

Verifying Distributed Protocols:

From Executable to Decidable

Mark Yuen

Capstone Final Report for BSc (Honors) in

Mathematical, Computational, and Statistical Sciences

Supervised by: Dr. Ilya Sergey

AY 2021/2022

i

YALE-NUS COLLEGE

Abstract

BSc (Hons)

Verifying Distributed Protocols: From Executable to Decidable

by Mark YUEN

Modern distributed protocols are notoriously complex, leading to bugs

that are difficult to uncover through testing. Formal verification meth-

ods can prove distributed protocols correct, but have historically required

mostly manual effort. TLA+ and Ivy are two tools that have been devel-

oped for the purpose of automated verification of distributed protocols.

TLA+ is a popular tool that offers executable verification through model

checking. It is quick to learn and has been successfully applied to real-

world systems, but is unsound due to the finitude of model checking.

Ivy offers sound and decidable verification through its use of first-order

logic, but the tool is difficult to use due to its restrictive specification style.

In this report, we present a study towards systematic translation from

TLA+ to Ivy, enabling a shift from model checking to sound verification.

We discuss why this process is difficult and offer rewriting rules to cir-

cumvent some common issues. Through this process we also present

the first computer-aided verification efforts of the Suzuki-Kasami and

NOPaxos distributed protocols using TLA+ and Ivy.

Keywords: Distributed Systems, Automated Formal Methods, Safety

and Liveness Verification, Model Checking, Decidable Logic, TLA+, Ivy

HTTPS://WWW.YALE-NUS.EDU.SG/

ii

Contents
1 Introduction 1

1.1 What are Distributed Systems? 1
1.2 Problem Statement . 2
1.3 Contributions . 4

2 Background 5
2.1 Specifying Distributed Protocols 5
2.2 Verifying Protocols with TLA+ 6
2.3 Inductive Invariance for Safety Properties 8
2.4 Specifying Protocols with Ivy 9

3 Case Study: Suzuki-Kasami 11
3.1 The Suzuki-Kasami Mutex Algorithm 11
3.2 Modeling Suzuki-Kasami in TLA+ 13
3.3 Modeling Suzuki-Kasami in Ivy 16

4 Case Study: NOPaxos 21
4.1 The NOPaxos Consensus Protocol 21
4.2 Overview of NOPaxos in Ivy 23
4.3 Deviations from TLA+ . 25

5 Towards Mechanized Translation 29
5.1 Numbers . 30
5.2 Sets and Functions . 30
5.3 Actions and Modifying State 31
5.4 Sequences . 32

6 Conclusion and Future Work 33
6.1 Modules and Modular Decidability 33
6.2 Interpreted Theories . 34
6.3 Code Extraction . 35
6.4 Automatic Invariant Inference 35

References 37

Appendix 38

Acknowledgements 42

Declaration and Consent Form 43

1

Chapter 1

Introduction

1.1 What are Distributed Systems?
Distributed systems are ubiquitous throughout the modern world, form-

ing the backbone of nearly all online services. Distributed systems pro-

vide reliability and scalability to our services, but they are also notori-

ously difficult to design and implement properly [1]. With distributed

systems utilizing physically distinct computers, or nodes, each running

their own processors concurrently, there are a number of real-world con-

straints which introduce non-determinism in the execution of a system,

making it difficult to comprehensively test them.

Typically, a distributed system comprises of a set of nodes working to-

gether on a shared network, where nodes communicate through message

passing. Critically, real-world networks are characterized as being asyn-

chronous, meaning that a shared conception of time and ordering is im-

possible. A given node’s internal clock can (and will) differ from another

node’s internal clock, and message passing is unreliable—messages may

be dropped, duplicated, and/or take infinitely long to be delivered. Fur-

thermore, any mature system should also be able to handle unexpected

network partitions and the inevitable hardware failure of nodes within

the system. All these problems contribute to the difficulty of building sys-

tems that can effectively leverage the increased computing storage and

power of a distributed system.

When we talk about using a distributed system, at a high level, we

can think of ourselves as a client sending a request to a server (or group

of servers) to instruct the server(s) to do some work and send back a re-

sponse once completed. For instance, when we upload a file to Google

Drive, we expect Google’s servers to store and propagate that file through

its data centers, then inform us once it is successfully uploaded. As with

Chapter 1. Introduction 2

any web service, we expect this service to effectively always be avail-

able to access. What this implies for distributed systems, however, is that

most of the protocols which enable our systems to overcome the issues

outlined above are running forever. This infinitude of distributed proto-

cols leads us to evaluate them on different metrics than terminating pro-

grams. The two types of properties we use for evaluation are called safety

and liveness—roughly, that nothing ever goes wrong and that something

good occurs eventually, respectively.

Given the mission-critical nature of distributed systems—spanning

fields such as healthcare, transportation, and banking, to name just a

few—there are strong motivations to gain formal guarantees about our

systems’ underlying protocols. While testing is an important step to-

wards building trust in our systems, for such important technology, we

would like to go a step further and apply formal verification techniques

to prove the safety and liveness properties we desire of our system.

1.2 Problem Statement
There have been a number of successful attempts at verifying distributed

systems conducted in the past [4, 19, 24]. However, such attempts re-

quired mostly manual effort, with proof-to-code ratios exceeding one by

a large margin and requiring many person-years of effort to prove specific

protocols.1 Such large-scale manual verification efforts are unamenable

for industrial adoption. To move beyond manual verification, there is in-

creasing effort being put towards automated verification techniques that

shift the burden of proving from the human to the computer.

In this project we will look at two different tools that have been de-

veloped for the purpose of automated verification of distributed proto-

cols. The first of these is TLA+ (Temporal Logic of Actions), which of-

fers a set-theoretic specification language to run lightweight verification

1The Verdi project [24] presented a Coq formalization of the Raft consensus protocol

[14], taking over 50,000 lines of proof for just 500 lines of implementation code.

Chapter 1. Introduction 3

through model checking. Model checking conducts an executable search

through the tree of states allowed by the specification, starting from an

initial state. Although model checking is ultimately unsound because it is

finite—and, thus, may admit specifications which are actually buggy—

the expressive language makes it a tool that is easy for developers to pick

up and use with immediate and impactful success [13]. The second tool

we will explore is Ivy, which offers a much more restrictive specification

language based on a decidable fragment of many-sorted first-order logic

(FOL). While expressiveness is sacrificed—as is typically the case with

automated proof techniques—the trade-off is a sound verification due to

the decidability of the FOL formulae allowed by the language. Further-

more, many-sorted FOL allows us to specify infinite systems, since FOL

quantification over sorts is agnostic to the size of a sort.

TLA+ was first developed by Microsoft researchers more than twenty

years ago and has proven itself valuable in both academic and industrial

settings. As a result, there are ample existing TLA+ specifications out

there, and almost every notable distributed protocol has been formalized

in it. On the contrary, Ivy is a product of the academic community that

came out in 2016, and its adoption has almost exclusively stayed within

the academic sphere due to the difficulty of its usage. In fact, a number of

individual verification efforts of protocols in Ivy have led to publications

in distinguished conferences [17, 18, 21].

The overarching problem this project seeks to address is the potential

for mechanized translation from TLA+ to Ivy, enabling a shift from model

checking to a proper sound verification of protocols. If such a framework

could be developed, it would allow us to verify existing accepted TLA+

specifications—many which may serve as the basis for critical real-world

systems. It would also provide an easier introduction to Ivy and formal

methods as applied to distributed systems.

Chapter 1. Introduction 4

1.3 Contributions
The contributions of this paper can be summarized as follows:2

1. We present the first verification of the Suzuki-Kasami distributed

mutual exclusion algorithm [20] in both TLA+ and Ivy. The speci-

fications for this effort are specifically tailored to each tool, and we

use this as an example to outline differences in the formalization

and verification styles of TLA+ and Ivy.

2. We present the first sound verification of a significant portion of

NOPaxos, a state-of-the-art distributed consensus protocol [8]. This

effort was conducted by taking the TLA+ specification created by

the original paper’s authors and translating it into Ivy.

3. We document key deviations between the TLA+ and Ivy specifica-

tions of the Suzuki-Kasami and NOPaxos protocols, noting portions

that had to be re-expressed to be suitable for Ivy’s verification.

4. Finally, we build upon the previous contribution by taking a more

structured approach to our core problem statement and sketching a

framework for mechanized translation from TLA+ to Ivy.

2All specifications referenced in this report are publicly available here: https://

github.com/markyuen/tlaplus-to-ivy.

https://github.com/markyuen/tlaplus-to-ivy
https://github.com/markyuen/tlaplus-to-ivy

5

Chapter 2

Background

2.1 Specifying Distributed Protocols
Before we discuss our tools, we need to describe a method of specify-

ing distributed protocols that is suitable for automated reasoning. Real-

world implementations are often much too complex to be verified di-

rectly, since they involve networking, hardware architecture, and imple-

mentation language specifics that are not relevant to the core protocol we

really care about. As such, we adopt a method of abstracting away the

implementation details and focusing on the core state and actions of a

protocol, using the generic language of FOL and some basic set theory.

