
Borrowing without Sorrowing
Implementing Extract Method Refactoring for Rust

Sewen Thy

Capstone Final Report for BSc (Honours) in

Mathematical, Computational and Statistical Sciences

Supervised by: Prof. Ilya Sergey

AY 2022/2023

Yale‐NUS College Capstone Project

DECLARATION & CONSENT

1. I declare that the product of this Project, the Thesis, is the end result of my own work and that

due acknowledgement has been given in the bibliography and references to ALL sources be they
printed, electronic, or personal, in accordance with the academic regulations of Yale‐NUS College.

2. I acknowledge that the Thesis is subject to the policies relating to Yale‐NUS College Intellectual
Property (Yale‐NUS HR 039).

ACCESS LEVEL

3. I agree, in consultation with my supervisor(s), that the Thesis be given the access level specified

below: [check one only]

 Unrestricted access
Make the Thesis immediately available for worldwide access.

 Access restricted to Yale‐NUS College for a limited period
Make the Thesis immediately available for Yale‐NUS College access only from _____________
(mm/yyyy) to _______________ (mm/yyyy), up to a maximum of 2 years for the following
reason(s): (please specify; attach a separate sheet if necessary):
___.

After this period, the Thesis will be made available for worldwide access.

 Other restrictions: (please specify if any part of your thesis should be restricted)

Name & Residential College of Student

___________________________________ __________________________
Signature of Student Date

___________________________________ __________________________
Name & Signature of Supervisor Date

Sewen Thy, Elm College

01/04/2023

01/04/2023Ilya Sergey

i

ii

Acknowledgements
I would like to express my deepest gratitude to my supervisor, Profes-

sor Ilya Sergey, for his invaluable guidance and unwavering support

throughout my thesis work. His endless encouragement, insightful feed-

back, and willingness to push me beyond my limits have been instru-

mental in shaping my research and helping me achieve my goals.

I am also indebted to the members of the VERSE lab, especially

Andreea Costea and Kiran Gopinathan, for their invaluable assistance

in organizing formalizations, algorithms, and guiding implementations.

Without their help, this thesis would not have been possible.

I would like to extend a special thanks to Juwon, who has been a con-

stant source of support and encouragement throughout this journey. Her

patience, understanding, and unwavering faith in my abilities have been

indispensable to my success.

Finally, I would like to thank my friends and suitemates for their end-

less encouragement and for sharing in both the joy and the stress of this

experience. From late-night study sessions to wine nights, your support

has been a crucial part of my Yale-NUS experience.

Thank you all for helping to make this journey such a meaningful and

rewarding one.

iii

YALE-NUS COLLEGE

Abstract
B.Sc (Hons)

Borrowing without Sorrowing

Implementing Extract-Method Refactoring for Rust

by Sewen THY

Rust is a programming language frequently favored for system and con-

currency applications due to its safety features and precise memory con-

trol but it lacks proper support for extract method refactoring which al-

lows for better code reuse and maintainability.

This thesis outlines a non-trivial implemention of an extract method

refactoring for Rust within the IntelliJ’s plugin. I saw common pat-

terns in developer’s manual extract method refactoring from open-source

projects and implemented my strategy to support extracting functions

that: (1) contains non-local control flows, (2) requires safe and minimal

borrowing, and (3) requires lifetime annotations. I designed the solu-

tions using a combination of static syntactical treatment, constraint anal-

ysis, and a novel use of program repair for refactoring to determine the

lifetime bounds. I then evaluate my implementation using real-world

open-source projects and comparing them to the state-of-the-art imple-

mentations.

Keywords: Rust, refactoring, extract method, lifetime, IntelliJ.

HTTPS://WWW.YALE-NUS.EDU.SG/
https://sewenthy.dev

iv

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Contributions . 1

2 Background 2

2.1 Rust . 2

2.1.1 Rust’s Memory Model 2

2.1.2 Important Constructs in Rust 3

2.2 Clean Code . 4

2.2.1 Extract Method Refactoring 4

2.3 Early Rust Refactoring . 5

3 Motivations 7

3.1 Methodology . 7

3.2 Real-world Examples . 8

3.2.1 Zola . 8

3.2.2 Rust . 9

3.2.3 Gitoxide . 11

v

3.3 Categories of Extraction Patterns 12

3.3.1 Ownership and Mutability 12

3.3.2 Non-elidible lifetimes 13

4 The Extract Method Algorithm 16

4.1 Non-local Control Flows . 16

4.2 Least Permissive Borrowing 17

4.3 Lifetime Repairs . 20

4.4 Implementation . 22

4.4.1 Failure modes . 23

5 Evaluation 26

5.1 Effectiveness . 26

5.2 Efficiency . 32

5.3 Discussions . 34

5.3.1 Type Inferences . 34

5.3.2 Cargo Check Trade Off 37

5.3.3 Technical Detail . 37

6 Conclusion 39

Bibliography 40

A Example Code Refactoring 42

A.1 Zola . 42

A.2 Rust . 42

A.3 Gitoxide . 43

1

Chapter 1

Introduction

1.1 Problem Statement

Rust is a programming language frequently favored for system and con-

currency applications due to its safety features and precise memory con-

trol. However, conventional refactoring method is not as effective for

extracting complex methods in Rust which hinders code reuse making it

hard to acheive good maintainability.

1.2 Contributions

This thesis aims to:

• contribute a non-trivial implemention of an extract method refac-

toring for Rust within the IntelliJ’s plugin.

• categorizes common patterns seen in manual extract method refac-

toring.

• support extracting functions with non-local control flows and main-

taining the same semantics.

• support extracting functions that borrows values from its caller.

• support extracting functions that requires named lifetime annota-

tions by contributing a novel implementation for refactoring using

program repair.

2

Chapter 2

Background

2.1 Rust

2.1.1 Rust’s Memory Model

To provide its strong safety guarantees, Rust enforces a unique memory

model. While other languages like Python and Java relies on garbage

collectors which has performance implications, C and C-like languages

allows developer freedom over precise memory which is more error-

prone, Rust has an ownership model which provides higher-level con-

trol and also cleans up memory without a garbage collector (Matsakis

and Klock II, 2014, Klabnik and Nichols, 2019).

In Rust’s memory model, values have its owner and references to the

values are called “borrows”. Value can be “moved” to another owner as

well. There can only be one owner of a value at any one time and when

the owner is not live, the value is dropped. This allows Rust to stop mem-

ory leaks. For borrowing values, Rust allows either multiple immutable

borrows and no mutable borrows or only one mutable borrow. With this

Rust ensures that there is only ever one-writer-multiple-reader scenarios

which is a thread-safe guarantee (Klabnik and Nichols, 2019, Matsakis

and Klock II, 2014).

https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html

Chapter 2. Background 3

The Rust compiler, rustc, contains the borrow checker which analyzes

the lifetime of the borrows and making sure that each borrow is sound.

For example, it is unsound to borrow a value and have that reference live

longer than the owner, so the borrow checker would flag this as a compiler

error (Klabnik and Nichols, 2019, Matsakis and Klock II, 2014).

When a value is passed to a function, it will either be moved, i.e.

a change of ownership, or it is borrowed by the function (Klabnik and

Nichols, 2019, Matsakis and Klock II, 2014). This affects semantics of the

program if the value is later used after it is passed into the function. This

is the important part to take into consideration when extracting Rust’s

method as the extracted method could violate Rust’s memory manage-

ment rules. For example, this can happen by having the extracted func-

tion taking ownership of a value that is needed in the original function

later or by borrowing the same values as mutable and keeping them alive

at the same time or even by borrowing multiple references that have dif-

ferent lifetime and not specifying its bounds making the borrow checker

rejects the extracted method.

