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Chapter 1

Introduction

1.1 Motivation

Computer programs have bugs. Programming language researchers have

devoted large amounts of effort to find these bugs automatically via a

toolset of semantics-based code analyses such as type checking, effect

analysis, control- and data-flow analyses and others [1, 4, 10, 16, 24].

However, program analysis tools, like any other software artifacts,

also have bugs. The consequences of having bugs within the checker

tools, inducing failures to find bugs, announcing non-existent bugs, and

even silently introducing new bugs, can be disastrous. Example of such

bugs include:

• missing the following type assignment error in a Java program

public int x;
x = "abc";

• misclassifying code as dead within static program analysis designed

to discover dead code (code that, upon removal, does not affect the

program’s result [8]) (Figure 1.1)

This begs the question, who tests the checkers?
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int c = 6
if (c > 5) {

x = 42;
} else {

x = 1; // True dead code
}

int c += 1;
if (c > 5) {

x = 42;
} else {

x = 1; // Not a dead code
}

FIGURE 1.1: Dead-Code Elimination Error

This project devises a testing technique that starts with using defini-

tional interpreters [18]. The checkers, i.e., static analyses tools, give ab-

stract results that over-approximate the run-time behaviour in order to

account for non-determinism [10]. On the other hand, definitional inter-

preters are built to give a simple, clear, and readable account of program

semantics, albeit sacrificing any semblance of efficiency [11, 18]. In other

words, definitional interpreters output concrete results - the "ultimate

truth" of the program’s run-time behaviour. Thus, we can test the static

analysis by checking if its abstract results agree with the definitional in-

terpreter’s concrete results.

1.2 Goals of this project

This project aims to provide a proof of concept of checking the static code

analysis of a program with a definitional interpreter. Using dead-code

elimination analyses (Figure 1.1) as an example, running the program

through the definitional interpreter allows us to confirm whether the ex-

pression (x=1) is indeed dead. This is done by modifying the interpreter

to dynamically record whether the line of code is evaluated or not. How-

ever, due to their concise and simple design, any additional modifications

must not interfere with the interpreter’s core logic.
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1.3 Our Approach

This project makes use of monads to equip an interpreter with the capabili-

ties of dynamic information collecting without changing the interpreter’s

core logic. Monads offer a near-complete reinterpretation of computa-

tions, e.g. the list monad grants computations with non-deterministic

behaviour [21]. Since they were originally adapted to provide an abstrac-

tion for mutations in purely functional languages, monadically expressed

semantics can make current computational effects explicit or fully hid-

den. Therefore, monads allows us to incorporate new features modularly,

isolated from the core logic of the interpreter [9].

1.4 Challenges and Contributions

In our project, we revise a definitional interpreter for a new program-

ming language for safe contracts called Scilla. The revision of Scilla’s in-

terpreter would then allow us to tests its respective static analyses. How-

ever, revising a production-scale definitional interpreter is not be triv-

ial. Incorporating monadic semantics into Scilla’s interpreter is, in itself,

a challenge due to a number of design trade-offs discussed in the later

chapters. Another challenge comes from the Scilla interpreter already

being parameterised with a continuation passing style (CPS) [5] monad, re-

quiring us to define a suitable notion of monadic semantics that would

allow for static analyses testing.

This project is significant in the following aspects.

1. We devise a monad for collecting semantics [20] for System F [16].
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2. We implement the monad into a production-scale definitional inter-

preter for the Scilla language [23].

3. We evaluate our implementation on a particular analysis, namely

type checking.

1.5 Outline

The remainder of the report is structured as follows. Chapter 2 builds

a foundational understanding of polymorphic lambda calculus (System

F), accompanied by an implementation of a simple System F interpreter

and type checker in OCaml. Chapter 3 describes the process of monadi-

cally parameterising our definitional interpreter to test static code analy-

ses. Additionally, we discuss how we refactored our monad to be a CPS

monad, thus avoiding running into call stack overflow. The final inter-

preter for system F contains the enhanced monad constructed for seman-

tics accumulation. In chapter 4, we incorporate the ideas from the pre-

vious chapters into a real-world interpreter - the Scilla interpreter. More

specifically, we describe the process and limitations of embedding the

collecting semantics monad into a real-world interpreter. Chapter 5 de-

scribes our application of the enhanced interpreter to a case study, which

tests the Scilla’s static type checker. Finally, Chapter 6 concludes with a

discussion and future work.
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Chapter 2

Background

Before going to the industrial interpreter, we must hone our testing ap-

proach on a minimalistic foundational framework. As such, we choose

to experiment with a Polymorphic Lambda Calculus (System F) interpreter.