A distributed protocol can be conceived of as a discrete state-transition

system, where each node has an initial starting state and a set of possible

actions, or transitions, it is allowed to take. An intuitive understanding

of this design is that each type of message should correspond to an action

in the system, and each action is enabled by conditions depending on the

local recipient node’s current state and incoming message’s state. While

nodes within this system may have distinct initial starting states, the ac-

tions and their constraints, called enabling conditions, are shared logic for

all nodes. If an action can be taken, as determined by its enabling condi-

tions, then we consider that action to be enabled. While this shared logic

may sound restrictive in forcing uniformity, in practice it is simple to add

local state and corresponding enabling conditions which restrict actions

to specific node subtypes a system may like to define. By utilizing the

language of FOL, the payoff for this uniform description of the protocol

is that it will allow us to specify systems in a way that model checkers and

satisfiability modulo theories (SMT) solvers can automatically verify.

With the protocol defined in terms of discrete states, the desired prop-

erties of safety and liveness can be fleshed out, giving us an idea of what

Chapter 2. Background 6

it means to verify a specification. For safety, a formula can be defined

over the system’s state which must hold in the initial state and repeat-

edly after all possible interleavings of enabled transitions. If this formula

holds over all behaviors of the system and we can show that it implies the

safety property of our protocol, then we will have verified that the speci-

fication describes a safe system. For liveness, we can define two different

formulae. One will describe the invocation state of the liveness property

and the other will describe the fulfillment state of the property. Then, we

expect that whenever the former formula holds, then after some number

of transitions, the latter formula will also become true. An example of

liveness verification will be covered in Section 3.2.3, where we model-

check liveness of the Suzuki-Kasami algorithm.

2.2 Verifying Protocols with TLA+

TLA+ is a tool created by Leslie Lamport for the lightweight verification

of concurrent and distributed protocols [6]. A TLA+ specification consists

of an initial formula and a collection of state transitions. Each transition is

constructed as a boolean formula, where a transition is enabled as long as

the boolean formula evaluates to true. Formulae which define the post-

state of a variable simply evaluate to true. On a more granular level, each

transition can be split into two parts: the joining (by logical conjunction

and/or disjunction) of the enabling condition formulae which determine

whether the transition can be taken, and the assignment of the post-state

of the system. Every transition in TLA+ must describe the post-state com-

pletely, including if a variable remains unchanged.

A TLA+ specification must consist of an Init formula along with a

Next formula, which should be the disjunction of all transitions. Then,

TLA+’s model checker, TLC, will programmatically begin the exploration

of all possible states stemming from the initial state, branching through

all enabled actions of Next. This process corresponds to the temporal

Chapter 2. Background 7

formula Init /\ []Next,3 where “[]” is the temporal operator for “al-

ways,” which asserts that the initial state is enabled and we can always

take a Next step. This specification does not constrain the system in any

way, however, and as such, does not say anything interesting by itself.

To introduce safety and liveness properties we can add additional for-

mulae to this specification formula (through conjunction) using tempo-

ral operators, in order to have the model checker assert properties about

the state we expect of our system. For instance, a safety property, writ-

ten as the formula Inv, may be checked by extending the formula to be

Init /\ []Next /\ []Inv.4 If we think of model checking as generating

a tree of states with the initial state as the root node, our safety property

can be understood as a formula evaluated at every node in the tree, and

the liveness property as evaluating branches, or behaviors, of the tree.

2.2.1 Limitations of Model Checking

In a TLA+ specification it is necessary to add a condition to make the

search space of TLC tractable. Without a constraint, TLC will run for-

ever on an infinite protocol. Since TLC explores concrete states and does

not attempt to group together abstractly similar states or behaviors with

previously-explored states/behaviors, there is never a reduction in the

number of states. The exponential nature of the exhaustive search limits

the usability of TLA+ as the specification grows. In general, it is tough

to say when the TLC model checking is complete, in the sense that it has

3More precisely, this should be written as Init /\ [][Next]_vars, where vars is a

collection of all variables in the specification. The [][Next]_vars construct asserts that

either a Next action is taken, or no action is taken and all variables remain unchanged.

The latter phenomenon is called a stuttering step and TLA+ considers such a step to be

valid. This concept will reappear in Section 3.2.3 when we discuss liveness. One can

refer to https://lamport.azurewebsites.net/tla/stuttering.html for a discussion

on why this phenomenon is meaningful in the first place.
4Or, Init /\ [][Next]_vars /\ []Inv. Here, we do not have the same construct

for Inv because that formula should still hold even if a Next step is not taken.

https://lamport.azurewebsites.net/tla/stuttering.html

Chapter 2. Background 8

explored all potential “patterns” of interleaving actions, and TLC is only

able to report errors on the concrete violations it encounters.

In addition to constraining the search space, it is also necessary to

explicitly define the number of nodes within the system for an iteration of

model checking. In reality, we may actually expect our protocol/system

to be agnostic to the number of nodes. Using TLA+, we would need to

run multiple iterations of TLC with differing input sets to be sure that the

specification is properly agnostic to a system’s configuration (and again,

we would need to somehow gauge when this checking is good enough).

2.3 Inductive Invariance for Safety Properties
For distributed protocols, in order to prove the correctness of a specifica-

tion for preserving a safety property, we utilize the concept of seeking an

inductive invariant for our specification. There are three conditions for a

formula, Inv, to be an inductive invariant for a safety property I:

1. Init =⇒ Inv,

2. Inv ∧ Next =⇒ Inv′, and

3. Inv =⇒ I.

The first condition states that Inv must hold in the initial state. The sec-

ond condition introduces the “inductiveness” of Inv. It states that if in

some state Inv holds and it is possible to take a Next action, then Inv

must also hold in the post-state. Finally, the third condition asserts that

Inv captures the desired safety property. If an inductive invariant can be

found for a specification, then we know that the specification is safe.

Bounded model checking is unable to verify if a formula is an induc-

tive invariant, and TLA+ does not provide support for checking induc-

tive invariance. Note that the inductive invariant is almost always an

over-approximation of the actual feasible state space while TLC only checks

concrete states. Although TLA+ falls short in this regard, TLA+ does al-

low us to check liveness properties. When we talk about automated ver-

ification, we will focus solely on proving safety properties, precisely in

Chapter 2. Background 9

terms of inductive invariance. Liveness properties have yet to really be

automatically proven, though there has been some recent work done on

re-expressing liveness in terms of safety in [18].

2.4 Specifying Protocols with Ivy
In order to move beyond model checking and into proper verification,

Padon et al. have refined a language called relational modeling language

(RML) to describe infinite systems, and have created the tool, Ivy [16],

to interactively search for an inductive invariant of RML specifications.

RML describes infinite systems using the semantics of many-sorted FOL.

Like TLA+, RML specifications consist of an initial state and transitions,

where a transition is enabled if it evaluates to true. To evaluate inductive

invariance, Ivy converts RML specifications into their FOL representa-

tions for the Z3 SMT solver to process. In general, when working with

SMT solvers, it is imperative to consider the decidability of our queries,

since an undecidable query may not terminate. Thus, Ivy enforces the

decidability of RML specifications, which ensures that the specification

can be automatically verified. Henceforth, we will drop the RML name

and refer to RML specifications/syntax as Ivy’s specifications and syntax.

2.4.1 The Decidable Fragment of Many-Sorted FOL

Ivy is built upon the effectively propositional (EPR) class of FOL which is

decidable [7]. EPR formulae are those which have a prenex normal form

(PNF) quantifier structure of ∃∗ ∀∗, where the “∗” indicates any number

of repetitions of the preceding quantifier. This EPR fragment is limited,

but it can be extended to include stratified functions, meaning if a func-

tion used in an axiom or invariant has domain of sort x and range y, there

cannot also exist a function in an axiom or invariant with domain y and

range x. Furthermore, through a process called Skolemnization, ∀∗ ∃∗

PNF quantifier alternations may also be present. Provided a PNF formula

with quantifiers ∀x ∃y, Skolemnization can convert that into an equisatis-

fiable ∀x formula at the cost of introducing a new function with domain

Chapter 2. Background 10

x and range y. Ultimately, the functions of a specification—both used

in axioms and invariants, and introduced through Skolemnization—can

be synthesized into a stratification graph, where each sort is a vertex and

edges are drawn from each function’s domain to its range. If this stratifi-

cation graph has no cycles then the specification will be decidable.

2.4.2 Verifying Protocols with Ivy

When provided with the initial state, transitions, and invariant formula,

Ivy will check if the invariant is inductive. Looking at the three condi-

tions from Section 2.3, it is trivial to ascertain condition 3, since the safety

property formula(e) must be defined in conjunction with the invariant.5

Conditions 1 and 2 are verified using SMT queries. Since SMT solvers

will terminate once they find a satisfiable assignment to a query, Ivy con-

structs each respective formula, then negates them before sending them

down to the SMT solver. These negated formulae are called the verifica-

tion conditions (VC) of the specification. To prove that our conditions are

always satisfiable, we verify that the VCs are unsatisfiable.

A critical realization of this process is that the invariant occurs both

positively and negatively in the VC of condition 2. Examining it we have:

¬(Inv ∧ Next =⇒ Inv′) ⇐⇒ Inv ∧ Next ∧ ¬Inv′

As such, although a formula with ∃∗ ∀∗ quantifiers may be decidable

when occurring positively (e.g., as an enabling condition for a transition

in Next), if that formula appears in the invariant, then its negation will

swap the quantifiers, pushing the specification’s decidability into a ques-

tion of whether or not the resulting Skolem function(s) introduces a cycle

in the stratification graph.

5In fact, there is no syntactic difference when defining safety property invariants and

other invariants in Ivy, and this is always a valid transformation of the safety property.