2.1.2 Important Constructs in Rust

Structs are used to structure data and can have either values or references

as its field. If it has reference fields or a struct with a lifetime slot as a

field, then it need to have a lifetime annotation for said reference or slot

(Klabnik and Nichols, 2019).

Traits are a set of interfaces that a struct can implement. Trait methods

can have lifetime annotations to ensure whatever implements it meets

the borrow checker guarantee (Klabnik and Nichols, 2019).

Chapter 2. Background 4

Hence, references, structs, and trait have lifetime slots.

Lifetimes are non-lexical and is calculated by the borrow checker to ensure

that each reference (or borrow) is legal i.e. it cannot have unsoundness

or undefined behaviour by violating the terms of its borrow (Matsakis,

2016). Scope refers to the lifetime of a value, corresponding to the span of

time before that value gets freed (or, put another way, before the destruc-

tor for the value runs)(Matsakis, 2016). This describes how long a value

is valid. Lifetime refers to the lifetime of a reference, corresponding to

the span of time in which that reference is used (Matsakis, 2016).

2.2 Clean Code

For any application, keeping clean code is paramount for acheiving main-

tainability and an important part of clean code is good code reusability

(Martin, 2008). Ensuring the same functionalities are factored out into

modules or functions reduces code duplication. This allows future main-

tainer to only ever modify one module or function. Therefore, refactoring

tools need to make such refactoring as easy as possible to encourage clean

code practices like extract method.

2.2.1 Extract Method Refactoring

Extract method refactoring is characterized by the following features:

1. one or more block(s) of (duplicated) code is replaced with a function

call.

2. a new function is created containing the block of (duplicated) code.

For example, consider the following changes:

1 fn foo() -> int {

Chapter 2. Background 5

2 let x = 1;

3 - println!("x:␣%d", x);

4 - x

5 + bar(x)

6 }

7 +fn bar(x: i32) -> int {

8 + println!("x:␣%d", x);

9 + x

10 +}

It is considered an extract method refactoring as (1) lines 3-4 are re-

placed with line 5, a function call to bar and the new function bar is added

on lines 7-10.

2.3 Early Rust Refactoring

Some early works in refactoring was done by Sam, Cameron et al.

which implemented some related renaming and lifetime elisions (Sam,

Cameron et al., 2017). Our tool also implements lifetime elisions as part

of our readability optimization. They also mentioned how macro poses

challenge which we did encounter here in our analysis of borrowing. Al-

though as we shall conclude later, it would be mostly solved, at least in

our use case once we can query the types of variables using rustc.

Schäfer, Ekman et al. (along with (Schäfer, Verbaere et al., 2009,

Schäfer and de Moor, 2010)) has been very influential in informing works

on refactoring by giving sound framework while being in Java. While

not in Rust, these works proposed formalized methods to have seman-

tics preserving structural changes for Java which provides a good basis

for our future work in formalizing our patches.

Chapter 2. Background 6

Schäfer, Ekman et al. has also influenced a master thesis on automated

refactoring for Rust by Ringdal although they did not attempt to do au-

tomated lifetime annotations and their evaluations seem to suggest they

alter program semantics (Ringdal, 2020). Furthermore, their refactoring

takes on average around 2 seconds (but can take up to 8 seconds).

7

Chapter 3

Motivations

To show the prominence of these extract method refactoring done manu-

ally in the real-world, we conducted a search through commit messages

on open-source projects on GitHub and display the results below.

Note that it is quite hard to find these examples because most ex-

tract method refactorings are not contained within its own commit and

is mostly packed with other refactors into one commit and only very de-

tail oriented developers would have put that they did indeed extract a

method in this refactoring commit.

Throughout this thesis the state of the art refactoring tools we use

is IntelliJ Rust plugin (0.4.186.5143-223) and Visual Studio Code’s Rust

Analyzer plugin (v0.3.1451) with latest versions as of February 2023.

3.1 Methodology

First, we gathered the example projects and big open-source projects us-

ing Rust from this list of popular and the Rust language as well.

Then within each project, we run search through its git commit log

using the following command to filter for ones related to extract method

refactoring:

1 $ git log --grep="extract\|␣move\|refactor" -i --all \

https://github.com
https://github.com/rust-unofficial/awesome-rust

Chapter 3. Motivations 8

2 --full-history

Once we got the shorter commit list, we manually verify whether each

change in the code is actually an extract method refactoring using the

characterization in 2.2.1.

3.2 Real-world Examples

From the list of examples, we will highlight a few commits in the open

source projects and see the difference between how a developer manually

extracts the function and what IntelliJ’s Rust plugin outputs.

3.2.1 Zola

Zola is a lightweight web framework in Rust that is actively maintained.

We found a commit that extracts a piece of code with non-local control

flow (see more in appendix A.1). We simplified the pattern below where

you can see how the code is simply returning a String if everything is

okay and, otherwise, terminates the function markdown_to_html early on

line 8:

1 pub fn markdown_to_html (...) -> Result<Rendered>

2 { let fixed_link = if ... { return ...; } else { ... }; }

Extraction by author

Within this commit, the author simply use a Result<T, E> crate which al-

lows for differentiating the success and failure results and then propagate

the control-flow back to the main markdown_to_html function:

1 pub fn fix_link(_: &str, _: &RenderContext) -> Result<String>

2 { let result = if ... {return Err(...)} else {...}; Ok(result) }

https://github.com/getzola/zola
https://github.com/getzola/zola/commit/774514f4d4efc65e99a9108a6fc886e9747e567c
https://doc.rust-lang.org/std/result/

Chapter 3. Motivations 9

3 pub fn markdown_to_html (...) -> Result<Rendered> {

4 let fixed_link =

5 match fix_link(...) { Ok(r) => r,Err(...) => {return ...} };

6 }

Extraction by IntelliJ’s Rust plugin

When we use the IntelliJ’s Rust plugin, the extraction did not account for

this non-local control flow. It simply copies the code block and using its

own syntactic traversal and type inference to populate the signature for

its input and output types:

1 pub fn fix_link(_: &RenderContext, mut _: &mut Option<Error>,

2 _: &Cow<str>) -> String {

3 let fixed_link =

4 if ... {return Event::Html(Borrowed(""));}} else {...};

5 fixed_link }

6 pub fn markdown_to_html (...) -> Result<Rendered>

7 { let fixed_link = fix_link(...); }

This did not compile because the non-local return is treated as a re-

turn value from the extracted fix_link function rather than the caller

markdown_to_html function.

3.2.2 Rust

The Rust language itself is actively maintained and contained many

refactoring. We found a commit that extracts a piece of code with named

lifetime parameter (see more in appendix A.2). Below is the signature

of the main try_extract_error_from_fulfill_cx function whose body is

being extracted.

https://github.com/rust-lang/rust
https://github.com/rust-lang/rust/commit/1f0a96862ac9d4c6ca3e4bb500c8b9eac4d83049

Chapter 3. Motivations 10

1 fn _<’tcx>(mut _: Box<dyn TraitEngine<’tcx> + ’tcx>,

2 _: &InferCtxt<’_, ’tcx>, _: ty::Region<’tcx>,

3 _: Option<ty::Region<’tcx>>) -> Option<DiagnosticBuilder<’tcx>>

Extraction by author

The author of the commit recognizes the complex uses of

named lifetimes, as well as the fact that there are 2 life-

times for the &InferCtxt<’_, ’tcx> input so these lifetime can-

not be elidded safely. Therefore, in the extracted method

try_extract_error_from_region_constraints, they copy over the same

kind of named lifetimes (as well as some unrelated new refactoring) and

then replaces the main try_extract_error_from_fulfill_cx function with

a function call and appropriate parameters:

1 fn _<’tcx>(_: &InferCtxt<’_, ’tcx>, _: ty::Region<’tcx>,

2 _: Option<ty::Region<’tcx>>, _: &RegionConstraintData<’tcx>,

3 ...) -> Option<DiagnosticBuilder<’tcx>>

Extraction by IntelliJ’s Rust plugin

Since there are extra unrelated refactoring, we are not assessing whether

the refactoring done by the plugin will result in the exact same code but

that it handles the necessary annotations of named lifetimes that cannot

be elidded. However, the plugin did not do any annotations.

