of the batch-

parallel skip list demonstrated by eval-

uation in Fig. 4.3, we decided to raise

the stakes and compare our implementa-

tion against a real deal fine-grained skip

list—lazy skip list by Herlihy et al. (2007),

whose implementation we have ported

from Java to OCaml. Sadly, one quick look at Fig. 4.4 should be enough to

get a clear idea of the growing performance gap between the fine-grained and

the batch-parallel implementations. However, instead of simply admitting the

Chapter 4. Case study 29

crushing defeat by the giants of the multiprocessor programming, we make a

few observations that should encourage OCaml programmers not to dismiss

OBATCHER as a vehicle for implementing concurrent data structures.

First, while both implementations measure comparable amount of code—

200 LOC for the fine-grained skip list and 300 LOC for the batch-parallel one—

the fine-grained implementation is significantly more intricate and is much

more imperative in its design. Specifically, Herlihy et al.’s skip list makes use

of Atomic references and introduces locks associated with each node so that

the nodes can be physically removed in a “lazy” fashion—the pattern known

to be difficult to reason about formally when proving linearisability (Vafeiadis,

2008). In contrast, the implementation of the batch-parallel list does not feature

any concurrent programming whatsoever, except for parallel_for, which is

used for parallelising queries and the search-and-update operation described

above. We argue that this approach makes it easier to design useful strategies

for parallel processing even for developers who are not experts in fine-grained

concurrency, requiring one to reason only in terms of sequential data structure

manipulations—as witnessed by our presentation in Sec. 4.1.2.

Second, the batch-parallel design, as presented in this work, is not specific

to any particular data structure or even to a class of data structures such as col-

lections. It can be generically applied to any structure using the same approach

and even used to migrate sequential libraries to a concurrent setting.

30

5 Discussion

So far, we have poised OBATCHER as a tool that transparently houses the in-

frastructure which makes the use of batch-parallel data structures practical.

That said, it is still however, worthwhile to pay attention to some properties of

the design which may inform its use.

5.1 Optimal Batch Sizes

One difference between OBATCHER and the BATCHER from Agrawal et al.

(2014) paper is the batch size. In BATCHER, the size of the batch is deter-

mined by the number of system threads dedicated to running the program. In

OBATCHER however, we lift this restriction and make batch sizes configurable

by the data structure. By default, the batch size is unbounded allowing it to

accomodate a theoretical upper limit of n operations, where n is the number of

concurrent tasks making requests to the data structure.

A question that naturally arises is: how do we choose an optimal batch size

for our batched data structure and program? Setting a large batch size can al-

low for more operations to accumulate, increasing the gains from parallelism

and efficient batch processing. However, users may also preferentially decide

to have smaller batch sizes to impose a rate limit, preventing a large batched

operation from overwhelming the system. On top of these these two compet-

ing interests, it is also not clear how to select an appropriate batch size because

Chapter 5. Discussion 31

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

·106
O

ps
Inserts only

Unbounded Bounded (100 000)

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

·106 Searches only

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

·106

Time (s)

O
ps

(90/10) Searches/Inserts

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

·106

Time (s)

(50/50) Searches/Inserts

FIGURE 5.1: Batched skip list with varying batch sizes

they depend non-trivially on the program structure and workload. Therefore,

finding the best batch size requires some level of trial and error.

To demonstrate this behaviour, we have taken our batched skip list from

Ch. 4 and utilized the same benchmarking workloads as before. Instead of

varying the number of domains, we fix this value to 8 and now change the

batch sizes. To retrieve our results, we keep track of both the dynamic batch

sizes along with the time it takes to process them. For each set up, we run

10 iterations and pick the median result of the total time taken for the batch

process to complete. Our diagram above shows two lines referring to the case

when a batch is unbounded versus bounded with a size of 100,000 elements. In

3 out of 4 cases, unbounded manages to beat the bounded one in terms of total

time spent to complete all operations. However, it is important to note that the

Chapter 5. Discussion 32

cost of an unbounded batch sizes is the latency between batch processes. As

depicted in the graphs, the bounded set up has fairly consistent and shorter

timings between points whereas the unbounded line demands one large batch

and a correspondingly big time slice to complete most of it’s operations.