Assume, for a contradiction, that a verifiable specification contains safety property for-

mulae that are inconsistent with the other invariants defined. However, that means the

constructed invariant will never be satisfiable, so the initial state will not satisfy the

invariant and condition 1 will not hold. Therefore, the specification will not verify.

11

Chapter 3

Case Study: Suzuki-Kasami
In this section we will discuss a case study of specifying and verifying the

Suzuki-Kasami algorithm in TLA+ and Ivy. While the TLA+ specification

was developed first and referenced in the creation of the Ivy specification,

the primary goal of this exercise was to accurately specify the Suzuki-

Kasami mutex, as opposed to merely translating the TLA+ version into

Ivy. From the resulting specifications we will identify divergences in the

encoding of certain portions of the algorithm which will help to inform

our understanding of the limits of translation in later chapters.

3.1 The Suzuki-Kasami Mutex Algorithm
The Suzuki-Kasami distributed mutual exclusion algorithm is a token-

based mutex algorithm [20]. The algorithm is deadlock- and starvation-

free, with critical section (CS) invocations granted in a first-come-first-

served (FIFO) manner. In a system with N nodes, the algorithm takes at

most N, and sometimes zero, message exchanges for each CS invocation.

The main idea behind the algorithm is that there is a single token that will

get passed around, and whoever has the token is allowed to enter the CS.

If a node wants to enter the CS and already has the token, it can imme-

diately enter. If a node n wants to enter the CS but does not possess the

token, it can send a request message of the form REQUEST(n,i) to all other

nodes, where i is a sequence number indicating that node n is requesting

its ith instance of holding the token.

A node n carries three fields of state: a boolean, havePrivilege, in-

dicating whether or not the node currently possesses the token, another

boolean, requesting, indicating whether or not the node is currently re-

questing to enter the CS, and an array, RN, of length N, where RN[n] is

node n’s own sequence number and RN[m] is the latest sequence number

Chapter 3. Case Study: Suzuki-Kasami 12

received from node m. When a node receives a request from node m with

sequence i, it updates RN[m] to be the max between RN[m] and i.

The token can be sent to another node through a privilege message of

the form PRIVILEGE(Q,LN), where Q is a queue of requesting nodes and

LN is an array of length N, where LN[n] is the latest instance that a node

n has held the token. When a node n finishes a CS invocation (and as

such, holds the token), it will update LN[n] := RN[n], then append to Q

any node m that is not already in Q, where RN[m] = LN[m]+ 1. Then,

the message PRIVILEGE(tail(Q),LN) can be sent to head(Q), otherwise the

token will be retained by n. If a REQUEST(m,i) is received when a node is

not in the CS or requesting the CS, and the request is up to date (RN[m] =

LN[m]+ 1), then it can immediately send PRIVILEGE(Q,LN) to m.

Pseudo-code for the Suzuki-Kasami algorithm is provided below:

1: procedure P1(n) ▷ Node n requests to enter the CS
2: requesting← TRUE

3: if not havePrivilege then
4: RN[n]← RN[n]+1
5: for all m ∈ {1, 2, . . . , N} \ {n} do
6: send REQUEST(n,RN[n]) to m
7: end for
8: wait until PRIVILEGE(Q,LN) is received
9: havePrivilege← TRUE

10: end if
11: Critical Section ▷ Node n can enter the CS here
12: LN[n]← RN[n]
13: for all m ∈ {1, 2, . . . , N} \ {n} do
14: if not in(Q, m) and RN[m] = LN[m]+1 then
15: Q← append(Q, m)
16: end if
17: if Q ̸= empty then
18: havePrivilege← FALSE

19: send PRIVILEGE(tail(Q),LN) to head(Q)
20: end if
21: end for
22: requesting← FALSE

23: end procedure
24:

Chapter 3. Case Study: Suzuki-Kasami 13

25: procedure P2(m, i) ▷ REQUEST(m,i) is received; P2 is indivisible
26: RN[m]← max(RN[m], i)
27: if havePrivilege and not requesting and RN[m] = LN[m]+1 then
28: havePrivilege← FALSE

29: send PRIVILEGE(Q,LN) to m
30: end if
31: end procedure

3.2 Modeling Suzuki-Kasami in TLA+

3.2.1 Model State

In order to model the Suzuki-Kasami algorithm in TLA+, two additional

fields are added beyond what the paper proposes. To model distinct priv-

ilege messages, a token sequence number is added to the message, and

each node contains an extra field to store information on the current (or

latest) version of the token they hold. In the model state, which contains

a set of all sent privilege messages, this allows for differentiation between

token versions. The model utilizes four variables for state:

1. nState: where nState[n] is the local state of a node n, consisting of

the four fields havePrivilege, requesting, RN, and tokenSeq,

2. reqs: the set of all request messages sent,

3. tokens: the set of all privilege messages sent, and

4. crit: the set of nodes in the critical section.

Each request message consists of three fields: for and from fields indi-

cating the recipient and sender nodes, respectively, and seq containing

the sender’s sequence number. Each privilege message consists of four

fields: for indicating the recipient (and hence, owner of this version of

the token), Q and LN for the token state, and seq indicating the token se-

quence number. Since each privilege message contains the token, each

node will directly access the message’s token fields when interacting with

their held token in the model. As such, the set of privilege messages is

named tokens and its elements are considered to be versions of the token.

Chapter 3. Case Study: Suzuki-Kasami 14

The model is initialized with two constant fields: a Node set contain-

ing identifiers for each node we want to include in an execution of the

model, and a MaxTokenSeq value which is exclusively used to bound the

search space to behaviors which do not proceed beyond a token sequence

number of MaxTokenSeq. The paper uses numbers for node identifiers

(ID), and describes RN and LN arrays indexed by node ID. In TLA+, we

can instead use a function to encode RN and LN, where the Node set is the

domain, so its elements can be applied to access RN and LN values.

3.2.2 The Init-Formula and Next-State Transitions

The initial state is defined as follows:

Init ==

/\ nState =

[n \in Node |-> [havePrivilege |-> n = TokenInit,

requesting |-> FALSE,

RN |-> ArrInit,

tokenSeq |->

IF n = TokenInit THEN 1 ELSE 0]]

/\ reqs = {}

/\ tokens = {CreateToken(TokenInit, <<>>, ArrInit, 1)}

/\ crit = {}

In this definition, TokenInit is a random node from the Node set, and

ArrInit is a function where for each node n, ArrInit[n] := 0. The

tokens set contains the initial token, which contains an empty queue (en-

coded as a sequence) and ArrInit for its LN array. The initial token has

the sequence number of one, and the first token holder has privilege. The

reqs and crit set are empty on initialization.

There are five Next-state transitions defined:

1. Request(n): a node n that has privilege can swap its requesting

field to TRUE to request to enter the CS again. If n does not have

privilege, it will increment its sequence number, nState[n].RN[n],

by one, change its requesting field to TRUE, then broadcast request

messages to all other nodes by adding them to the reqs set. This

corresponds to lines 2–7 of the pseudo-code from Section 3.1.

Chapter 3. Case Study: Suzuki-Kasami 15

2. RcvRequest(n,r): for a given node n and request message r from

node m, node n will update nState[n].RN[m] := r.seq if r.seq >

nState[n].RN[m]. If n has privilege but is not requesting the CS, it

can generate the next privilege message for m, if nState[n].RN[m]

is equal to t.LN[m]+ 1, where t is the current token. This condition

ensures that the received request has not already been fulfilled. This

corresponds to procedure P2 of the pseudo-code.

3. RcvPrivilege(n,t): for a given node n and privilege message t

such that t.seq > nState[n].tokenSeq, n will update nState to

indicate that it now has privilege and set its token sequence num-

ber to t.seq. The enabling condition ensures that only the latest

token is received. This corresponds to lines 8–9 of the pseudo-code.

4. Enter(n): a node n that has privilege and is requesting the CS can

enter the CS. This corresponds to line 11 of the pseudo-code.

5. Exit(n): a node n in the CS can exit the CS, switch its status to

nState[n].requesting := FALSE and update the token. If the up-

dated token queue is non-empty, it can send the next privilege mes-

sage to head(Q). This corresponds to lines 12–22 of the pseudo-code.

3.2.3 Safety, Liveness, and Tractability

The primary safety property we want to confirm is that only one node

can be in the CS at any given moment. This is written as:

\A n, m \in crit : n = m

where “\A” is the universal quantifier and “\in” is set membership. This

property can be added as an invariant when model checking. In addition

to the mutex property, we define eight other invariants which help to

assert certain properties we expect from the protocol.

The liveness property of the mutex we want to ensure is that any

node that requests for the CS will eventually enter the CS. This can be

expressed in TLA+ using the “∼>” syntax, like so:

\A n \in Node : nState[n].requesting ∼> n \in crit

Chapter 3. Case Study: Suzuki-Kasami 16

This property states that if in any state nState[n].requesting is true,

then in all behaviors stemming from that state, there will eventually be a

future state such that node n is in the CS.

In order for TLC to check this property, we need to impose weak fair-

ness upon most of our actions. Since TLA+ considers a behavior ending in

infinite stuttering steps (i.e., no Next action is taken, no state is changed,

and the invariants are still true) to be valid, the liveness property will be

violated if the model stutters in a state before a requesting node can enter

the CS, even if it is enabled to do so. By imposing weak fairness on all

steps except Request, we ensure that the model will never allow these

actions to remain repeatedly enabled forever, remedying this problem.