1 fn _(_: &InferCtxt, _: Region, _: Option<Region>) ->

2 Option<DiagnosticBuilder<ErrorGuaranteed>>

Even though in the original function there are named lifetimes that could

be simply copied over, this plugin’s implementation did not account for it

and so this extracted code did not compile. Furthermore, while the type

Chapter 3. Motivations 11

inference in IntelliJ Rust plugin knows that the struct Region requires a

lifetime annotation, it did not attempt to do any annotation there either.

3.2.3 Gitoxide

Gitoxide is project that implements git in Rust to take advantage of Rust’s

safety. We found a commit that extracts a function that utilizes struct

with lifetimes in them (this particular example, we will also examine for

evaluation in section 5.1) (see more in appendix A.3).

Extraction by author

The author of the commit recognizes that the structs’ lifetimes

needed some bounding together. Therefore, in the extracted method

extract_include_path, the author annotated the two lifetimes as the same:

1 fn _<’a>(_: &mut File<’a>, _: &mut Vec<values::Path<’a>>,

2 id: SectionId)

Extraction by IntelliJ’s Rust plugin

Again the plugin did not do the annotations, and it borrows the id vari-

able rather than simply taking ownership of it when there is no further

use of id.

1 fn _(_: &mut File, _: &mut Vec<Path>, id: &SectionId)

Furthermore, it did not qualify the Path struct properly and this also

caused a compiler error in addition to the missing lifetime annotations.

https://github.com/Byron/gitoxide
https://github.com/Byron/gitoxide/commit/c0786717c4979810002365a68d31abbf21d90f2d

Chapter 3. Motivations 12

3.3 Categories of Extraction Patterns

I categorized the common patterns of extract method refactoring below

that I intends address with this thesis with toy-size examples to demon-

strate each category. Since non-local control flow was demonstrated very

nicely by subsection 3.2.1, we will skip that toy example.

3.3.1 Ownership and Mutability

When a value is passed to a function, it will either be “moved”, i.e. a

change of ownership, or a it is borrowed by the function. This affects

semantics of the program if the value is later used after it is passed into

the function.

1 pub fn original_foo() {

2 let mut x = String::new();

3 println!("x={}", x);

4 x.push(’x’);

5 println!("x={}", x);

6 }

In cases where the value is not modified say we are extracting line 3

(blue), only an immutable references is needed. Otherwise, say we are

extracting line 4 (orange), we will need an mutable reference as we are

modifying the value of x.

1 pub fn new_foo() {

2 let mut x = String::new();

3 extract_immutable(&x);

4 extract_mutable(&mut x);

5 println!("x={}", x);

6 }

Chapter 3. Motivations 13

7 fn extract_immutable(x: &String) {println!("x={}", *x);}

8 fn extract_mutable(x: &mut String) {(*x).push(’x’);}

In either case, since x is used in line 5, it needs to be alive there too

so the value cannot be moved into the extracted function. Furthermore,

we need to dereference x with * when we use it as it is passed in as a

reference.

3.3.2 Non-elidible lifetimes

There are specific scenarios whereby simply borrowing the values is not

enough to get the extraction to compile because while the function was

inlined it has other constraints that are tied implicitly to it. One of such

constraint is the lifetimes of the references. While the borrow checker can

figure out the lifetime through its analysis when the extracted block is

inlined, when the extracted block is in a separate function, those anal-

ysis can yield unsatisfying results unless we make the correct implicit

constraints explicit i.e. by annotating the right lifetimes with the correct

bounds to the extracted function signature. Below are some scenarios

that requires those explicit lifetime annotations.

Different in/out lifetime: when extracting function that requires values

to be borrowed by the function but those borrows might have different

lifetimes, we need to make those lifetimes explicit.

1 const W: i32 = 5; // ’static

2 pub fn original_foo () { // scope a

3 let x = 1;

4 let x_ref = &x;

5 let mut z : &i32;

6 { // scope b

Chapter 3. Motivations 14

7 let y = 2; z = &y;

8 z = if *z < *x_ref { &y } else { &W };

9 println!("{}", *z);

10 }

11 }

Semantically, z is a assigned either a reference of y or W but since it is

only being used within scope b where both of these values are live, z can

be assigned and used safely.

We want to extract the condition definition of z and we need to ensure

semantically that the reference of y that we pass will live as long as the

output reference. Hence, one valid extraction is bar.

1 ... z = bar(x_ref, z, &y); ...

2 fn bar<’a>(x_ref: &i32, z: &i32, y: &’a i32) -> &’a i32

3 { if *z < *x_ref { y } else { &W } }

This means that the reference y will live exactly as long as output refer-

ence returned by bar. Note that since there are more than one reference

in the input to bar, the borrow checker conclude that it is unclear how long

the output reference should live so you need to provide that context—

however, when it was inlined, the borrow checker knows that it will only

live until the end of scope b.

Lifetime bounds: there are cases where annotating the named lifetimes

are not enough, the relationship between those named lifetimes must be

specified with bounds. This example deals with lifetimes that requires

strict bounds to be extracted correctly.

1 pub fn foo(){

2 let x = 1;

3 { let p : &mut &i32 = &mut &0; *p = &x; println!("{}", **p); }

Chapter 3. Motivations 15

4 }

We see that p is a mutable reference so any assignment to p needs to

live at least as long as p (otherwise, you have p borrowing a value that is

no longer live—which is a safety issue known as a dangling pointer) so

the bounds here for &x requires ’b: ’a which in Rust lifetime bounds syn-

tax means lifetime ’b needs to live at least as long as lifetime ’a. Hence,

one valid extraction is bar.

1 ... bar(p, &x); ...

2 fn bar<’a, ’b: ’a>(p: &mut &’a i32, x: &’b i32) { *p = &x; }

16

Chapter 4

The Extract Method Algorithm

4.1 Non-local Control Flows

We need to patch the program when the caller have control flows that

is within the extracted function body (e.g. the caller has a return, or a

loop control continue that is now within the extracted function body). To

propagate the control flow back up to the caller from the extracted func-

tion, we need to patch the extracted function return type and patch the

call site to perform the same branching using the return of the extracted

function.

Algorithm 1 simply collects the facts about return statements, and

any loop control i.e. break, and continue statements that control the loop

outside of the extracted function. We then patch the return type based

on the controls we need to propagate using an enumerator/variant type.

Then we pattern match on the generated variants and generate the patch

for the call site.