The following chapter introduces System F’s influence within the pro-

gramming language field, and highlights its syntax, rules, and properties

that led to its popularity (Section 2.1). Afterwards, we describe our im-

plementation of a simple System F definitional interpreter (Section 2.2).

2.1 Polymorphic Lambda Calculus

System F [6, 19] is used extensively as a research vehicle for foundational

work on parametric polymorphism [16, 23]. Additionally, the framework

has influenced and formed the basis of many languages, such as Haskell,

OCaml, Scala, and, to some extent, Java, C# and others, all of which are

supported by a large body of research on their static analyses and compi-

lation techniques [16, 23]. Furthermore, we experiment with System F for

its rich interactions between values and types, which is a perfect avenue

for testing.
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Syntax and Rules

t ::= (expressions...)
x variable
λx : T.t abstraction
t t application
ΛX.t type abstraction
t[T] type application

v ::= (values...)
λx : T.t abstraction value
ΛX.t type abstraction value

T ::= (types...)
X type variable
T → T type of functions
∀X.T universal type

Γ ::= (environment...)
∅ empty context
Γ, x : T expression variable binding
Γ, X type variable binding

FIGURE 2.1: Syntax for System F

The definition of System F is an extension of simply typed lambda calcu-

lus, denoted as λ→ [16]. λ→ uses lambda abstractions to factor variables

out of expressions, then instantiate said variables using applications. For

example, given an expression t, we can abstract a variable x of type T

from t, denoted as λx : T.t. We can then apply some value s back into t,

written as (t s), where function t takes s as an argument [14].

In λ→, variables and expressions can only have base types (such as

Int or Bool) or function types [14]. Function types have the shape X →

Y, where X and Y can be either base types or function types.

System F extends λ→ by adding polymorphic types of shape ∀X.t [16].

Now, types can be abstracted from expressions in a similar manner to
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variable abstractions. The syntax of abstracting a type parameter X from

an expression t is ΛX.t, while applications are written as t[T]. Figure 2.1

shows the complete syntax of System F, written based on the Types and

Programming Languages book [16].

Additionally, expressions must follow a set of evaluation and typing

rules [16]. For instance, one of the evaluation rules, the beta-reduction rule,

says that an application in the form of

(λx : T.t12)v2 → {x 7→ v2}t12 (E-AppAbs)

can be evaluated through substituting the term x with v2 within the ex-

pression t12. An example of a typing rule would be the typing-judgement

rule for expression applications [16, 14].

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1t2 : T12

(T-APP)

Let Γ denote the environment, ie. the key-value list, where the keys are the

variables and the values are their respective types. The rule states that

we must assert the following 2 premises

• the term t1 must have the type T11 → T12 in the environment Γ

• t2 has type T11 in the environment Γ

to be true to allow for the application of t1 on t2 with a resulting type of

T12 in the environment Γ.

Given the rules, here’s a simple example. Say t is a polymorphic id

function (id = ΛX. λx : X. x) with a type of (id = ∀X.X → X), then we can
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apply type Int to get ((λ: Int.x): Int → Int). Applying some in-

teger 0 as well would just return us (0:Int).

2.2 A Definitional Interpreter for System F

The following section transitions from the mathematical notations of Sys-

tem F to its OCaml implementation as a definitional interpreter.

module SystemF0Signature = struct
type var = string
type tvar = string

(*Types*)
type ty =

| TVar of tvar (* X *)
| TFunc of ty * ty (* T -> T *)
(*For all X, T*)
| TForAll of tvar * ty
| TInt

(* Binary Operation *)
type binop =

| Add
| Sub
| Mul
| Div

(*Terms*)
type exp =

| Int of int
| Var of var
| ETVar of tvar
| Abs of var * ty * exp
| App of exp * exp
| ETAbs of tvar * exp
| ETApp of exp * exp
| Typ of ty
| Binop of binop * exp * exp

type value =
| IntV of int
| Closure of environment *

var option * ty * exp
| TypV of ty

end

FIGURE 2.2: System F Signature

Syntax Signature

Figure 2.2 specifies the signature of the System F definitional interpreter

implementation in Ocaml, translated from its mathematical notations de-

scribed in Figure 2.1. The signature defines System F’s expressions—

comprising of abstractions and applications of variables (var) and type

variables (tvar), and their respective values.
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The implementation is closure-based, where a closure captures the en-

vironment, i.e., the evaluation context, and the abstraction that is evalu-

ated. Therefore, Closure values are attain as a result of abstraction eval-

uations.