Finally, MaxTokenSeq is used to make the search space tractable by

preventing TLC from searching beyond states where the constraint:

\A t \in tokens : t.seq < MaxTokenSeq

does not hold. Since each node can only have one outstanding request

at any given moment, this constraint on the max token sequence number

implicitly limits the number of request messages that can be generated

(and explicitly limits the privilege messages). Without the ability to gen-

erate new messages, the model checker will run out of states to explore.

3.3 Modeling Suzuki-Kasami in Ivy

3.3.1 Model State and Transitions in Comparison to TLA+

The specification in Ivy defines two sorts, node and seq_t, to represent

nodes and natural numbers, respectively. The seq_t sort is instantiated

as a total order with the key relation, le (less than or equal), being re-

flexive, transitive, anti-symmetric, and total. While Ivy enables the usage

of some interpreted sorts (i.e., the background theory for the sort is built

into the solver itself) that deal with numbers, in our experience, combin-

ing interpreted and uninterpreted sorts often lead outside of the decid-

able fragment and prevented us from stating certain formulae properly

Chapter 3. Case Study: Suzuki-Kasami 17

(this is covered in greater detail in Section 6.2). As such, we define a

custom sort and basic operations to compare and increment seq_t.

The state of each node is made up of two relations and two functions:

1. relation n_have_privilege(N:node),

2. relation n_requesting(N:node),

3. function n_RN(N:node, M:node) : seq_t, and

4. function n_token_seq(N:node) : seq_t.

The first element of each relation/function corresponds to the local node.

This encoding of node state closely matches the TLA+ encoding from Sec-

tion 3.2.1, except that nState is destructured into its individual parts. In

particular, the RN array would have been difficult to encode otherwise. To

encode the request and CS sets, it is enough to use one relation for each.

The encoding for the tokens set is not so straightforward, however.

Similar to how node state is destructured, tokens is also split into parts

since the TLA+ encoding uses a nested sequence for the queue and a func-

tion for the LN array. Since privilege messages can be uniquely identified

by their token sequence number, we define two relations and a function

with the first element corresponding to the token sequence:

1. relation t_for(I:seq_t, N:node),

2. function t_LN(I:seq_t, N:node) : seq_t, and

3. relation t_q(I:seq_t, N:node).

There are two important things to note about this encoding. Firstly, we

have abandoned the FIFO property of the token queue. The queue is now

encoded as a de facto set of nodes—for all i and n such that t_q(i,n)

is true, we interpret this to mean the privilege message with sequence

number i’s token’s queue contains node n. In the exit transition where

we need to send the token to the head of the queue, instead of having a

FIFO ordering to determine the next recipient, we simply pick a random

node from the “set.” Crucially, without the FIFO properties of the queue,

the algorithm does not maintain its starvation-freedom property and it is

Chapter 3. Case Study: Suzuki-Kasami 18

possible for a requesting node to starve.6 While this is not ideal, we do

not believe this modification substantially detracts from the verification,

where verifying the mutex property is of foremost importance.

Secondly, this encoding of privilege messages also explicitly exploits

the fact that only one privilege message is generated per passing of the

token. This can be seen through the t_LN function and t_q relation,

which would not have the desired semantics if multiple privilege mes-

sages could share a token sequence number. This observation is made

in comparison to the TLA+ encoding, which does not force the unique-

ness of token sequences through state, and instead verifies it through in-

variants. In TLA+, the coupling of the entire token state as an element

in tokens allows for differentiation between messages with the same

sequence—this is semantically different to what is encoded in Ivy.

With regards to specifying transitions, TLA+ utilizes a two-state vo-

cabulary, in which the post-state must be completely defined for the tran-

sition to be accepted. In comparison, Ivy uses an imperative style of spec-

ification, where relation and function mappings only change if they are

redefined within a transition. Actions in TLA+ typically also do not use

if-statements for control flow, and instead provide a disjunction of formu-

lae with corresponding enabling conditions for each branch the action

seeks to define. In Ivy, it is more natural to use if-statements. Never-

theless, after accounting for these minor difference in specification styles,

the transitions in Ivy match those from TLA+ closely, and there are no

notable differences in transition logic.

6In a system with three nodes, a, b, and c, if a and b have higher priority when being

selected from the queue, then c can starve. Assume c has requested access to the CS and

has been added to the token queue. Assuming a is currently in the CS, it can receive a

request message from b and add b to the queue. Once a exits, it will send the next token

to b. Then, when b is in the CS it can receive a request from a, causing it to add a to the

queue and send the token back to a upon exiting. This can continue ad infinitum.

Chapter 3. Case Study: Suzuki-Kasami 19

3.3.2 The Inductive Invariant

An inductive invariant for our specification consists of these five formu-

lae; in Ivy, each free variable is implicitly universally quantified over its

respective sort over the entire formula:

invariant [mutex]

(crit(N) & crit(M)) -> N = M

invariant [allowed_in_crit]

crit(N) -> (n_have_privilege(N) & n_requesting(N))

invariant [unique_tokens]

(t_for(I, N) & t_for(I, M)) -> N = M

invariant [corresponding_tokens]

n_token_seq(N) ∼= init_seq -> t_for(n_token_seq(N), N)

invariant [current_privilege_latest_token]

(n_have_privilege(N) & N ∼= M) ->

∼seq.le(n_token_seq(N), n_token_seq(M))

While this invariant is already inductive, we are free to extend the for-

mula in order to assert other properties of the system, just as we did in

TLA+. Some version of each invariant defined in the TLA+ specification

has been ported to the Ivy version, bar GoodTokenQueues, which asserts

that the token queue size is bounded by the number of nodes in the sys-

tem. This trivially holds in the Ivy specification since our t_q relation

implicitly limits the size of the queue to the cardinality of the node sort.

The only invariant that is not quite adequately ported over is the

CurrentPrivilegeLatestToken invariant, despite its appearance in the

inductive invariant. The Ivy form of current_privilege_latest_token

states that if a node has privilege, then its token sequence number must

be larger than all other nodes’ token sequences. The other half of the

TLA+ version additionally asserts that if no node has privilege, then there

exists some privilege message with sequence number greater than all

nodes’ token sequences. In a behavior, if this was not true, then the sys-

tem would be in deadlock, since no node would have privilege and no

privilege message would be in transit to grant a node privilege—so this

invariant is critical to the liveness of our system. Furthermore, we would

Chapter 3. Case Study: Suzuki-Kasami 20

like to ensure that there is exactly one privilege message in transit. Only

one node should be able to receive the message to gain privilege.

An attempt to state this invariant looks like so:

(forall N:node. ∼n_have_privilege(N)) ->

(exists I:seq_t, M:node. t_for(I, M) &

forall W:node. ∼seq.le(I, n_token_seq(W)))

However, the consequent of this formula is not in the decidable frag-

ment. Although positively it has the ∃∗ ∀∗ EPR structure, as discussed in

Section 2.4.2, through negation the VC will contain the quantifier struc-

ture of ∀seq_t ∀node ∃node, which introduces two edges on the stratifi-

cation graph: one from seq_t to node and another from node to itself.

Unfortunately, both edges introduce cycles in the graph. The latter is ob-

viously a cycle, but the former also introduces a cycle since the function

n_token_seq, which is used in this and other invariants, already intro-

duces an edge from node to seq_t.

If we would like to retain this invariant, we will need to find a dif-

ferent way to state it. However, with only two sorts in our specification,

we are limited in what we can express. Disregarding this desired invari-

ant, the topological sort of our stratification graph is node→ seq_t. Any

other edge would make a topological sorting impossible. Even without

this invariant, however, we are able to find an inductive invariant for the

mutex safety property. This should not be too surprising, since the sys-

tem that is deadlocked in a state where no node can gain privilege and

thus, no node can enter the CS, trivially maintains the mutex property.

21

Chapter 4

Case Study: NOPaxos
In this section we will discuss another case study on the Network-Ordered

Paxos (NOPaxos) protocol [8]. In the previous chapter we specified and

verified the Suzuki-Kasami algorithm in TLA+ and Ivy individually be-

fore comparing the specifications. In this chapter we will take a different

approach that is more faithful to the goal of translation. We will take

an existing TLA+ specification of NOPaxos, provided by the paper’s au-

thors, and translate that into Ivy. We assume the TLA+ specification to

correctly specify the underlying protocol—we do not provide arguments

for the correctness of the source TLA+ specification. In comparison to

the previous chapter’s exercise, where certain encoding decisions were

made in the Ivy specification that diverged from the TLA+ specification

but were justified for matching the protocol specification, here, we will

focus primarily on translation without worrying about whether or not

the specifications accurately describe the NOPaxos protocol.

4.1 The NOPaxos Consensus Protocol
NOPaxos is a distributed consensus protocol whose novelty comes from

incorporating the network layer into distributed consensus, resulting in

throughput and latency nearly matching unreplicated storage systems. Tra-

ditionally, when designing asynchronous state machine replication, there

are two key problems to address: dropped messages and the arbitrary or-

dering of messages. When the network is treated as a black box of asyn-

chrony, state machine replication relies on expensive consensus protocols

between nodes of a system to provide an ordering over instructions to ex-

ecute. However, the network does not need to be viewed in this manner.

While dropped messages are currently unavoidable, something can be

done to address message ordering. To this end, the authors of NOPaxos

introduce the ordered unreliable multicast (OUM) network primitive that

Chapter 4. Case Study: NOPaxos 22

can be implemented with programmable switches. This network-layer

feature sends multicast messages with two important properties:

1. Ordered Multicast: If two messages, m and m′, are multicast to a

set of processes, R, then all processes in R that receive m and m′

receive them in the same order.