Chapter 4. The Extract Method Algorithm 17

Algorithm 1: FIXNONLOCALCONTROL

1 Input: call expression Ecaller (in function F′), extracted function EF, original
function F

2 Output: a list of patches PS
1: PS← []
2: R← collect return statements in EF
3: B, C ← collect top-level break and continue statements in EF
4: if R ∪ B ∪ C 6= ∅ then
5: RTY← BUILDRETURNTYPE(R, B, C)
6: PS← UPDATERETURNTYPE(EF, RTY) :: PS
7: for lr ∈ R do PS← (lr,return e return Ret(e)) :: PS;
8: for lb ∈ B do PS← (lb,break return Break) :: PS;
9: for lc ∈ C do PS← (lc,continue return Continue) :: PS;

10: lE ← find location of final expression of EF
11: PS← (lE,E Ok(E)) :: PS
12: CS← BUILDCASESFORRETURNTYPE(RTY)
13: lcaller ← location of Ecaller
14: PS← (lcaller, Ecaller match Ecaller with CS) :: PS
15: end if
16: return PS

4.2 Least Permissive Borrowing

For the extracted function to be correct and have the least permissions,

the caller must give enough permissions (and have that permission to

give) so the extracted function can performs the necessary operations,

and the caller must still be able to perform its operations (e.g. the ex-

tracted function shouldn’t own the value that the caller still need).

We define permission as a pair of mutability and ownership, 〈m, o〉,

and a less-than relation in Figure 4.1a. With this pair we can define a

partial-order between the permissions in Figure 4.1b which is intuitive

regarding ownership and mutability i.e. ownership is more permissive

than borrows and mutability is more permissive than immutability. This

can be mapped to equivalent Rust types in Figure 4.1c.

Within all the constraints we find for a parameter, we can determined

its weakest possible permission by:

Chapter 4. The Extract Method Algorithm 18

(Mutability) m := mut | imm
(Ownership) o := own | ref
(Permission) p := 〈m, o〉

(Less than) p1 <: p2 (Figure 4.1b)

(A) Mutability and Ownership Ca-
pabilities

imm

ref

imm

own

mut

ref

mut

own

(B) Partial order be-
tween Rust permis-

sions

&T

T &mut T

mut T

(C) Subtyping with
Rust permissions

FIGURE 4.1: A combination of mutability and ownership
permission maps to a Rust type constructor

LUB(C, v) def
= LUB({〈m, o〉 | 〈m, o〉 <: v ∈ C})

Least upper bound (LUB) checks for the least permissible permission

in the set of permissions using the partial-order we define.

Algorithm 2 shows how we collect the constraints that determine how

much permission to give the extracted function for each parameter and

then generate patches for the program. We first collect the aliasing con-

straints so we can propagate any aliased permissions from algorithm 3

and algorithm 4.

Then we check that the permission combinations from our constraint

actually gives a valid solution that we can derive patches for the extrac-

tion function signature. An invalid solution could be that the extracted

function mutates the value x so requiring 〈imm, _〉 <: x but the caller only

have 〈imm, _〉 for x. To ensure that the constraints we collected are satis-

fied, we check:

SAT(C, v) def
= ⊥ iff ∃ v <: 〈m1, o1〉 ∈ C, 〈m2, o2〉 <: v ∈ C : 〈m1, o1〉 <: 〈m2, o2〉 ∧ 〈m1, o1〉 6= 〈m2, o2〉

SAT checks that within our constraints there is no such contradicting,

invalid constraints—within our constraints C, there are no two unique

least permissive constraints.

Chapter 4. The Extract Method Algorithm 19

Algorithm 2: FIXOWNERSHIPANDBORROWING

Input : call expression E, extracted function EF, original function F
Output: a set of patches PS

1 Aliases← alias analysis on F /* maps variables to their aliases */
2 Mut← MUTABILITYCONSTRAINTS(EF, Aliases)
3 Own← OWNERSHIPCONSTRAINTS(EF, Aliases, F)
4 PS← []
5 for param ∈ EF.params do /* derive patches for the signature of EF */
6 v, m, τ, l← param.var, param.mut, param.type, param.loc
7 if LUB(Mut∪Own, v) = 〈mut, ref〉 then PS← (l, m v : τ m v : &mut

τ) :: PS
8 if LUB(Mut∪Own, v) = 〈imm, ref〉 then PS← (l, m v : τ m v : & τ) :: PS
9 if SAT(Mut∪Own, v)eq⊥ then raise RefactorError

10 for param ∈ EF.params do /* derive the patches for the body of EF */
11 if param.var ∈ Borrows∧ v /∈ Own then
12 Exps← collect from EF.body all the occurances of param.var
13 for e ∈ Exps do PS← (e.loc, e (* e)) :: PS
14 for arg ∈ E.args do /* derive patches for the call to EF */
15 v, e, l← arg.var, arg.exp, arg.loc
16 if LUB(Mut∪Own, v) = 〈mut, ref〉 then PS← (l, e &mut e) :: PS
17 if LUB(Mut∪Own, v) = 〈imm, ref〉 then PS← (l, e &e) :: PS

Furthermore, in algorithm 2, for the parameters that we make into ref-

erences, that IntelliJ’s Rust plugin initially extracted as an owned value,

we derive patches for the extracted function body to dereference them

and for the call site of the caller to reference them.

Algorithm 3 checks if the value is used on the left-hand-side of an

assignment or passed as mutable method call i.e. &mut self and algo-

rithm 4 simply checks for whether the variable is used after the call to

the extracted method. If it’s not, we want to make the extracted func-

tion owns the value because that means the value is dropped at the same

space it would have in the caller rather than after the extracted function

returns—preserving more semantics.

Chapter 4. The Extract Method Algorithm 20

Algorithm 3: MUTABILITYCONSTRAINTS

Input : extracted function EF, an alias map Aliases
Output: a set Mut of mutability constraints

1 MV← collect all the variables in EF which are part of an lvalue expression
2 MV← add to MV all the variables in EF which are function call arguments

with mutable requirements
3 MV← add to MV all the variables in EF which are mutably borrowed
4 Mut← {imm <: p.var | p ∈ EF.params ∧ ∀v′ ∈ Aliases(p.var) : v′ /∈ MV} ∪
5 {mut <: p.var | p ∈ EF.params ∧ ∃v′ ∈ Aliases(p.var) : v′ ∈ MV}

Algorithm 4: OWNERSHIPCONSTRAINTS

Input : extracted function EF, an alias map Aliases, original function F
Output: a set Ownership of ownership constraints

1 FV← free variables of the subtree(s) of block F.b
2 PBV← collect all vars in EF.params declared as pass-by-value
3 Borrows ← PBV∩ {p.var | p ∈ EF.params ∧ ∃v′ ∈ Aliases(p.var) : v′ ∈ FV}
4 Own← collect all the vars in EF which are moved into or out of
5 Ownership← {v <: ref | v ∈ Borrows} ∪ {own <: v | v ∈ Own}

4.3 Lifetime Repairs

Since errors related to lifetimes are quite complex and there are no formal

proof regarding the type soundness, the approach we took is similar to

Emre, Schoroeder et al., in using the compiler as an oracle to help us

correct our errors (Matsakis and Klock II, 2014, Emre, Schoroeder et al.,

2021).

The key insight is that some errors occur in the borrow checker which

runs on rustc’s MIR, those information can analyzed to repair the pro-

gram. To ensure that we can reach borrow checker’s analysis, we need to

annotate all the lifetime slots. There are 2 possible strategies for this:

1. annotating all the lifetime slot in the function signatures with the

same lifetime parameter: create the tightest possible bounds for

their lifetimes;

2. or annotating all the lifetime slot in the function signatures with the

different lifetime parameter: create the loosest possible bounds for

Chapter 4. The Extract Method Algorithm 21

Algorithm 5: FIXLIFETIMES

Input : a Cargo manifest file CARGO_MANIFEST, extracted function EF
Output: patched extracted function EF′

1 EF′ ← clone EF
2 EF′ ← update EF′ by annotating each borrow in EF′.params and EF′.ret with a

fresh lifetime where none exists
3 EF′ ← update EF′ by adding the freshly introduced lifetimes to the list of

lifetime parameters in EF′.sig
4 Loop
5 err← (cargo check CARGO_MANIFEST).error
6 if err.length is 0 then break /* refactoring is complete */
7 suggestions← collect lifetime bounds suggestions from err
8 if suggestions.legth is 0 then raise RefactorError /* refactoring failed

*/
9 EF′ ← apply suggestions to EF′

// readability optimizations:
10 EF′ ← collapse the cycles in the where clause of EF′.sig
11 EF′ ← apply elision rules

their lifetimes.