Finally, we include type Int as a primitive type for evaluations, along

with binary operations Binop.

Evaluation Logic

The evaluation function is the encoding of the evaluation rules [16]. The

eval() function has a signature of

environment -> exp -> value

where it takes an environment and an expression as its arguments, and

returns a value. Some evaluations are straightforward: (1) integer and

type expressions become their respective values, (2) variables and type

variables are looked up from the environment (by T-VAR rule at Figure

2.3).

type environment =
{types: (string * value) list;
variables: (string * value) list}

let eval (env: environemnt) (t: exp) : value =
match t with
| Int i -> IntV i
| Typ ty -> TypV ty
| Var v -> lookup_var v env
| ETVar tv -> lookup_ty tv env
...

As mentioned above, abstractions and type abstractions are evaluated to

closures:

...
| ETAbs (tv, exp)-> Closure (env, None, TVar tv, exp)
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x : T ∈ Γ

Γ ` x : T
(T-VAR)

Γ, X ` t2 : T2
Γ ` ΛX.t2 : ∀X.T2

(T-TABS)

FIGURE 2.3: Some typing rules t → t’ for System F

| Abs (v, ty, exp) ->
Closure (env, Some v, propTy env ty lookup,
propValTy env exp)

...

Evaluations of applications and type applications encapsulate the eval-

uation rules (Figure 2.4). Considering ETApp, or type applications, we

evaluate the two expressions and pattern match them to a closure on

the left-hand side and a type value on the right-hand side. Once the

abstracted type variable TVar "x" is bound to a type value in the envi-

ronment, eval() is called recursively on the body of the function with

the updated environment (by E-BETA2 at Figure 2.5). Variable applica-

tions are evaluated in a similar manner.

A Type Checker for System F

The type checker is used to find bugs and verify type soundness in pro-

grams [2]. Since the type checker is one of the static code analyses tools,

it is important to understand its design before exploring how to test it.

Similar to the evaluator, the type-checker follows the typing rules

specified in Types and Programming Languages [16]. The function

type_of_exp() takes an environment and an expression, performs type
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...
| ETApp (e1, e2) ->

(match eval env e1, eval env e2 with
| (Closure (cenv, _, TVar x, body), TypV ty') ->

let new_env = {types = (x, TypV ty') :: cenv.types;
variables = cenv.variables}

in
eval new_env body

| _ -> failwith "App to a non closure/tried to
apply a non type"

)
| App (e1, e2) ->

(match eval env e1, eval env e2 with
| Closure (cenv, Some x, _, body), v ->

let new_env = { types = cenv.types
; variables = (x,v) :: cenv.variables}

in
eval new_env body

| Closure (cenv, None, _, body), _ ->
eval cenv (App (body, e2))

(*application to a polymorphic type, just continue*)
| _ -> failwith "App to a non function"

)
...

FIGURE 2.4: System F Application Evaluations

checking and returns a type of the expression with an updated environ-

ment.

let rec type_of_exp (env: ty_environment) (e: exp)
: ty * ty_environment =

This section highlights the implementation for type checking type ab-

stractions ETAbs. Type abstractions introduce the ForAll type that is yet

to be discussed. The rest of code for the following interpreter can be

found at this GitHub [7].

Typechecking for ETAbs, following the T-ABS rule [16] (Figure 2.3), is

implemented as follows:

...
| ETAbs (tv, e) -> TForAll (tv, type_of_exp env e |> fst), env
...

https://github.com/tramhnt99/Monadic_SystemF_Compiller
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(λX.t12)[T2] → {X 7→ T2}t12 (E-BETA2)

t1 → t′1
t1[T2] → t′1[T2]

(E-TAPP)

FIGURE 2.5: Some evaluation rules t → t’ for System F

Since type variable tv is abstracted, the type of the abstraction expression

can be described as "for all polymorphic type tv, this is the type of the

function body".

Along with inferring types of expressions, the type checker follows

the typing rules to ensure type soundness. For example, the following

error is raised when a value of a wrong type is applied to a function

parameter:

...
| App (e1, e2) ->

...
| _ ->

Monad.return_error ("Wrong application types.
Failed the T-App rule with Type "

^ Utils.string_of_ty (fst e1_ty)) env
in

...

Type checking is performed before function evaluations. This ensures

that the expression follows all the typing rules, before the interpreter

even attempts at evaluating it. As Robin Milner said, "Well typed pro-

grams do not go wrong" [12].