2. Multicast Drop Detection: If a message, m, is multicast to a set of

processes, R, then either: (1) every process in R receives m or a drop

notification for m before receiving the next multicast message, or (2)

no process in R receives m or a drop notification for m.

The OUM primitive is implemented in a switch called the sequencer. For

a set of OUM recipients, the sequencer sits between the clients and re-

cipients, and simply tags each multicast message with a sequence that

increments by one for each message. In this way, recipients can uncover

if they have missed a message from the sequencer.

The predetermined ordering granted by OUM allows NOPaxos to

complete a round of consensus without the need for replica coordination.

At any given moment, replicas in the system will keep track of the cur-

rent view, which consists of a tuple of the OUM session ID, correspond-

ing to the sequencer in charge for that session, and the leader sequence

number, corresponding to the number of leader changes the system has

undergone. The leader for each view is predetermined by this view ID.

In the “normal” case of the protocol, client requests are tagged with a

sequence number then forwarded to the replicas. Replicas acknowledge

client requests as long as the incoming sequence matches the expected

sequence number (i.e., the replica has received all previous sequence

numbers) and the sender is acknowledged as the current sequencer by

the view ID. If a replica is the leader of the current view, it will execute

the request and respond to the client with the result. All other repli-

cas will respond to the client without including a result. Once the client

receives a majority of responses with matching view IDs, one of which

must be from the leader, the client will know that its request has been

Chapter 4. Case Study: NOPaxos 23

persisted (and the result of its request). In this way, NOPaxos eliminates

the need for replica coordination when all messages are delivered, which

is an improvement over traditional distributed consensus protocols such

as Multi-Paxos [22] and Raft [14].7

There are three “non-normal” subprotocols in NOPaxos that require

coordination between the replicas:

1. Gap Agreement: Since the sequencer only sends each multicast out

once and does not store a history of requests, the replicas need to

coordinate amongst themselves to deal with dropped messages.

2. View Change: OUM session termination and leader failure require

the functioning replicas to coordinate the move into the next view

without violating consistency.

3. Synchronization: As an optimization, periodically, the leader will

synchronize its logs with the other replicas, allowing the replicas to

execute operations and update their local storage state. Recall that

typically only the leader will execute the requests it receives.

For brevity, we omit further details on these subprotocols.

4.2 Overview of NOPaxos in Ivy
The specification in Ivy defines five sorts:

1. seq_t: totally ordered sort (same as the one defined in Section 3.3),

2. replica: nodes in the system that maintain a log of client requests—

we expect this log to be consistent across replicas,

3. r_state: an enumerated type to represent a replica’s status,

4. quorum: to represent quorums of replicas, and

5. value: values that clients can propose.

7In these protocols, only the leader for each round processes client requests. Once it

picks a request for a round of consensus, it will forward the message to the other replicas

and wait for a majority to acknowledge it. Once a majority responds, the leader applies

the operation, responds to the client, and sends another message to the replicas inform-

ing them of the decision. This coordination increases the number of messages and time

it takes for each round of consensus compared to NOPaxos, decreasing throughput.

Chapter 4. Case Study: NOPaxos 24

The replica state consists of individual relations for each replica state

field, and there is an individual relation for each message type the TLA+

specification defines. To represent the sequencer, since the TLA+ speci-

fication uses a function from numbers as sequencer IDs to numbers, we

define a binary relation of two seq_t elements.

For the sake of decidability, our specification does not include any

functions. In the rest of the specification there are two formulae that in-

troduce edges in the stratification graph. The first formula is an axiom

which states that every quorum intersects:

axiom [quorum_intersection]

forall Q1:quorum, Q2:quorum.

exists R:replica. member(R, Q1) & member(R, Q2)

This axiom adds an edge from quorum to replica. This sort of formula is

the de facto method to capture the core property of set majorities in many-

sorted FOL [10]. Traditionally, in protocol descriptions, set majority is

verified by checking the cardinality of some S′ ⊆ S satisfies |S′| × 2 ≥ |S|.
Since we cannot express set cardinality in FOL, we define a new sort,

in this case, quorum, that captures the set majority property through an

axiomatized relation, member, over the source sort, replica.

The second formula that adds edges to the stratification graph is our

desired safety property. It states that for every two quorums of matching

responses for a given log index the stored value is the same:8

invariant [consistency]

forall V1:value, V2:value, I:seq_t. (

(exists Q:quorum. member(lead, Q) &

forall R:replica. member(R, Q) ->

m_request_reply(R, V1, I)) &

(exists Q:quorum. member(lead, Q) &

forall R:replica. member(R, Q) ->

m_request_reply(R, V2, I))

) -> V1 = V2

8This formula is more convoluted than consistency invariants for traditional con-

sensus protocols since in NOPaxos requests are only confirmed to be persisted on the

client-side—recall that the client waits for a quorum of matching responses.

Chapter 4. Case Study: NOPaxos 25

This formula gives us edges from value, seq_t, and quorum to replica.9

Thus, an acceptable topological sort for the sorts is r_state→ quorum→
value→ seq_t→ replica, and our specification is decidable.

In addition to the consistency invariant, there are sixteen other in-

variants specified which together form an inductive invariant for the

specification. Nine of these invariants are added to constrain the relations

of our model in a “sensible” manner—what this means will be discussed

next. The other seven invariants help to assert expected behavior of the

system. The TLA+ specification did not come with any invariants besides

the primary consistency property, so all these invariants were manually

discovered. These invariants have also been “backported” to the TLA+

specification to model-check their validity. We should always expect in-

ductive Ivy invariants to hold in the source TLA+ specification.

4.3 Deviations from TLA+

In this section we will document notable differences between the TLA+

and Ivy specifications. As was the case for the Suzuki-Kasami algorithm,

plain old data (POD) types are more-or-less straightforward to define and

modify in actions. On the other hand, it is particularly difficult to repre-

sent non-POD types, such as the log of NOPaxos.

4.3.1 Relational Fields

Certain POD replica state lends itself nicely to being expressed as a func-

tion (e.g., session message number and replica status). However, as briefly

mentioned in Section 4.2, for the sake of decidability, we seek to avoid

defining them as functions if possible. What we can do instead is to con-

vert these fields into a binary relation where the first element is the local

replica and the second is the POD field. Then, we can provide some basic

bookkeeping to retain the semantics of a function.

9When converted to PNF, this results in a formula, φ, with the quantifier structure

∀V1,V2:value ∀I:seq_t ∀Q1,Q2:quorum ∃ R1,R2:replica. φ.

Chapter 4. Case Study: NOPaxos 26

To capture the injective nature of a binary field relation, R, with ele-

ments of sort S and T, respectively, we can define a “coherence” invariant:

∀S ∀T1, T2. R(S, T1) ∧ R(S, T2) =⇒ T1 = T2

Since this formula is only universally quantified, we will always be able

to specify it without sacrificing decidability. Ideally, we would also like

to enforce the existence of this mapping in another invariant of the form:

∀S ∃T. R(S, T)

However, this may lead the specification out of the decidable fragment

since it will introduce an edge from S to T. Even though we cannot al-

ways specify this “existence” invariant, this is not a real cause for concern

due to the way that we access and modify these fields.

To access and/or modify such a field in an action, we can write a

“guard” if-statement over the action which evaluates to true if a mapping

is defined for the desired field’s relation. For instance, provided a local

first element, S′, using the Ivy syntax, we can wrap an action with:

if some T′:T. R(S′, T′) { ... }

Then, the element T′ ∈ T will represent the current mapping of this field

and will be usable in the body of the if-statement. When used in this

manner, it turns out to not be imperative that we maintain the latter ex-

istence invariant since a mapping that is undefined in the pre-state will

not satisfy the guard condition. If the entire transition logic is defined in

the body of the if-statement, then the post-state will remain unchanged,

so the inductive invariant will still hold. If a mapping does exist, by the

first coherence invariant we know that the mapping is unique and there

is only one choice for T′. Then, the action will be evaluated accordingly

and we will still discover if the transition violates inductiveness.

4.3.2 Log Encoding

The trickiest part of the TLA+ specification to translate is the replica’s log.

In the TLA+ specification the log is defined as a sequence of values. In

Ivy, we can use two relations to mimic the log:

Chapter 4. Case Study: NOPaxos 27

1. r_log_len(R:replica, I:seq_t), which specifies that the replica,

R, has a log of length I, and

2. r_log(R:replica, I:seq_t, V:value), which specifies that replica

R has value V at index I of its log.

To constrain the log behavior we provide three basic invariants:

invariant [ll_coherence]

(r_log_len(R, I1) & r_log_len(R, I2)) -> I1 = I2

invariant [log_coherence]

(r_log(R, I, V1) & r_log(R, I, V2)) -> V1 = V2

invariant [log_valid]

(r_log(R, I, V) & r_log_len(R, L)) -> seq.le(I, L)

The first two invariants are the same coherence invariants mentioned in

Section 4.3.1, where we expect these relations to behave as a function.

The last invariant, log_valid, asserts that the log length must be greater

than or equal to every index of elements that exist in the log. Ideally, we

would like to add at least one more invariant of the form:

(r_log_len(R, I) & seq.le(J, I)) ->

exists V. r_log(R, J, V)

This would assert that every index less than or equal to the log length

is filled. Unfortunately, this would introduce an edge from replica to

value, which would create a cycle with our consistency property.