Following this observation, a good metric to keep in mind is: if you don’t

mind infrequent batch processes demanding a large portion of resources, un-

bounded is the way to go as you can generally get more out of batch-parallelism

with larger batches. However, if responsiveness of the application is a priority,

then adding a limit to the batch size can help to break up batch processing into

smaller chunks with quicker incremental updates.

33

6 Related Work

6.1 Continuations, effect handlers, and concurrency

The idea to use continuations to express concurrency, which effects are based

on, has been a well researched topic. The first implementation of a concurrent

programs that used continuations was documented by Wand (1980) work that

utilized the call/cc mechanism in Lisp to implement coroutines. Since then,

different iterations of what is fundamentally the same concept has sprouted

in different languages such as SML Reppy, 1989; Ramsey, 1990, OCaml Dolan

et al., 2017, and Haskell Li et al., 2007. In particular, Reppy’s Concurrent ML

draws parallels with our design. Their use of continuations to build a message-

passing system with dedicated tasks for each individual data structure is sim-

ilar to OBATCHER’s worker construction. While Concurrent ML sheds light

on some benefits of the design we use in OBATCHER, such as the avoidance

of lock contention and the overall simplicity, it does not identify the possi-

bility of batching requests or designing batch-parallel algorithms, which we

focus on. From another perspective, Dolan et al. (2017) investigates the use

of effect handlers in OCaml for implementing concurrent schedulers. Their

body of work emphasizes how to structure concurrent programs, whereas we

have concerned ourselves with how to optimize programs that operate on

top of these schedulers. Finally, another similar use of continuations is ex-

plored by Kiselyov and Shan (2007) to implement a concurrent file system in

Chapter 6. Related Work 34

Haskell leveraging continuations. Their contribution is a concurrent tree-like

data-structure where users requests are represented as suspended continua-

tions similar how requests to batched data-structures are in OBATCHER. Un-

like this paper though, that work does not consider batching requests to the

data-structure to improve its performance.

6.2 Batch parallelism and data parallelism

Data parallelism is a widely used technique in parallel computing. In gen-

eral, it is applied when there is a large set of data that can be processed in-

dependantly. With data parallelism, the same function is applied to different

subsets of the data in parallel, with each subset being processed by a sepa-

rate processor or thread. From this perspective, batch parallelism bears much

similarity to data parallelism in that they both deal with batches. The main

difference between them is their use case and flexibility. Data parallelism is

typically used in the context of applying a one aggregate-style bulk opera-

tion (e.g., map, reduce, filter, etc) to a known collection where each opera-

tion runs independantly from each other. In that respect, data parallelism is

unaware of other concurrent operations that occur. In contrast, batch paral-

lelism is specifically designed to efficiently handle multiple concurrent opera-

tions on a data structure while being mindful of potential interference between

them. Batch parallelism can extract parallelism from structured data, even if

the batch structure is not immediately clear or easy to determine beforehand.

Additionally, implicit batch-parallelism can adapt to whatever operations that

are performed on the data structure on the fly. In some sense, batch parallelism

can be thought of as a superset of data parallelism because batch parallelism

Chapter 6. Related Work 35

can make use of data-parallel techinques. We have demonstrated this with the

use of parallel_reduce in the batched counter (Fig. 2.2).