In summary, we have seen what System F is and how it can be imple-

mented in OCaml and analysed via a type-checker.
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Chapter 3

Testing with Interpreters

In this chapter, we describe our approach to revising the System F defini-

tional interpreter to test static analyses.

3.1 Monads and Effects

The simple definitional System F interpreter from Section 2.2 returns only

the result of executions. However, in order to test static analyses, we

embed a program semantics collecting effect. To avoid introducing new

bugs into the interpreter’s evaluations, the embedding process must not

adapt the evaluator’s core logic. The mechanism for that are monads.

3.1.1 Background on Monads

module type Monad = sig
type 'a monad
val return : 'a -> 'a monad
val (>>=) : 'a monad -> ('a -> 'b monad) -> 'b monad

end

FIGURE 3.1: Monad Type Signature in OCaml
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module MaybeMonad = struct
type 'a monad = 'a option
let return (x: 'a) : 'a monad = Some x
let (>>=) (m: 'a monad) (f: 'a -> 'b monad) : 'b monad =

match m with
| None -> None
| Some x -> f x

end

FIGURE 3.2: Maybe Monad in OCaml

Monads are generally used to wrap effectful computations, while re-

quiring explicit lifting and binding of operations [3]. As a result, they

can be used to redefine programming languages’ semantics. Monads orig-

inally became popular through their use in Haskell, a purely functional

programming language [3]. Since even printing is considered a side ef-

fect, monads were adopted to structure Haskell programs [3].

Traditionally, monads type signature specifies the use of two poly-

morphic functions called return and bind, as shown in Figure 3.1 [3,

10]. For example, the Maybe monad can act as an alternative to handling

exceptions (Figure 3.2) - instead of raising errors, our monadic function

would propagate None. Otherwise, we would get a result in the form

Some result. In Figure 3.2, the return function returns successful output,

whereas the bind function propagates the result or None if the function

meets an error.

3.1.2 Monadic Interpreter for System F

This section details the revision of the simple System F definitional in-

terpreter from Section 2.2. As monads can be used for structuring ef-

fects from computations, the aforementioned interpreter can be revised
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to have the semantic collecting effect. We revise our interpreter to re-

turn the trace of function calls and respective environments of said calls,

along with the result of the evaluation. The benefit of this approach is

that it requires next to no adaptions to the interpreter’s evaluation logic.

Signature of the Monad

Breaking down the signature of our monad below

type 'a t = 'a option * (log * environment) list

we have the ’a option that acts similarly to the maybe monad from Fig-

ure 3.2. The signature for the function call and environment trace (log *

environment) list will grow along with the evaluation steps of the pro-

gram. The type log stands for the abstract type that stores the function

calls and their respective arguments.

type log =
| Eval of exp
| ErrorLog of string
| TypeOfExp of exp
...

As per tradition, our monad includes a return and bind operators [3,

10]. The return function lifts a pure result into a monad, where the name

argument is of the appropriate log type. The bind function unwraps the

result from the monad, evaluates the result, and re-wraps the new result

back into an updated monad. The updated monad, in this case, appends

the new semantic trace to the current, growing semantic trace.

let return (x: 'a) name state : 'a monad =
(Some x, [(name, state)])

let (>>=) (m: 'a monad)
(f: 'a -> 'b monad) : 'b monad =

match m with
| (None, semantics) -> None, semantics
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match t with
(*Integer Evaluation *)
| Int i -> return (IntV i) name env
...
(* Type Applications*)
| ETApp (e1, e2) ->

eval env e1 >>= fun lhs ->
eval env e2 >>= fun rhs ->
(match lhs, rhs with
| (Closure (cenv, _, TVar x, body), TypV ty') ->

let new_env = {types = (x, TypV ty') :: cenv.types;
variables = cenv.variables}

in
eval new_env body

| _ -> Monad.return_error "App to a non closure/tried
to apply a non type" env

)
...

FIGURE 3.3: Monadic Refactoring of Evaluations

| (Some e, semantics) ->
let res, new_semantics = f e in
res, new_semantics @ semantics

Monadic Evaluation

Monadic parameterisation of the eval() function changes its signature

to have return a type value monad rather than just value. The signature

is updated by including the return() function in returning procedures,

and passing the name variable (of type log) to record the expression we

are evaluating. And finally, we replace "let ... in ..." statements

with the bind operator to grow our monad (Figure 3.3). Otherwise, the

code from non-monadic evaluations (Figure 2.4) and monadic evalua-

tions (Figure 3.3) are almost identical.