To access an element of the log, we need to again add a guard condi-

tion. However, this condition cannot always be checked before any logic

of the transition is performed, since we may only know what index of

the log to access after some prior computation, or only expect an index to

be filled in a particular branch of an action. Therefore, there is a chance

that parts of a transition are taken, but an expected log slot is undefined,

leading to a state that violates the invariant. To resolve such an issue,

we can undo any state change taken before the log access guard in the

else-branch of the guard. This resolves such inconsistencies in a manner

similar to the resolution of an undefined relational field, where the action

does not modify any state so the invariant still holds.

Chapter 4. Case Study: NOPaxos 28

4.3.3 View Change and Synchronization Subprotocols

Using this encoding of the log, we were unable to specify the view change

and synchronization subprotocols of NOPaxos.10 Both of these subpro-

tocols require sending parts of the log in a message to another replica,

and we were unsure of how to effectively model this. For the specifica-

tion, since we do not model the view change subprotocol, we enforce that

there is a single sequencer and single leader. This prevents view changes,

which can be triggered by both new sequencers and other replicas.

To enforce a single sequencer, we use a pair of invariants which assert

that only a defined individual seq_t element, sequencer, can be enabled:

invariant [single_sequencer_1]

(S = sequencer & s_seq_msg_num(S, I)) -> seq.le(one, I)

invariant [single_sequencer_2]

S ∼= sequencer -> ∼s_seq_msg_num(S, I)

To fix a single leader, we axiomatize a relation that is only true for an

individual replica element, lead:

relation leader(R:replica)

axiom [single_leader] leader(R) <-> R = lead

Without view changes, the view ID remains static, so we drop the view

ID field usage from the specification entirely.

Like many of the consensus protocols, the failure cases of the protocol

are the most complex, and thus, some of the most important to verify.

Unfortunately, we were unable to come up with a way to encode sending

portions of the log, at least in the current way that the log is encoded.

In the final chapter, Chapter 6, we will cover some additional portions

of Ivy that we did not utilize that may have allowed us to fully specify

NOPaxos, such as defining a modularized log type that could be used as

elements of relations and functions.

10Naive attempts to encode log combination during view changes led us out of the

decidable fragment when querying for the max index of multiple log relations. This

called for quantifying over replicas, indices, and values for the existence of an individual

replica, index, and value (i.e., ∀∗ ∃∗ quantifier alternations).

29

Chapter 5

Towards Mechanized Translation
In this chapter we will begin laying down the groundwork for some ba-

sic translation rules from TLA+ to Ivy. One of the preliminary concerns

to keep in mind is that TLA+ is dynamically-typed. While it is possible to

“strongly-type” a specification by adding what is customarily named a

TypeOK invariant which ensures that every transition maintains type co-

herence (see the Suzuki-Kasami specification for an example of this), such

a formula is ultimately optional in TLA+. This allows for certain short-

cuts, such as defining a single set to hold all required message types (this

design is used in the TLA+ specification of NOPaxos). On the other hand,

Ivy is strongly-typed—every FOL term and formula must be assigned a

static sort. As with any dynamically-typed language, there is always a

concern that the source file is ill-typed in some fashion. Before we attempt

to translate, we would like to ensure that a source TLA+ specification is

well-typed. We will assume that sufficiently powerful type-inference can

be conducted on a TLA+ specification which will add type annotations to

any well-typed specification and reject any ill-typed specification [12].

Another difference to reiterate here lies in the specification design

choice. Ivy builds upon the syntax of many-sorted FOL. On the other

hand, TLA+ is based upon Zermelo-Fraenkel set theory with the axiom

of choice (ZFC), which is a single-sorted FOL theory where the only sort

is the set.11 However, TLA+ includes a number of extensions and idiosyn-

crasies that make translation difficult, such as using sequences, records,

or even other functions as the domain of a function. Previous work has

already attempted to define certain rewriting rules for the syntax of TLA+

into FOL [11]. Here, we will expand on concerns specific to Ivy.

11This provides a justification for why TLA+ is untyped. Sets, as conceived in ZFC,

can contain anything except themselves.

Chapter 5. Towards Mechanized Translation 30

5.1 Numbers
The least troublesome way to encode numbers in Ivy is through a totally

ordered sort, as we did in both case studies. This encoding captures the

key property of total ordering over numbers but fails to specify arithmetic

operations such as addition and subtraction. This will be acceptable for

certain protocols (e.g., Suzuki-Kasami), but will ultimately be inadequate

for more complex protocols.12 In the final chapter, in Section 6.2, we will

discuss some options to use arithmetic theories, as well as the complexity

they introduce and why we did not utilize them.

5.2 Sets and Functions
Each constant set in TLA+ should be translated into a sort in Ivy (e.g.,

Node from Suzuki-Kasami). To encode variable POD-element sets in Ivy,

the set can be conceived of as a mapping from its elements to a boolean

indicating whether or not an element is in the set. If a TLA+ set consists

of records of k POD fields (e.g., request messages in Suzuki-Kasami with

three fields), then a k-ary relation can be constructed in Ivy to model the

set. Then, to model adding to the set we can define the specified relation

mapping to true, and to remove, we define the mapping to be false. Even

if a TLA+ set is not well-typed, we can attempt to extract each type into

its own relation, like how we dealt with messages in NOPaxos.

For top-level functions defined in TLA+ with POD domain and range,

we can follow the translation detailed in Section 4.3.1 to ensure decid-

ability. For nested functions (e.g., nState in Suzuki-Kasami), we can de-

structure them into their separate parts then convert any functions into

12This would have eventually been a problem for the NOPaxos protocol. When a

sequencer invokes a view change, meaning a new sequencer will take over, the new

sequencer will begin its session message number count from one. Then, for a replica

to query into its log based off a session message number, it needs to compute an offset

from the tail of the log, requiring subtraction. See the HandleSlotLookup transition in

the TLA+ specification for this logic.

Chapter 5. Towards Mechanized Translation 31

relations as before. By the translations outlined above, we can convert

all POD sets and functions from TLA+ into relations in Ivy. This converts

set membership and function application queries in TLA+ into relational

mapping queries in Ivy. Further work still needs to be done to translate

non-POD sets and functions.

5.3 Actions and Modifying State
The use of destructured sets and functions in actions is convenient to

translate due to the imperative style of programming in Ivy. We only

need to concern ourselves with updating the modified relations/func-

tions in a transition, so our specification does not get cluttered by need-

ing to specify the post-state of unmodified state, as would be the case

in TLA+. Since actions are essentially always performed over individual

nodes (as expected of a distributed system), state change in TLA+ typi-

cally does not involve quantification over sets or functions. This makes

translation more or less straightforward since we only need to adjust in-

dividual relation mappings at these steps in Ivy.

There are, however, instances in TLA+ where we need to perform an

update contingent on an entire set, such as when we want to broadcast

a message to all nodes in the system. In Ivy, we would not be able to do

this in a definite number of individual update steps since we do not have

a concept of the size of sorts. For such “multi-updates” over a relation,

we can use the Ivy syntax that allows us to dispatch an update over the

entire domain of a sort. This is best displayed through an example:

m_marked_client_request(R, m_value, slot) := true;

This line is from the handle_client_request action of the NOPaxos spec-

ification in which the sequencer tags a client request then multicasts it to

the replicas. By using the capitalized variable,13 R, Ivy understands that

13Capitalized variables always reference the entire domain of a sort. Variables that

do not begin with a capital letter can only refer to individual elements. The pseudo-

exception to this rule is under the existential quantifier—since all quantified variables

must also be capitalized—even though an existential variable refers to a single element.

Chapter 5. Towards Mechanized Translation 32

this update should be applied for each element of the sort of R, which is

deduced from the interface of handle_client_request.

All control flow in TLA+ can be translated to Ivy, though sometimes

TLA+ specifications can use disjunctive formulas instead of explicit if-

statements for control flow.14 However, as long as the enabling condi-

tions for each branch of a disjunction are translated, there is no semantic

difference in converting this TLA+ logic into if-statements. TLA+ does

not offer any other forms of control flow. Finally, only actions of TLA+

occurring in the Next formula should be prefaced with export in Ivy,

which will inform Ivy to verify the action for inductive invariance. Other

actions that are only called within other actions should not be expected

to maintain inductive invariance (e.g., replace_item in NOPaxos).

5.4 Sequences
Linear data structures are crucial to many distributed protocols. We saw

how the Suzuki-Kasami mutex used a queue of nodes and NOPaxos used

a log of values. The default linear data structure in TLA+ is the sequence,

which provides an interface powerful enough to act as an array from a

general-purpose programming language. One possibility for encoding

a basic sequence can be seen in Section 4.3.2. For some protocols this

may be enough,15 but as witnessed in Section 4.3.3, there are clear limi-

tations. To support full translation we would like to encode an Ivy data

type that can match the sequence interface of TLA+. In the final chapter

we will discuss some built-in library collections Ivy provides—including

an array module—that might assist in this goal, but for now we note this

pronounced gap in translation capability.

14For instance, our Suzuki-Kasami TLA+ specification does not use if-statements for

control flow in any of its actions of Next.
15For instance, this encoding would be acceptable for Raft’s log operations, since

Raft’s view change protocol only requires sending and updating individual log slots.