After both of these annotation strategies, the compiler can be used

to repair the program until it can compile. However, what the borrow

checker does is annotating all the unannotated lifetime slot with unique

lifetime (except some special cases where self exists) first then perform

its analysis (Matsakis and Klock II, 2014, Klabnik and Nichols, 2019). This

is similar to the second strategy which is the loosest possible bounds.

Hence, we decided to go with the second strategy.

The extracted function signature is checked for any argument and out-

put that has a lifetime slot and annotate each of those argument with the

a different lifetime ’lt0, ’lt1, etc.

We create the patches for those lifetime repairs using algorithm 5. The

program is compiled, if there are bounds errors that the compiler can fix,

those repairs are accepted. There are only ever a limited amount of con-

straints that can be added by the compiler i.e. lt_slotcount! which would

simply have all bounds being the same as the fixpoint (for 2 lifetimes,

Chapter 4. The Extract Method Algorithm 22

’lt0 : ’lt1, ’lt1 : ’lt0, meaning ’lt0 is alive exactly as long as ’lt1

and vice versa). Hence, this algorithm will terminate.

4.4 Implementation

We need to start the extraction process from IntelliJ’s IDE which does

the initial extraction using our version of the Rust plugin. Our modified

plugin calculates the input variables, then using IntelliJ’s type inferences,

we infer types for the inputs and the method calls, and does the initial

extraction i.e. lifting the body from the caller and make a new function.

Our tool is named Rusty Extraction Maestro or REM. REM is entirely

built using Rust. We implemented simple constraints checking using

syntactic traversals with the syn crate using the visitor pattern. More

complex constraints analysis are done using SWI-Prolog. Since the size

of the inputs are relatively small in terms of lines of code and are always

localized to within one function, these two constraint analysis methods

are sufficient and effective.

We split REM into three separate components each modularly ad-

dressing our motivating issues:

• controller: traverse the caller to collect the facts regardings the loops

within the caller and where the callee is. Then we traverse the callee

to check whether there is any return, and if the callee is within any

loops we check for loop controls i.e. continue, and break. From

those constraints, we create patches using algorithm 1, and we tra-

verse the caller and callee to applies those patches. If any of those

traversal fails, we exit controller and fails the extraction.

Chapter 4. The Extract Method Algorithm 23

• borrower: collects the facts from the caller, then using SWI-Prolog,

check the aliases for the inputs. We also collects the facts for the

mutability and ownership constraints (using algorithm 3 and algo-

rithm 4 respectively) using syntactic traversals of the caller and the

extracted function. Then applying algorithm 2 we create patches

for the program and then apply them to the caller and callee using

another syntactic traversal. If any of those traversal or constraint

analysis fails, we exit borrower and fails the extraction.

• repairer: annotate the lifetime slot of the extracted function using

syntactic traversal. If the annotation fails, we fail the extraction.

The repair loop runs cargo check, and using algorithm 5, we create

patches and apply the repairs using syntactic traversal again. We

gather the bounds suggestions from the borrow checker using regular

expression on the error messages.

We combine our three components together with the Rust plugin in

figure 4.2. If any of the component fails, the extraction stops and outputs

a failure message then reverts the transformations. Since dumping of

the type inferrences can be offload to the compiler, this design is very

modular in terms of responsibility. If we want change the analysis for

propagating the non-local control flow or borrowing values, we can also

swap out the controller or borrower components respectively.

4.4.1 Failure modes

If any of the component fails, the extraction stops and outputs a failure

message then reverts the transformations.

1. if IntelliJ Rust plugin fails to infer the types of all expressions in

the caller or fails to perform any of its initial extraction, then the

Chapter 4. The Extract Method Algorithm 24

IntelliJ Rust Plugin

Dump inferred mutable method
calls.

Gather input variables and infer
types.

Add initial extracted function
and call statement.

Controller

Propagate non-local control
flow from extracted function.

Borrower

Alias analysis for variables
inside caller.

Check whether inputs need to
be borrowed.

Repairer

Annotate all lifetime slots
(references, structs, traits, etc)

with unique lifetimes.

Fixed bounds

No bounds to fix

Repairer

Apply suggested lifetime
bounds to extracted function.

Fails

Succeeds

Repairer

Cargo checks.

Start extraction Successful extraction

Failed extraction

FIGURE 4.2: Implementation flow for REM

Chapter 4. The Extract Method Algorithm 25

extraction does not happen and nothing is changed in the user’s

code. This can happen when the plugin could not figure some

types through its analysis as it is not using rustc directly. Since we

are building on IntelliJ’s type inference we cannot recover from this

failure.

2. if the non-local control flow transformation or the borrow and mu-

tability transformation fails, then the extraction does not happen

and nothing is changed in the user’s code. Since Rust is still an

evolving language, this can occur when there are extractions in fea-

tures that we don’t fully support and we cannot find the caller or

callee or gather enough details about them.

3. if repairing the lifetime using Cargo fails, then the user can either

choose to keep the refactoring with possibly failing lifetime or undo

any extraction. There are two reasons for a failure here:

• the borrow checker could potentially bounds all the lifetimes to

be the same length but could still not compile it (our fixpoint of

repairs). We did not encounter this failure in our experiments.

• since we only repair bounds, any failure that is undetected

in the previous steps (such as an incorrect type inference that

missed a generic trait bound), will be detected here too so we

will stop any bad extraction. This is the most frequent source

of failure in our experiments.

All these failure modes ensure that even when REM fails, it fails grace-

fully and have no risk of changing the semantics of the original program.

26

Chapter 5

Evaluation

To re-iterate the tools we to evaluate is IntelliJ Rust plugin (0.4.186.5143-

223) and Visual Studio Code’s Rust Analyzer plugin (v0.3.1451) with lat-

est versions as of February 2023. For the implementation, I am using

SWI-Prolog version 8.4.3. The experiment is run on my laptop with CPU

AMD Ryzen 7 4800HS on 16GB of memory, running Fedora Linux 37.

5.1 Effectiveness
To evaluate our implementation we ran 40 experiments on 5 different

projects (Table 5.1). We did 3 different kind of experiment: arbitrary ex-

traction where we selects a random chunk of code and extract it; inline

and extract where we inline a function that the developer created then

re-extract it; and commit-based extraction where we find a commit in the

project history that does extract method refactoring and then extract it.

Consider an extraction for gitoxide (Table 5.1 #16), where the devel-

oper does bytes checks, decodes the hex prefix of a slice and then do a

conditional control flow.

1 pub fn hex_prefix(data: &[u8; 4]) -> Result<..., Error> {

2 for (...) in &[...] { if ... { return Ok(...); } }

3 if wanted_bytes == 4 { return Err(Error::DataIsEmpty); }

Chapter 5. Evaluation 27

4 Ok(PacketLineOrWantedSize::Wanted(wanted_bytes))

5 }

REM extracted bar.

1 ... let wanted_bytes = match bar(hex_bytes)

2 { RetBar::Ok(x) => x, RetBar::Return(x) => return x }; ...

3 fn bar(hex_bytes: &[u8]) -> RetBar<usize, Result<..., Error>> {

4 for (...) in &[...]