Instead of raising exceptions and interrupting the semantics accumu-

lation, eval() invokes return_error, defined below, instead.

let return_error s state: 'a monad =
None, [(ErrorLog s, state)]
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Since the logic of the monad handling is contained in the monad mod-

ule, the refactoring does not interfere with the results or the evaluation

logic.

Examples

To reiterate, the following monad collects a footprint of eval() function

calls. The resulting data keeps track of what expressions are evaluated in

what environments. In later chapters, this helps us test the type-checker

via checking what types and variables were passed to expressions.

Consider the polymorphic identity function

let id_func = ETAbs ("X", Abs ("x", TVar "X", Var "x"))

Instantiating the polymorphic type X to integer, and applying the func-

tion to integer 1

eval empty_env (App (ETApp (id_func, Typ TInt), Int 1))

returns the result Some (IntV 1) and the following sequence of function

calls

[Eval (ETAbs "X", Abs ("x", TVar "X", Var "x"))),
{types: []; variables: []};
Eval (Typ TInt),
{types: []; variables: []};
Eval (Abs ("x", TVar "X", Var "x")),
{types: ["X" , TypV TInt ]; variables: []};
Eval (Int 1),
{types: []; variables: []};
Eval (Var x ),
{types: ["X" , TypV TInt ]; variables: ["x" , IntV 1]]

3.2 Continuation Passing Style

Section 3.1.2 built a definitional interpreter with an embedded trace-

collecting monad. However, this approach introduces a subtle problem



Chapter 3. Testing with Interpreters 18

caused by the bind operator (»=) making function calls before recording

the trace, thereby introducing issues with call stack overflows. To make

the bind operator tail-recursive, we utilise a different notion of monads -

the continuation passing style (CPS) monad.

The following section, firstly, explains what is CPS and its virtues,

namely solving issues with stack overflow. Finally, we refactor the inter-

preter to use CPS without amending our semantics collecting procedures.

3.2.1 Theory and Example

Functional programming languages, such as OCaml, provide means for

continuations to be encoded as closures or first class anonymous func-

tions [22]. Using this property, programs can be re-implemented with the

Continuation-Passing Style (CPS) [22]. The overarching benefit of this ap-

proach is that all function calls become tail-calls, which avoids problems

with overwhelming call stack growth [5].

In a CPS program, all functions take a continuation as extra argument.

The continuation acts as the functional accumulator that stores the "rest of

the computations" [5]. Thus, the return procedure of the function, once

the function call arrives at a result, involves applying the continuation

onto the said result.

For example, consider the Fibonacci function written using CPS at

Figure 3.4. When calling the function, the anonymous identity function

(fun x -> x) can be passed as the initial continuation. The type of the

CPS Fibonacci function becomes (int -> (int -> 'a) -> 'a) making

the function tail-recursive.
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let rec fib n k =
if n < 2 then k 1
else fib (n - 1) (fun x ->

fib (n - 2) (fun y ->
k (x + y)))

FIGURE 3.4: CPS Fibonacci Function

3.2.2 Monadic Interpreter for System F in CPS

Continuation Monad

type ('a, 'b) monad = (('a, String.t) result -> 'b) -> 'b

FIGURE 3.5: CPS Monad Signature

Figure 3.5 portrays the signature of the CPS monad, where the type

result is a built in OCaml type which returns Ok of some polymorphic

type ’a and Error of some polymorphic type ’b. In other words, it acts

as our Maybe monad, first introduced in Figure 3.2, implemented with

type result instead. The monad is structured as a type of a CPS program

itself, where (('a, String.t) result -> 'b) is the continuation.

As per tradition, the CPS monad also contains the return and bind op-

erators [3, 10]. Then, the return() function, shown in Figure 3.6, applies

the continuation k to some Ok x result, abiding by the general CPS return

procedures (discussed in Section 3.2.1). The bind operator unwraps the

result from its monad for evaluations, then re-wraps the updated result

in some updated monad. The "unwrapping" in this case is done by defin-

ing a new continuation that would either update the contained result, or

propagate a failure, as seen in Figure 3.6.

So far, the CPS Monad does not, yet, include the property of semantics
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let return x k = k (Ok x)

let (>>=) x f k =
let k' r =

match r with
| Ok z -> (f z) k
| Error _ as x' -> k x' in

x k'

FIGURE 3.6: Return and Bind Operators of CPS Monad

collection. Fortunately, the current implementation of the monadic inter-

preter allows for adding computational effects modularly, without having

to alter the return and bind operators. Re-considering the CPS monad

type, the intermediary value that accumulates the semantic trace of type

log list can be integrated into type ’b to be (log list -> ’b) instead.