6.3 BATCHER

OBATCHER is primarily inspired from the work of Agrawal et al.’s BATCHER

(2014)—an implicit batching mechanism for batch-parallel data structures in

Cilk-5 programs. Instead of trying to be a modular extension of the scheduler,

BATCHER adds support for implicit batching by directly baking the logic into

the runtime’s randomised work-stealing scheduler. For context, it is impor-

tant to be aware that the main contribution of Agrawal et al.’s work was to

prove certain properties of implicit batching, their aim being to implement a

scheduler that had a provable complexity bound for a program that manipu-

lates a batch-parallel data structure. Such a performance theorem would be

extremely complicated if it had to consider the interaction between multiple

batch-parallel data structures within the same program. In our case, we have

decided to focus on a design that prioritizes practicality. In that light, we have

opted to feature mulitple batch-parallel data structures in the same program at

the expense of having any formal performance guarantees.

36

7 Conclusion

In this paper, we have shown how algebraic effects and various language sup-

port from OCaml has made it possible to provide a modular and lightweight

solution to the design and integratation of batch-parallel data structures. We

have, as a result of that, created the OBATCHER library to demonstrate its prac-

ticality and performance. We have demonstrated through empirical testing

that our OBATCHER enables the design of batch-parallel data structures with

better scaling and performance than the coarse-grained solution. Furthermore,

our tool achieves these results while being overall easier to design than the

fine-grained alternative. We hope that with our tool, we have made the usage

of batch-parallel data structures accessible, sparking interest in the community

toward further development of these efficient concurrent data structures.

37

Bibliography

Agrawal, Kunal, Jeremy T. Fineman, Brendan Sheridan, Jim Sukha, and Robert

Utterback (2014). “Provably Good Scheduling for Parallel Programs that

Use Data Structures through Implicit Batching”. In: PPoPP. ACM, pp. 389–

390. DOI: 10.1145/2555243.2555284. URL: https://doi.org/10.1145/

2555243.2555284.

Dolan, Stephen, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy,

K. C. Sivaramakrishnan, and Leo White (2017). “Concurrent System Pro-

gramming with Effect Handlers”. In: TFP. Vol. 10788. LNCS. Springer, pp. 98–

117. DOI: 10.1007/978-3-319-89719-6_6.

Feldman, Yotam M. Y., Artem Khyzha, Constantin Enea, Adam Morrison, Alek-

sandar Nanevski, Noam Rinetzky, and Sharon Shoham (2020). “Proving

highly-concurrent traversals correct”. In: Proc. ACM Program. Lang. 4.OOP-

SLA, 128:1–128:29. DOI: 10.1145/3428196.

Fraser, Keir (2004). “Practical lock-freedom”. PhD thesis. University of Cam-

bridge.

Hendler, Danny, Itai Incze, Nir Shavit, and Moran Tzafrir (2010). “Flat Com-

bining and the Synchronization-Parallelism Tradeoff”. In: SPAA. ACM, pp. 355–

364. DOI: 10.1145/1810479.1810540.

Herlihy, Maurice, Yossi Lev, Victor Luchangco, and Nir Shavit (2007). “A Sim-

ple Optimistic Skiplist Algorithm”. In: SIROCCO. Vol. 4474. LNCS. Springer,

pp. 124–138. DOI: 10.1007/978-3-540-72951-8_11.

https://doi.org/10.1145/2555243.2555284
https://doi.org/10.1145/2555243.2555284
https://doi.org/10.1145/2555243.2555284
https://doi.org/10.1007/978-3-319-89719-6_6
https://doi.org/10.1145/3428196
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1007/978-3-540-72951-8_11

Bibliography 38

Herlihy, Maurice and Nir Shavit (2008). The Art of Multiprocessor Programming.

Morgan Kaufmann. ISBN: 978-0-12-370591-4.

Herlihy, Maurice and Jeannette M. Wing (1990). “Linearizability: A Correctness

Condition for Concurrent Objects”. In: ACM Trans. Program. Lang. Syst. 12.3,

pp. 463–492. DOI: 10.1145/78969.78972.