5 { if ... { return RetBar::Return(Ok(...)); } }

6 if wanted_bytes == 4 { return RetBar::Return(Err(...)); }

7 let result = wanted_bytes; RetBar::Ok(result)

8 }

9 enum RetBar<A, B> { Ok(A), Return(B) }

The borrow needed was that of hex_bytes, which both REM and the

developer use the immutable borrow. The lifetime are elidded in both

the developer and REM. Our propagation of the non-local control flow

is more verbose than the developer’s but with the enum usage, we are

more adaptable to the different kind of control flow (such as loop controls

which you can see is in Table 5.1).

Another more complex extraction requires using 2 structs that need

lifetime bounds. In gitoxide (Table 5.1, #17), modifies some trait refer-

ences in a vector—we examined this back in subsection 3.2.3.

1 fn _<’a>(_: &mut File<’a>, _: &mut Vec<values::Path<’a>>,

2 id: SectionId)

The developer extracts the function and rightly identifies that File

requires a lifetime and that it needed to be bounded to values::Path and a

possible solution is to bound them to the same lifetime ’a. REM extracted

bar.

Chapter 5. Evaluation 28

1 fn bar<’lt0, ’lt1>(_: &mut File<’lt0>,

2 _: &mut Vec<values::Path<’lt1>>, _: &SectionId)

3 where ’lt0: ’lt1

The use of two lifetimes and bounds rather than one with that of the de-

veloper extraction, makes the memory use more flexible for bar because

’lt1 can live as long as it needs to then die without waiting for ’lt0 to

die as well.

This extraction has some small idiosyncracies with the dereference

and re-reference such as &*id. Since id was demoted to a reference mean-

ing we need to dereference it if we need to use it but in the extraction id

is being referenced again. The code is still readable and can be corrected

by simply deleting &*.

A slightly more idiosyncratic version of the multiple lifetime bounds

is an extraction (Table 5.1, #19) where we have a generic that requires life-

time annotations in the signature. We inline a method with the following

signature:

1 pub fn _<’a, E: TA<&’a [u8]> + TB<&’a [u8]>>(i: &’a [u8])

2 -> R<&’a [u8], SR<’a>, E>

When we extract our inline method we got the following signature:

1 fn bar<’lt0, ’lt1, ’lt2, ’lt3, ’lt4,

2 E: TA<&’lt1 [u8]> + TB<&’lt2 [u8]>>

3 (i: &’lt0 [u8]) -> R<(&’lt3 [u8], SR<’lt4>), Err<E>>

4 where ’lt0: ’lt1, ’lt1: ’lt2, ’lt2: ’lt1, ’lt0: ’lt3,

5 ’lt1: ’lt3, ’lt0: ’lt4, ’lt1: ’lt4

It is worth noting that while REM’s version is more complex, it is

less restrictive. There are simplification to be done like ’lt1: ’lt2 and

Chapter 5. Evaluation 29

’lt2: ’lt1 means ’lt1 and ’lt2 are the same lifetime. REM can simplify

these bounds further by representing them as a graph and collapse the

cycles into a single node. With these simplification the above signature

becomes:

1 fn bar<’lt0, ’lt1, ’lt2, ’lt3,

2 E: TA<&’lt1 [u8]> + TB<&’lt1 [u8]>>

3 (i: &’lt0 [u8]) -> Result<(&’lt2 [u8], SR<’lt3>), Err<E>>

4 where ’lt0: ’lt1, ’lt0: ’lt2, ’lt1: ’lt2,

5 ’lt0: ’lt3, ’lt1: ’lt3,

More permissive: we can demonstrate this less restrictive aspect by ex-

amining these two functions foo and bar, which has the same body of

assignment and returning a reference which requires a bound such that

the assignee lifetime of y lives at least as long as the assigned slot lifetime

within x and that y lives at least as long as the output reference.

1 fn foo<’a>(x: &’a mut i32, y: &’a i32) -> &’a i32 { *x = *y; y }

2 fn bar<’a, ’b, ’c>(x: &’a mut i32, y: &’b i32) -> &’c i32

3 where ’b : ’a, ’b : ’c { *x = *y; y }

foo solves this by having all the references have the same lifetime ’a

and bar assign all the references with different lifetimes and then bounds

such that ’b lives at least as long as ’a and ’b lives at least as long as ’c.

Consider the listing below where we have x lives within the inner scope

and is dropped when it ends while y and z lives in the outer scope and

outlives x.

1 fn foobar() { // outer scope

2 let y = &0; let z;

3 { // inner scope

4 let mut x = 1; z = bar(&mut x, y);

Chapter 5. Evaluation 30

5 } // end inner scope

6 println!("{}", z) // end outer scope

7 }

Using bar, we simply checks that the value y references will lives at least

as long as x and z—which is respected. However, when we replace bar

with foo we get an error that x does not live as long as its borrow z. There

is no good reason for this error because z is only ever a reference to what

y borrows. Hence, our extraction is more permissive.

In cases where we use our failure mode we prevent badly refactored

code. For Table 5.1 #7, we failed to infer some additional trait bounds for

generic G for Dot.

1 impl<’a, G> Dot<’a, G> where G: A + B + C + D

While we could apply the same repairs we did for lifetime here, with-

out further constraint collection and reliable type inference this is also

non-trivial. However, we simply inform the user that we failed to run

cargo check on the extraction, and we offer to restore the code back—this

was not the case with IntelliJ’s Rust plugin or Rust Analyzer which sim-

ply extracted incorrect code. For the other cases (#20, and #32) where we

could not extract correctly, we give the user this option (see more for #32

in subsection 5.3.3).

Another interesting case is #18, where IntelliJ’s old Rust plugin suc-

ceeds in producing correct code that is closer to what the developer did

and simpler than what REM extracted while Rust Analyzer failed to ex-

tract. Firstly, Rust Analyzer failed to extract this because it was trying to

propagate the non-local control flow but without wrapping the output of

the extracted function. IntelliJ’s old Rust plugin simply copy-pasted the

Chapter 5. Evaluation 31

function body and the signature of the caller name. While there were non-

local control flow, since we extracted the entire body of the caller, those

control flow is propagated correctly without any match-statement. REM

extracted a more pendantic version bar.

1 pub fn name(path: &BStr) -> Result<&BStr, name::Error> {

2 match bar(path)

3 { RetBar::Ok(x) => x, RetBar::Return(x) => return x, }

4 }

5 fn bar<’lt0, ’lt1, ’lt2>(path: &’lt0 BStr)

6 -> RetBar<Result<&’lt1 BStr, Error>, Result<&’lt2 BStr, Error>>

7 where ’lt0: ’lt1 {...}

Since we propagated the non-local control flow here, we actually cre-

ated two lifetime slot in the output while IntelliJ’s old Rust plugin (and

the developer’s) simply had one namely Result<&BStr, name::Error>.

This means that their version could have lifetime elided legally because

there is one input lifetime slot and one output lifetime slot. However, in

REM case, we needed to bound the input lifetime ’lt0 to the first generic

of our variant type RetBar because that is the output that uses the path ref-

erence. Note that while we have a “more permissive” annotation that that

of the elided one (which is the same lifetime for both input and output),

we will not ever accept any bad code with this exact signature because

we only ever takes in one input reference still. This is the only excep-

tion to the non-elidible lifetime feature in the extracted code in Table 5.1

where we could extract correctly, the other extraction failed to produce

correct code. In these cases (#3, #9, #12, #17-#20), we provide good anno-

tations of the implicit lifetime constraints while IntelliJ’s old Rust plugin

Chapter 5. Evaluation 32

200 400 600 800
Source file size (lines)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
D

ur
at

io
n

(s
)

Extraction duration against source file size

Extracted inputs size
0
1
2
3
4
5
6

FIGURE 5.1: Extraction duration against source file size

and Rust Analyzer did not.