The method for achieving dynamic collection can be found in Fig-

ure 3.7. The intermediary expressions are wrapped into a closure thunk

that is run when given a unit type. Since all of the intermediary expres-

sions have CPS monadic results (more specifically of type ((’a, String.t)

result log list -> ’b) -> log list -> ’b), the function will only be

called with the first two arguments, namely the closure thunk and seman-

tics trace log.

Note that the following method introduces laziness into our compu-

tations, as evaluating (let y = f h z in g y) in the monad does not

reduce the expression, but rather allocates a closure with a reference to a

closure that is result of f h z [23]. When recursively called, the construc-

tion induces nested non-tail calls, thus quickly growing the call stack [23].

However, laziness is handled by the CPS monad itself, as all function calls

become tail calls.
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let grow_collection thunk log k current_log =
thunk () k (current_log @ log)

FIGURE 3.7: CPS Semantics Collection

let init_log r log' =
match r with
| Ok z -> Ok (z, log')
| Error msg -> Error (msg, log')

FIGURE 3.8: Initial Continuation

The revision of the interpreter itself is minimal, only requiring wrap-

ping return statements, or recursive calls, into thunks, which are then

passed to the grow_collection() function (Figure 3.7).

Applications and Results

To run the CPS eval() function on some expression, we need an initial

continuation to execute it with. We define a function called init_log as

the initial continuation (Figure 3.8) with the following type:

(('a, String.t) result -> log list -> ('c, String.t) result).

Finally, we implement an evaluation function that does not require a con-

tinuation as an argument, and returns the result and footprint of our ex-

ecution (Figure 3.9).

The aim of implementing a CPS monadic interpreter is to attempt

achieving the same results found in Section 3.1.2, while working around

let eval_without_cps (t:exp) (env:environment) =
let eval_res = eval_without_tc t env init_log [] in
match eval_res with

| Ok (z, log) -> Ok z, log
| Error (msg, log) -> Error msg, log

FIGURE 3.9: Evaluation Without Continuation Passing
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the CPS monadic infrastructure. Thankfully, the following results of eval-

uating applications of the System F identity function mimic the results

found in Chapter 3.1.2.

eval_without_cps (App (ETApp (id_func, Typ TInt), Int 1)) empty_env

> (Ok (IntV 1, {types = [("X", TypV TInt)];
variables = [("x", IntV 1)]}),
[Eval (ETAbs ("X", Abs ("x", TVar "X", Var "x")));
Eval (Typ TInt);
Eval (Abs ("x", TVar "X", Var "x"));
Eval (Int 1);
Eval (Var "x")])

3.3 Summary of the Techniques

In Chapters 2 and 3, we have elaborated on what System F, monads, and

CPS are, as well as practically explored and experienced their virtues. Af-

ter building a simple definitional interpreter for System F, we achieved a

deeper understanding of its expressiveness, despite its concise syntax.

Using monads, we were able to accumulate some semantics, specifically

with regard to what environments are the expression evaluated at. This

later proves useful when trying to test a type-checker of an industrial in-

terpreter. One caveat was found: the possibility of overflowing the stack

due to the monadic function calls being non tail-recursive. We solve this

issue by refactoring our monad according to the CPS style and showing

how both the result and the collected trace stay the same.

The code for the three interpreters from Chapters 2 and 3 is available

on GitHub [7].
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Chapter 4

Enhancing a Real-World

Definitional Interpreter

Having explored the tools from the previous two chapters, we aim to

incorporate those ideas in a real-world case study.

The following chapter discusses Scilla’s definitional interpreter, high-

lighting its use of monads. Then, we describe the process of embedding

of the collecting semantics monad within Scilla’s interpreter. Finally, we

introduce the use of strings as a universal format for storing the accumu-

lated semantics from evaluated programs.

4.1 Scilla

Scilla is a new programming language for safe smart contracts. The lan-

guage offers strong safety guarantees by means of type soundness of Sys-

tem F as foundational calculus [23]. In this section, we focus on Scilla’s

interpreter semantic design to properly navigate our future alterations.



Chapter 4. Enhancing a Real-World Definitional Interpreter 24

let checkwrap_op op_thunk cost emsg k remaining_gas =
if Uint64.compare remaining_gas cost >= 0 then

op_thunk () k (Uint64.sub remaining_gas cost)
else k (Error emsg) remaining_gas

FIGURE 4.1: Function for Monadic Gas Accounting

4.1.1 How Scilla Interpreter Uses Monads

The Scilla interpreter is constructed as a reference big-step monadic def-

initional interpreter [23]. In short, the result of the interpreter, of type

EvalRes Value, is wrapped into the maybe monad. Therefore, EvalRes

returns successful computations, while failure is propagated and made

explicit.