Kiselyov, Oleg and Chung-chieh Shan (2007). “Delimited Continuations in Op-

erating Systems”. In: 6th International and Interdisciplinary Conference on Mod-

eling and Using Context (CONTEXT). Vol. 4635. LNCS. Springer, pp. 291–

302. DOI: 10.1007/978-3-540-74255-5_22. URL: https://doi.org/10.

1007/978-3-540-74255-5_22.

Li, Peng, Simon Marlow, Simon L. Peyton Jones, and Andrew P. Tolmach (2007).

“Lightweight concurrency primitives for GHC”. In: Proceedings of the ACM

SIGPLAN Workshop on Haskell, Haskell. ACM, pp. 107–118. DOI: 10.1145/

1291201.1291217. URL: https://doi.org/10.1145/1291201.1291217.

Meyer, Roland, Thomas Wies, and Sebastian Wolff (2022). “A concurrent pro-

gram logic with a future and history”. In: Proc. ACM Program. Lang. 6.OOP-

SLA2, pp. 1378–1407. DOI: 10.1145/3563337. URL: https://doi.org/10.

1145/3563337.

Modelski, Bartosz (2022). “Using Effect Handlers for Efficient Parallel Schedul-

ing”. MA thesis. University of Cambridge.

Mulder, Ike, Robbert Krebbers, and Herman Geuvers (2022). “Diaframe: auto-

mated verification of fine-grained concurrent programs in Iris”. In: PLDI.

ACM, pp. 809–824. DOI: 10.1145/3519939.3523432.

Öhman, Joakim and Aleksandar Nanevski (2022). “Visibility reasoning for con-

current snapshot algorithms”. In: Proc. ACM Program. Lang. 6.POPL, pp. 1–

30. DOI: 10.1145/3498694.

https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-540-74255-5_22
https://doi.org/10.1007/978-3-540-74255-5_22
https://doi.org/10.1007/978-3-540-74255-5_22
https://doi.org/10.1145/1291201.1291217
https://doi.org/10.1145/1291201.1291217
https://doi.org/10.1145/1291201.1291217
https://doi.org/10.1145/3563337
https://doi.org/10.1145/3563337
https://doi.org/10.1145/3563337
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/3498694

Bibliography 39

Pugh, William (1990). “Skip Lists: A Probabilistic Alternative to Balanced Trees”.

In: Communications of the ACM 33.6, pp. 668–676. DOI: 10.1145/78973.

78977.

Ramsey, Norman (1990). Concurrent Programming in ML. Tech. rep. TR-262-90.

Princeton University.

Reppy, John H. (1989). First-class synchronous operations in Standard ML. Tech.

rep. Cornell University.

— (1992). “Higher-Order Concurrency”. PhD thesis. Cornell University.

Sergey, Ilya, Aleksandar Nanevski, and Anindya Banerjee (2015). “Mechanized

Verification of Fine-Grained Concurrent Programs”. In: PLDI. ACM, pp. 77–

87. DOI: 10.1145/2737924.2737964.

Vafeiadis, Viktor (2008). “Modular fine-grained concurrency verification”. PhD

thesis. University of Cambridge.

Wand, Mitchell (1980). “Continuation-Based Multiprocessing”. In: Proceedings

of the 1980 LISP Conference. ACM, pp. 19–28. DOI: 10.1145/800087.802786.

https://doi.org/10.1145/78973.78977
https://doi.org/10.1145/78973.78977
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/800087.802786

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Approach
	Contributions

	Overview
	Surveying our synchronization options
	Going Batch-parallel
	Back to Direct-Style
	Putting It All Together

	Design
	A Library for Batch-Parallel Data Structures
	Extended data type
	Worker function
	Direct-Style interface

	Testing

	Case study
	Batch-Parallel Skip List
	Sequential skip list overview
	Batch-parallel skip list
	Experiments
	Comparison with a fine-grained skip list

	Discussion
	Optimal Batch Sizes

	Related Work
	Continuations, effect handlers, and concurrency
	Batch parallelism and data parallelism
	Batcher

	Conclusion
	Bibliography