5.2 Efficiency
While cargo takes a long time to build application and generate the bi-

nary, in repair iterations it does not take that long because we are only

running cargo check that will tell use the compile errors. Furthermore,

since extract function refactoring is localized to one particular file in a

project, even if it’s for bigger project, cargo will complain while it com-

piles the edited file (in a possible sub-workspace) and will error out

within a second. The only long check time is during the first check when

all the metadata are generated. All those metadata are cached and subse-

quent checks are only done on “dirty” modules. We time our extraction

after this first check because any developer will most likely have to com-

pile their project at least once while writing code.

Chapter 5. Evaluation 33

The project then size only has minimal effect on REM. Within our sam-

ples size we have projects of size between 1,500 lines and 20,000 lines of

Rust code with very little differences between them so our tool is quite

scalable (Table 5.1). Our total repair time with all the 3 components com-

bine comes to a mean of less than 1s within our experiments. This is good

because REM can be used in big or small project without much worries

about extraction time.

As you can see in Figure 5.1, there is no clear relation between source

size and duration, while most extraction ends within 1.5s, there are a

few that goes over that with one extraction taking up to 2.5s (Table 5.1,

#19). This extraction, which we evaluated in the effectiveness section

(5.1) above, takes up 3 cycles to repair (+ 1 final check to confirm no more

repair is needed) while the next example #25, also within the same project

and have the highest source file size but did not take up cargo repair

cycles finishes extracting in 0.7s. Hence, the repair cycle counts appear to

have more impact towards the extraction time.

Within Table 5.1 and Figure 5.1, we looked closer at the function we

extracted from (i.e. the “caller”). We considered whether there were any

correlation between the size of the inputs to the extraction duration but

there doesn’t appear to be any clear correlation on that as there are ex-

tracted functions with bigger input counts across Figure 5.1 too. rustc

also provides feedback for all the bounds it can figure out at that time

so REM also applies all those suggestions at a time minimizing the num-

ber of cycles needed. While there are 7 bounds added for #19, it took

only 3 cargo check cycles meaning also that the cargo check cycles does

not necessarily scale one-to-one with the extracted function input size or

Chapter 5. Evaluation 34

the bounds needed between them. The size of the function we extracted

from does not seem to correlate to the duration either so we can arbitarily

extract large chunks of code from the project itself without worries.

While REM is slower than the original plugin by IntelliJ and Rust An-

alyzer, it saves more time than annotating all the lifetimes and borrow

manually. We can also answer the question whether it’d be tolerable to

use cargo instead of rustc for compiling the project without slicing our

source file and creating stumps so we can use rustc for compiling just the

stumps. It turns out to be good enough to use cargo check even on bigger

projects and still have an efficient solution.

5.3 Discussions

5.3.1 Type Inferences

Since we depend entirely on IntelliJ’s type inference, sometimes we do

not get the correct bounding for generics. In our experiment Table 5.1 #7,

we examined in 5.1 and mentioned that we could also apply the same

treatment for this trait bound repair as we did with lifetimes. However,

that would also increase our possible transformation space that is diffi-

cult to account for. The best solution is querying the compiler and get

the type for a particular expression so we have to wait until the rustc’s

developers offer that.

This limitation is a host to related problems.

Qualified name: getting the correct level of qualified name is not

straight-forward as some extraction failed due to not having a use decla-

ration at the top level but IntelliJ does not provide the path for that type.

Chapter 5. Evaluation 35

Project
(LOC) Type Size (LOC) Code Features Outcome Cargo

Check
Time
(sec)CLR CLE NLL NLR IB MB NEL SHL IJR VSC REM

1

petgraph
(20,157)

	 21 10 3 ! 3 0 0.37
2 	 20 11 3 7 3 0 1.02
3 	 8 5 3 7 7 3 1 1.47
4 	 54 26 3 3 3 7 3 0 1.7
5 	 51 15 3 3 3 7 3 0 0.85
6 	 21 8 3 3 3 3 0 0.98
7 � 54 49 3 3 7 7 ! 1 0.55

8

gitoxide
(20,211)

	 8 5 7 3 3 0 0.93
9 	 53 35 3 3 3 7 7 3 1 1.24
10 	 16 10 3 7 3 0 0.64
11 	 17 9 7 7 3 0 0.81
12 	 50 13 3 3 7 7 3 0 0.81
13 	 13 8 7 7 3 0 0.86
14 	 30 15 3 3 7 7 3 0 0.69
15 	 34 7 7 3 3 0 0.68
16 , 47 21 3 7 3 3 0 0.54
17 , 73 11 3 3 3 3 7 7 3 1 1.2
18 � 30 27 3 3 3 7 3 1 0.92
19 � 60 55 3 3 7 7 3 3 2.32
20 � 116 6 3 3 7 7 ! 1 1.15
21 � 50 9 3 3 3 0 0.69
22 � 47 6 3 3 3 0 0.64
23 � 132 14 3 3 3 0 0.7
24 � 38 3 3 3 3 3 0 0.64
25 � 65 17 3 3 7 7 3 0 0.72

26

kickoff
(1,502)

� 56 16 3 3 3 3 3 3 0 1.03
27 	 53 7 3 7 3 3 0 1.01
28 	 51 17 3 3 3 0 0.91
29 	 34 7 3 3 3 0 0.98
30 	 21 13 3 3 3 7 3 3 0 0.79

31

sniffnet
(7,304)

� 71 21 3 3 3 3 0 1.04
32 � 180 50 3 3 7 3 ! 1 0.76
33 	 50 14 3 3 3 3 3 3 0 1.01
34 	 98 28 3 3 7 3 3 0 0.98
35 	 27 13 3 3 3 0 1.06
36 	 55 20 3 3 3 3 0 1.0
37 	 45 15 3 3 3 0 1.06
38 	 20 13 3 7 3 3 0 1.08
39 	 71 17 3 3 3 0 1.06

40 beerus (302) , 26 23 3 ! 3 0 1.07

TABLE 5.1: Statistics for the case studies on five projects
with its size in lines of code. The types of case studies in-
clude reproducing refactoring from a commit by a human
developer (,), inlining an existing function and extracting
it again (�), and arbitrary extraction of a code fragment
(). The sizes of these cases in lines of code for the caller
function (pre-extraction) (CLR), and extracted function i.e.
the callee (CLE). Notable language features occurring in the
refactored code fragments include: non local loop (NLL),
non local return (NLR), immutable borrow (IB), mutable
borrow (MB), non elidible lifetimes (NEL), struct has life-
time slot (SHL). The types of refactoring outcomes for Intel-
liJ IDEA Rust plug-in (IJR), VSCode Rust Analyzer (VSC),
and REM include: producing well-typed code (3), produc-
ing ill-typed code (7), and refusing to perform the refactor-
ing (!). For REM, we count the cargo check repair cycles,
and measure the total time taken to extract the case study

in seconds.

Chapter 5. Evaluation 36

Currently, the implementation solves this by having IntelliJ (through its

inferences) dump the fully qualified name and then traversing through

the qualified name and drop the part before the current crate name (in-

clusive). However, when IntelliJ does not give the correct path, it also

fails.

Copy trait: if we have access to determine which type implement Copy

trait, our extraction could be much simpler with regards to ownership

and borrows.

Macros: requires much more “hard-coding” of the handling so we are

only supporting vec! and *print*! macros in our extractions since IntelliJ

does not infer the type of usages within them. However, if we can query

the type of an expression, we can know whether the macro mutates the

reference or not and decides our ownership of extracted function.