Additionally, Scilla’s monad acts as a state monad, allowing for one of

the key computations: tracking resource consumption. Any deployment

or interaction with a contract would require the emitter to pay (in virtual

funds) a specific amount of gas [23]. If the user’s allotted amount of gas

does not cover the cost of the future execution, an out-of-gas failure is

raised. Scilla’s designers perform gas accounting monadically, thus doing

it without altering the interpreter’s logic.

Referring back to the CPS monad signature in Figure 3.5, integration

of gas into the monad is done via transforming the type ’b in Scilla’s

monad into Gas -> ’b. Thus, computations returning EvalRes Value

now become functions expecting a certain amount of gas, and can only

run once the the sufficient amount of gas is provided.

Figure 4.1 displays the code for monadic gas deduction. Before pass-

ing an Error() to the continuation, or evaluating the closure op_thunk

with updated intermediary gas value, the function first checks whether
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the remaining gas covers the cost of the execution. The drawback of allo-

cating closures to intermediate expressions is introduction of laziness into

evaluation.

4.1.2 CPS Evaluator

As discussed in Section 3.2.2, issues with laziness, which cause call stack

overflow, can be solved by rewriting programs according to CPS. For this

reason, the monad is reinterpreted as a CPS monad, making all function

calls tail-calls [5]. As the revision involves only the monad, it does not

affect the core interpreter’s logic.

It is also worth mentioning that Scilla is not in full CPS, as that re-

quires serialisation of closures [23] (Figure 4.2). As such, the interpreter

contains components that "cut" the CPS execution (Figure 4.3). Figure 4.3

details a function that fully evaluates an expression with a fixed continu-

ation init_gas_kont, the result of which is passed onto the callee’s con-

tinuation k. In Chapter 5, we will demonstrate how constraints like these

make monadic treatment for real-world projects difficult.

type t =
...
| Clo of (t ->( t, scilla_error list, Gas -> SemanCollect ->

( (t * (LType.TIdentifier.Name.t * t) list)
* Gas * SemanCollect,

scilla_error list * Gas * SemanCollect)
result)

CPSMonad.t)
...

FIGURE 4.2: Explicit Type Declaration of Closures
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let exp_eval_wrapper_no_cps expr env k gas =
let eval_res = exp_eval expr env init_gas_kont gas in
let res, remaining_gas =

match eval_res with
| Ok (z, g) -> (Ok z, g)
| Error (m, g, l) -> (Error m, g)

in
k res remaining_gas

FIGURE 4.3: Expression Evaluation Function without CPS

4.2 Retrofitting Scilla Interpreter for Testing

Modularity of Gas Accounting

| GasExpr (g, e') ->
let thunk () = exp_eval e' env in
let%bind cost = fromR @@ eval_gas_charge env g in
let emsg = sprintf "Ran out of gas.\n" in
checkwrap_op thunk (Uint64.of_int cost) (mk_error1 emsg loc)

FIGURE 4.4: Gas expression Handling

To properly explain how we derive the methods to embed the collect-

ing semantic monad, we explore the code behind the gas-aware monad.

After doing so, we demonstrate how we seamlessly combined the two

monads together.

Scilla’s CPS monad does not explicitly declare Gas in its type as shown

below.

type nonrec ('a, 'b, 'c) t = (('a, 'b) result -> 'c) -> 'c

The Gas type is later inferred due to the monad being used as a gas-aware

monad, thus expanding some polymorphic type ’c of the monad to Gas

-> ’c instead. Scilla defines a gas-aware monad module which includes

utility functions for gas handling throughout the steps of evaluation. The

interpreter handles gas separately from other expression evaluations by
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defining its own gas expression GasExpr (Figure 4.4). In summary, gas

accounting is designed to be fully modular from the interpreter.

Modularly Embedding Semantic Collecting

In this section, we aim to design a generalised procedure of dynamically

collecting the trace of every expression evaluated.