33

Chapter 6

Conclusion and Future Work
Distributed systems and protocols are foundational to modern comput-

ing, and we want to ensure that they are always safe. The central motiva-

tion for this project lies in the capability of expressing distributed proto-

cols in a decidable logic, allowing Ivy to discharge the proofs of inductive

invariance to SMT solvers. In this paper we began to build a framework

for mechanized translation from TLA+ to Ivy despite the significant dif-

ferences in specification languages. Ultimately, if this translation can be

realized, this will go a long way not just towards building safer systems

now, but also towards normalizing and making formal methods accessi-

ble for the future. Admittedly, there is still a lot more work to be done

here, specifically in terms of translating complex types and actions into

FOL. Fortunately, there are some key portions of Ivy that we did not uti-

lize in our case studies. Here, we will discuss them briefly to explain how

they can contribute to this task. Finally, as an extension of translation, we

will also discuss recent work on automatic inductive invariant inference.

6.1 Modules and Modular Decidability
In our specifications, and in the vast majority of public Ivy specifications,

the module system that Ivy provides goes unused. Most specifications

consist of a single top-level specification to verify. However, one of the

benefits of the Ivy module system is that it can assist in breaking cy-

cles in the stratification graph. Ivy adopts an assume-guarantee reasoning

where an individually verified module can expose an interface that an-

other module, which is also individually verified, can use and assume

to be correct. In fact, both modules can rely on one another. While this

sounds cyclic on the surface, when we individually verify a module, we

are assuming that the provided interface from the other module has al-

ways held in the past. In this way, we are proving that neither module is

Chapter 6. Conclusion and Future Work 34

the first to violate an assumption. Thus, by modularizing specifications,

there is the potential to break undecidable quantifier alternations into

separate modules for individual verification. While this sounds pow-

erful, it takes a level of ingenuity to figure out how to split a specification

into complimentary modules. The authors of the Ivy tool discuss exam-

ples of using a modular design for decidability in [21].

Ivy also provides some built-in library modules for types such as ar-

rays, maps, queues, and iterators, as well as object interfaces modeling

TCP, UDP, and timer functionality. While we have known of these files

since the start of using Ivy, there is no existing documentation displaying

their usage. We only uncovered a set of specifications using these mod-

ules late into the project timeline, and our attempts at emulating their

usage of these library types and objects were unsuccessful. If we can fig-

ure out how to understand and properly utilize these modules—which

will rely on a strong comprehension of the assume-guarantee reasoning

of multi-module specifications—this has the potential to make translation

much more natural by exposing interfaces to common data structures.

6.2 Interpreted Theories
The Z3 SMT solver provides some built-in interpreted theories for Ivy to

use, including natural numbers, integers, and bit vectors. While we at-

tempted to use these built-in number theories in previous versions of our

verification attempts, they constantly led us out of the decidable frag-

ment. Specifically, there are the constraints that universally quantified

variables may only occur as arguments to uninterpreted symbols or as

arithmetic literals.16 For instance, we are unable to state the following

(from a version of Suzuki-Kasami specified with built-in numbers):

invariant [no_consecutive_privilege]

(t_for(I, N) & J = I + 1 & t_for(J, M)) -> N ∼= M

16See the section on the finite almost interpreted fragment from: http://microsoft.

github.io/ivy/decidability.html.

http://microsoft.github.io/ivy/decidability.html
http://microsoft.github.io/ivy/decidability.html

Chapter 6. Conclusion and Future Work 35

Since I is a universally quantified interpreted variable, it cannot be used

as an argument to “+,” which is an interpreted symbol. Naturally, basic

arithmetic is imperative to many protocols, and using interpreted the-

ories is the easiest way to gain access to this functionality. Interpreted

theories, perhaps in conjunction with the module system, can be used in

a manner to circumvent their constraints. For an extended discussion on

our experiences using interpreted theories, see Appendix A.1.4.

6.3 Code Extraction
The final feature of Ivy we did not utilize was the C++ code extraction.

While we can believe that our specification is properly verified, we should

still be wary, firstly, of whether our specification correctly specifies the

desired protocol, and secondly, whether the specification can produce

a correct implementation [2]. In our case, we were unable to execute

Ivy’s code extraction command successfully on either the Suzuki-Kasami

mutex or the NOPaxos protocol in their current state. We will need to

explore this feature in greater detail to understand under what conditions

code extraction is possible and what assumptions the Ivy developers take

on to produce implementations from specifications.

6.4 Automatic Invariant Inference
Even after translating a TLA+ specification into Ivy, it can take a lot of

manual effort to come up with an inductive invariant for the system

(see Appendix A.1.2 for insights into this process). Recent work has at-

tempted to ease this burden by automating the discovery of inductive

invariants. The ability to automatically search for an inductive invariant

would greatly augment a tool for translation from TLA+ to Ivy, since we

do not expect that invariants specified in a TLA+ specification will be in-

ductive on their own. Basic invariants may not even be defined, like in

the NOPaxos TLA+ specification.

Such tools for automatic inductive invariant inference that take in Ivy

specifications as input include I4 [9], SWISS [3], and DistAI [25]. I4 and

Chapter 6. Conclusion and Future Work 36

SWISS adopt a similar approach of attempting to generalize invariants

that hold over finite instances of a system, whereas DistAI constructs an

enumerated set of candidate invariants before filtering out those that fail

to be inductive. Notably, only SWISS is able to generate invariants con-

taining existential quantifiers, though these formulae are generated from

templates, so the tool is not fully automated. I4 and DistAI only consider

universally quantified candidate invariants.

Another more comprehensive tool for automatic inductive invariant

inference that is closely related to Ivy—and was heavily inspired by Ivy—

is mypyvy, developed by James R. Wilcox [23]. It has its own specifica-

tion language—which matches the two-state vocabulary of TLA+ quite

closely—that can be used to verify infinite-state systems nearly identi-

cally to how Ivy verifies a system. For invariant inference, it employs

different techniques than the other tools mentioned, applying some com-

bination of universal property-directed reachability [5] and the primal-

dual Houdini algorithm [15].17 Wilcox writes in his doctoral thesis that

there are plans to provide translation from Ivy to mypyvy and back again,

allowing one to seamlessly search for inductive invariants.

While we initially sought to use mypyvy for this project, we found the

imperative language of Ivy much more convenient for describing transi-

tions. In mypyvy, it is not possible to modify variables more than once in

a transition.18 Nevertheless, if translation between Ivy and mypyvy can

be realized, then mypyvy appears to be the most promising tool for the

task of automatic inductive invariant inference, being the most actively-

developed tool in this area.

17Since we did not end up using mypyvy seriously, we did not read very carefully

into these techniques.
18For instance, the exit transition from the Suzuki-Kasami specification calls for two

modifications of the token queue, and we struggled to express this in mypyvy.

37

References
[1] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. “Paxos Made Live:

An Engineering Perspective.” In: PODC. ACM, 2007.
[2] Pedro Fonseca et al. “An Empirical Study on the Correctness of Formally Verified

Distributed Systems.” In: EuroSys. ACM, 2017.
[3] Travis Hance et al. “Finding Invariants of Distributed Systems: It’s a Small (Eno-

ugh) World After All.” In: NSDI. USENIX, 2021.
[4] Chris Hawblitzel et al. “IronFleet: Proving Practical Distributed Systems Cor-

rect.” In: SOSP. ACM, 2015.
[5] Aleksandr Karbyshev et al. “Property-Directed Inference of Universal Invariants

or Proving Their Absence.” In: J. ACM 64.1 (2017).
[6] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and

Software Engineers. USA: Addison-Wesley Longman Publishing Co., Inc., 2002.
[7] Harry R. Lewis. “Complexity results for classes of quantificational formulas.” In:

Journal of Computer and System Sciences 21.3 (1980).
[8] Jialin Li et al. “Just Say NO to Paxos Overhead: Replacing Consensus with Net-

work Ordering.” In: OSDI. USENIX, 2016.
[9] Haojun Ma et al. “I4: Incremental Inference of Inductive Invariants for Verifica-

tion of Distributed Protocols.” In: SOSP. ACM, 2019.
[10] Kenneth McMillan and Oded Padon. “Deductive Verification in Decidable Frag-

ments with Ivy.” In: Springer, Cham, 2018.
[11] Stephan Merz and Hernán Vanzetto. “Encoding TLA+ into unsorted and many-

sorted first-order logic.” In: Science of Computer Programming 158 (2018).
[12] Stephan Merz and Hernán Vanzetto. “Refinement Types for TLA+.” In: NASA

Formal Methods. Springer, 2014.
[13] Chris Newcombe et al. “How Amazon web services uses formal methods.” In:

Commun. ACM 58.4 (2015).
[14] Diego Ongaro and John Ousterhout. “In Search of an Understandable Consensus

Algorithm.” In: ATC. USENIX, 2014.
[15] Oded Padon et al. “Induction Duality: Primal-Dual Search for Invariants.” In:

Proc. ACM Program. Lang. 6.POPL (2022).
[16] Oded Padon et al. “Ivy: safety verification by interactive generalization.” In: SIG-

PLAN Not. 51.6 (2016).
[17] Oded Padon et al. “Paxos Made EPR: Decidable Reasoning about Distributed

Protocols.” In: Proc. ACM Program. Lang. 1.OOPSLA (2017).
[18] Oded Padon et al. “Reducing liveness to safety in first-order logic.” In: Proc. ACM

Program. Lang. 2.26 (2018).
[19] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. “Programming and Proving

with Distributed Protocols.” In: Proc. ACM Program. Lang. 2.POPL (2017).
[20] Ichiro Suzuki and Tadao Kasami. “A Distributed Mutual Exclusion Algorithm.”