Slicing: properly allows us to compile only a small subsection of the

project using rustc and use stumps for dependencies which is much

lighter than cargo. Currently, using rustc is not feasible with REM as

we cannot know the dependencies so while we can have some liveness

analysis to slice the function and its caller, we cannot properly stump out

the depedencies.

While type inference is a non-trivial limitation, we have built REM

in such a modular way that we can forgo this limitation to use compiler

query quite easily, however, as the query interface still is unstable and we

have committed to IntelliJ since the beginning, we will keep the project

as such.

Chapter 5. Evaluation 37

5.3.2 Cargo Check Trade Off

While cargo check makes our solution extremely fast (after a first check is

done), we have a problem with strict checks over dependencies. Some-

times one dependency of a submodule we are working on, failed the

check because of some missing crate in one of its versions.

1 error[E0463]: can’t find crate for ‘unicode_normalization‘

2 --> .cargo/registry/src/github.com-_/idna-_/src/uts46.rs:17:5

3 17 | use unicode_normalization::{is_nfc, UnicodeNormalization};

4 | |\verbatim{^}| can’t find crate

However, when we run cargo build, it completes successfully. There

is no good reason for this stringency on dependencies in an extraction but

sacrificing cargo check efficiency for cargo build would be unacceptable.

5.3.3 Technical Detail

Struct Punning: handling the dereferences within the extracted function

body such that trait initialization does not fail because of bad naming—it

is a technical implementation that can be extended by further traversing

the AST to get the labelled fields of the struct. More specifically REM

failed when it is initializing a struct A with field name x but we borrowed

x so the initialization code in the body which was previously A {x} be-

comes A{*x} which cause the failure–it can be simply corrected by chang-

ing the struct initialization to A{x: *x}. Rust Analyzer succeeds in this

respect because it recognize that the required value implements Copy so

it can simply takes the ownership in the extraction and not borrowing

so that particular initialization succeeded—although, when we remove

Chapter 5. Evaluation 38

the Copy trait of the struct, that particular extraction also failed due to the

exact same problem.

Non-local control flow syntax sugar: currently, we do not support de-

sugaring non-local control flow syntax such as ? and we have changed

some examples to not use it before running our experiments. This can be

fixed by de-sugaring the syntax.

39

Chapter 6

Conclusion

In conclusion, we recognize that extracting a function in Rust in non-

trivial. This stems mostly from the analysis that rustc does (espcially in

the borrow checker) that provides implicit contracts. When we extract

a function, we make those implicit contracts, explicit through our ex-

tracted function signature and therein lies the challenge—getting the ex-

plicit contract right.

Pursing that correct explicit contract, we contribute a constraint-

analyze-patch pipeline that can propagates non-local control flow seman-

tics from the extracted function to the caller, and gives the least permis-

sive type to the extracted function parameters. We also contributed a

novel use of program repair in refactoring by using rustc as an oracle to

repair our lifetime annotations.

We evaluated that REM is both effective in producing readable code,

and is efficient enough to be usable in arbitrarily large project extract-

ing arbitrarily large chunk of code. We further discuss the limitation of

REM on type inference that we rely on IntelliJ for. Ideally, we would be

depending on rustc interface for this but it is still in development. How-

ever, since REM is very modular, we are ready to swap over when rustc

interface is ready.

40

Bibliography

Emre, Mehmet, Schoroeder, Ryan, Dewey, Kyle, and Hardekopf, Ben.

Translating c to safer rust. Proc. ACM Prof. Lang., 5(OOPSLA):121, 2021.

Klabnik, Steve and Nichols, Carol. The Rust Programming Language (Cov-

ers Rust 2018). No Starch Press, 2019. ISBN 9781718500440.

Martin, Robert Cecil. Clean Code: A Handbook of Agile Software Craftsman-

ship. Prentice Hall, 2008. ISBN 978-0-13-235088-4.

Matsakis, Nicholas. Non-lexical lifetimes: introduction. 2016.

Matsakis, Nicholas and Klock II, Felix S. The rust language. 2014.

Ringdal, Per Ove. Automated refactoring of rust programs. 2020.

Sam, Garming, Cameron, Nick, and Potanin, Alex. Automated Refac-

toring of Rust Programs. In Proceedings of the Australasian Computer

Science Week Multiconference, ACSW, pages 14:1–14:9. ACM, 2017. doi:

10.1145/3014812.3014826.

Schäfer, Max and de Moor, Oege. Specifying and implementing refac-

torings. In OOPSLA, pages 286–301. ACM, 2010. doi:10.1145/1869459.

1869485.

BIBLIOGRAPHY 41

Schäfer, Max, Ekman, Torbjörn, and de Moor, Oege. Sound and extensible

renaming for Java. In OOPSLA, pages 277–294. ACM, 2008. doi:10.

1145/1449764.1449787.

Schäfer, Max, Verbaere, Mathieu, Ekman, Torbjörn, and de Moor, Oege.

Stepping Stones over the Refactoring Rubicon. In ECOOP, vol-

ume 5653 of LNCS, pages 369–393. Springer, 2009. doi:10.1007/

978-3-642-03013-0_17.

42

Appendix A

Example Code Refactoring

A.1 Zola

commit preview:

1 commit 774514f4d4efc65e99a9108a6fc886e9747e567c

2 Author: Peng Guanwen <pg999w@outlook.com>

3 Date: Sat Jan 5 22:37:24 2019 +0800

4

5 refactor markdown_to_html

6

7 this commit contains two refactors:

8 − extract custom link transformations into a function.

9 − separate some trivial markup generation.

A.2 Rust

commit preview:

1 commit 1f0a96862ac9d4c6ca3e4bb500c8b9eac4d83049

2 Merge: bf242bb1199 48a48fd1b85

3 Author: bors <bors@rust−lang.org>

4 Date: Wed Feb 9 09:41:48 2022 +0000

5

6 Auto merge of #92306 − Aaron1011:opaque−type−op, r=oli−obk

7 ...

Appendix A. Example Code Refactoring 43

8 * The body of ‘try_extract_error_from_fulfill_cx‘

9 has been moved out to a new function\

10 ‘try_extract_error_from_region_constraints‘.

11 This allows us to re−use the same error reporting code between

12 canonicalized queries (which can extract region constraints directly

13 from a fresh ‘InferCtxt‘) and opaque type handling (which needs to

14 take region constraints from the pre−existing ‘InferCtxt‘ that we use

15 throughout MIR borrow checking).

A.3 Gitoxide

commit preview:

1 commit c0786717c4979810002365a68d31abbf21d90f2d

2 Author: Svetlin Stefanov <s.m.stefanov@gmail.com>

3 Date: Sat May 28 09:59:12 2022 +0200

4

5 Extract include_paths.

	Acknowledgements
	Abstract
	Introduction
	Problem Statement
	Contributions

	Background
	Rust
	Rust's Memory Model
	Important Constructs in Rust

	Clean Code
	Extract Method Refactoring

	Early Rust Refactoring

	Motivations
	Methodology
	Real-world Examples
	Zola
	Rust
	Gitoxide

	Categories of Extraction Patterns
	Ownership and Mutability
	Non-elidible lifetimes

	The Extract Method Algorithm
	Non-local Control Flows
	Least Permissive Borrowing
	Lifetime Repairs
	Implementation
	Failure modes

	Evaluation
	Effectiveness
	Efficiency
	Discussions
	Type Inferences
	Cargo Check Trade Off
	Technical Detail

	Conclusion
	Bibliography
	Example Code Refactoring
	Zola
	Rust
	Gitoxide