In: ACM Trans. Comput. Syst. 3.4 (1985).
[21] Marcelo Taube et al. “Modularity for Decidability of Deductive Verification with

Applications to Distributed Systems.” In: PLDI. ACM, 2018.
[22] Robbert Van Renesse and Deniz Altinbuken. “Paxos Made Moderately Com-

plex.” In: ACM Comput. Surv. 47.3 (2015).
[23] James R. Wilcox. “Compositional and Automated Verification of Distributed Sys-

tems.” PhD thesis. University of Washington, 2021.
[24] James R. Wilcox et al. “Verdi: A Framework for Implementing and Formally Ver-

ifying Distributed Systems.” In: PLDI. ACM, 2015.
[25] Jianan Yao et al. “DistAI: Data-Driven Automated Invariant Learning for Dis-

tributed Protocols.” In: OSDI. USENIX, 2021.

38

Appendix

A.1 Experiences Using Ivy
In this section we will discuss, informally, some of our experiences with

Ivy. Ivy comes with documentation,19 but it is non-exhaustive in its cov-

erage of the tool’s functionality. Perhaps most crucially, it does not cover

Ivy’s library modules or examples using them. While the Ivy repository

contains a variety of specifications of ranging complexities, they are not

typically well documented, and thus, difficult to reason carefully about.

A.1.1 Revisiting Decidability

Our initial understanding of decidability came from one of the first pa-

pers on Ivy [17], which constructs the stratification graph with these rules:

1. Function Edges: Let f be a function from sorts s1, . . . , sk to sort s.

Then, there is an edge from si to s for every 1 ≤ i ≤ k.

2. Quantifier Edges: Let ∃x : s be an existential quantifier that resides

in the scope of the universal quantifiers ∀x1 : s1, . . . , ∀xk : sk. Then,

there is an edge from si to s for every 1 ≤ i ≤ k.

However, this definition is not the most precise. From experience, we

know that not all defined functions in a specification contribute to the

stratification graph.20 This led us to the definition of Section 2.4.1 where

we only account for functions used/introduced in axioms and invariants.

As it turns out, this also is not as precise as it can be. In fact, we can

have functions that induce cycles—or are cycles by themselves—occur in

invariants. For a simpler example of this phenomenon we can consider

an older version of the NOPaxos specification where we expressed a se-

quencer’s session message number as a function, like so:

function s_seq_msg_num(S:seq_t) : seq_t

19View the Ivy documentation here: http://microsoft.github.io/ivy/.
20By the above definition, function t_LN(I:seq_t, N:node) : seq_t from the

Suzuki-Kasami specification should induce a loop on seq_t.

http://microsoft.github.io/ivy/

Appendix 39

Using this definition, we were still able to define the invariant:

invariant [single_sequencer_1]

S = sequencer -> seq.le(one, s_seq_msg_num(S))

From our understanding, this function should have introduced a loop on

seq_t in the stratification graph, causing Ivy to reject the specification for

verification. While a better understanding of decidability is desired, in

the framework described by our work it is possible to entirely avoid this

complication by re-expressing functions as relations.

A.1.2 Building Inductive Invariance

In general, the process of building an inductive invariant comes from

identifying and eliminating a pre-state that is not actually reachable. Re-

call that an inductive invariant typically specifies an over-approximation

of the states that the system will actually enter, given the initial state.

When considering a counterexample to induction, once the offending

portion of the pre-state is identified, then a new invariant can be added to

prevent such a state from satisfying the prospective inductive invariant.

When verifying a specification, to view a counterexample to induc-

tion, the ivy_check command can be executed with the trace=true flag.

Ivy will identify a minimal counterexample and print the offending tran-

sition’s pre-state to the console, followed by any state change triggered

by the transition. Unfortunately, this command does not actually print

out the entire post-state of the transition, and one needs to carefully sift

through the action’s state modifications to identify the cause for failure.

This process quickly becomes tedious as a specification’s state increases.

As a note of caution to future users of Ivy, it can be disorienting when

Ivy uses numbers to represent elements of a total order, but the ordering

is the inverse of what we expect. For instance, a counterexample involv-

ing two totally-ordered elements may very well be axiomatized as:

seq.le(0,0) = true seq.le(1,0) = true

seq.le(0,1) = false seq.le(1,1) = true

Appendix 40

A.1.3 Using the GUI for Counterexamples

Ivy also provides a graphical user interface (GUI) to view counterexam-

ples if the ivy_check command is passed the diagnose=true flag. Ivy

draws functions and relations as arrows between individual elements.

Below is an example of the GUI display from Suzuki-Kasami:

Using the GUI, it is possible to view the entire pre- and post-state of the

counterexample transition. In our experience, the GUI was helpful when

searching for the inductive invariant of the Suzuki-Kasami specification.

However, a severe limitation of the tool is that it can only display rela-

tions up to an arity of two, and functions with one or fewer arguments.

This made the GUI unusable for the NOPaxos specification since most of

the message relations have an arity greater than two.

A.1.4 Quirks of Interpreted Theories

When writing our Ivy specifications, some of our first attempts involved

trying the built-in natural number and integer theories for numbers. How-

ever, in addition to the undecidability mentioned in Section 6.2, we also

commonly encountered counterexamples that we could not understand.

Appendix 41

For instance, one may notice that the inductive invariant specified for

the Suzuki-Kasami specification in Section 3.3.2 does not consist of any

formulae that would prevent decidability by the constraints outlined in

Section 6.2. However, when such an invariant is maintained in an equiva-

lent version of the Suzuki-Kasami specification where the only difference

is interpreting the sequence sort as a built-in natural number (or integer),

we encounter such a counterexample:

This post-state allegedly violates this invariant:

invariant [unique_tokens]

(t_for(I, N) & t_for(I, M)) -> N = M

However, as displayed by the GUI, there do not appear to be any t_for

relations that violate the invariant (look for the green arrows from index

to node elements, they all appear to be injective). The output produced

when verifying with the trace=true flag is also not helpful, since it prints

the portion of the action modifying t_for like so:

suzuki_kasami_int.ivy: line 117:

t_for(n_token_seq(fml:n) + 1,loc:m) := true

We are unsure of how to proceed given the provided counterexample

information. This example is available in the code repository.21

21Link to the Ivy file: https://github.com/markyuen/tlaplus-to-ivy/blob/main/

ivy/suzuki_kasami_int.ivy.

https://github.com/markyuen/tlaplus-to-ivy/blob/main/ivy/suzuki_kasami_int.ivy
https://github.com/markyuen/tlaplus-to-ivy/blob/main/ivy/suzuki_kasami_int.ivy

Appendix 42

Acknowledgements
This project would not have been possible without the support of my

friends, family, and faculty. I would like to extend my sincerest thanks to

Prof. Ilya, for piquing my interest in this topic two years ago which I have

come to deeply appreciate, and for their invaluable guidance throughout

this project. I would also like to thank George for their insights, contri-

butions, and feedback through this process.

I am also grateful to my suitemates, old and new, for their rapport

through these years; to a Capstone support group, including Dani, Linda,

Yanhua, and Ziting for tiding me through the final weeks of the project,

and to Zhang Liu for their feedback on the manuscript; and finally to LX,

for their unwavering companionship.

Yale-NUS College Capstone Project

DECLARATION & CONSENT

1. I declare that the product of this Project, the Thesis, is the end result of my own work and that
due acknowledgement has been given in the bibliography and references to ALL sources be they
printed, electronic, or personal, in accordance with the academic regulations of Yale-NUS College.

2. I acknowledge that the Thesis is subject to the policies relating to Yale-NUS College Intellectual
Property (Yale-NUS HR 039).

ACCESS LEVEL

3. I agree, in consultation with my supervisor(s), that the Thesis be given the access level specified

below: [check one only]

 Unrestricted access
Make the Thesis immediately available for worldwide access.

 Access restricted to Yale-NUS College for a limited period
Make the Thesis immediately available for Yale-NUS College access only from _____________
(mm/yyyy) to _______________ (mm/yyyy), up to a maximum of 2 years for the following
reason(s): (please specify; attach a separate sheet if necessary):
___.

After this period, the Thesis will be made available for worldwide access.

 Other restrictions: (please specify if any part of your thesis should be restricted)

Name & Residential College of Student

___________________________________ __________________________
Signature of Student Date

___________________________________ __________________________
Name & Signature of Supervisor Date

Mark Yuen, Elm College

April 1, 2022

April 1, 2022

Appendix 43

	Introduction
	What are Distributed Systems?
	Problem Statement
	Contributions

	Background
	Specifying Distributed Protocols
	Verifying Protocols with TLA+
	Inductive Invariance for Safety Properties
	Specifying Protocols with Ivy

	Case Study: Suzuki-Kasami
	The Suzuki-Kasami Mutex Algorithm
	Modeling Suzuki-Kasami in TLA+
	Modeling Suzuki-Kasami in Ivy

	Case Study: NOPaxos
	The NOPaxos Consensus Protocol
	Overview of NOPaxos in Ivy
	Deviations from TLA+

	Towards Mechanized Translation
	Numbers
	Sets and Functions
	Actions and Modifying State
	Sequences

	Conclusion and Future Work
	Modules and Modular Decidability
	Interpreted Theories
	Code Extraction
	Automatic Invariant Inference

	References
	Appendix
	Acknowledgements
	Declaration and Consent Form