Let us denote SemanCollect to be the type of our data structure that

stores accumulated semantics. First, we implement SemanCollect as its

own intermediary value, completely separate of Gas. Thus, we aim for

the final type of the monad to look like
(('a, 'b) result -> Gas -> SemanCollect -> 'c)

-> Gas -> SemanCollect -> 'c

Additionally, we need a procedure that appends new traces onto

SemanCollect. Similarly to how gas is handled (Figure 4.1), we de-

fine a function that, given a closure thunk, grows the intermedi-

ary SemanCollect structure with newly recorded data (Figure 4.5). Fi-

nally, we run the closure thunk with the new SemanCollect.

let update_monad_log thunk seman_collect k
remaining_gas current_seman_collect =

thunk () k remaining_gas
(update_seman current_seman_collect seman_collect)

FIGURE 4.5: Accumulating Semantics

As discussed in Section 4.1.2, init_gas_kont is passed as an initial

continuation in expression evaluation function calls that "cut" the CPS

structure. To make SemanCollect explicit in continuations, we pass it as

an argument in init_gas_kont (Figure 4.6). Once passed, SemanCollect

is then inserted into the specialised type result of the closures in the

program.
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let init_gas_kont r gas' seman_collect' =
match r with Ok z ->
| Ok (z, gas', seman_collect')
| Error msg -> Error (msg, gas', seman_collect')

FIGURE 4.6: Enhanced Initial Continuation

Finally, the functions is incorporated into the expression evalua-

tions (exp_eval) by wrapping either a return procedures or a recur-

sive calls into a closure thunk. thunk is then passed to a function

collecting_semantics() which handles some filtering and updates to

the SemanCollect variable. Once SemanCollect is updated, we run

thunk, i.e. the respective return or recursive calls. The following code

snippet shows an example Let expressions revisions, where utility func-

tions let_semantics convert the expression into strings - our chosen uni-

versal format for storing trace semantics (discussed in the next section

4.2.1).

| Let (i, _, lhs, rhs) ->
let%bind lval, _ = exp_eval lhs env in
let env' = Env.bind env (get_id i) lval in
let thunk () = exp_eval rhs env' in
collecting_semantics thunk loc

(let_semantics i lhs lval)

4.2.1 Strings as a Universal Format

When trying to collect the trace of all expressions passed, intuitively, we

aim to collect and store the the exact data structure of expressions to

avoid loss of information. Yet, we choose to store our data as strings

instead. This section reasons why strings are the chosen as the universal

format of storing data, describes their advantages, but also the restric-

tions.
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Firstly, converting the results to strings using defined pretty printers

make the output readable and therefore easier to understand. Then, we

can write a parser to translate the strings back into their original data

structures, avoiding any loss of information. Additionally, when parsing

the strings, we can re-structure or select just the data we need for testing

specific static analyses. As strings are a commonly used data type, there

are not steep learning curves to overcome.

Furthermore, there are limitations in the Scilla interpreter due to

which we cannot store expressions as they are. As mentioned in Sec-

tion 4.1.2, closures in Scilla are not serialised, i.e., abstract type defini-

tions are made explicit in OCaml. This exposes the type declarations of

SemanCollect and Gas that exist in Scilla closures and abstractions (Fig-

ure 4.2). Defining abstract data structures in OCaml limits us to using

only monomorphic types or polymorphic types declared in the module,

i.e. we cannot define some abstract type SemanCollect as an ’a list.

While this poses no problem for gas, as it already resembles primitive

types, SemanCollect has a limited range of types it can be.

Additionally, all expressions have a type defined in module

EvalSyntax - a specific instance of the general Syntax module. Syntax

module is then built upon the general Literal module and other mod-

ules combined. In short, the dependency of modules looks like Literal

→ Syntax→ EvalSyntax. The designers for Scilla specifically deter recur-

sive module definitions that involve Eval modules (such as EvalSyntax),

only permitting Eval modules to depend on the base modules. Thus,

it would not be possible to refer to a specific type definitions from

EvalSyntax for defining SemanCollect in the Literal module.
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In summary, Scilla’s design prevents us from storing expressions as

they are without restructuring the project’s dependencies. As such, we

store data as strings and reap the benefits of the data type’s readability,

simplicity, and familiarity.

Resulting SemanCollect

Our goal for this section is to be able to incorporate the semantics col-

lecting monad to at least record every expression evaluated without in-

terfering with evaluations. The following section bears the fruit of our

implementations, as we show our first results of tracing a program’s exe-

cution in the production scale interpreter.

Consider the example program, written in Scilla, at Figure 4.7.

let x = Int32 42 in
let f = fun (z : Int) => x in
let y = x in
let a = y in
a

FIGURE 4.7: Example Program in Scilla

When running the evaluator and extracting the footprint of expres-

sion evaluations, we get the result shown below. Mapping the resulting

trace to the original program (Figure 4.7) allows us to see how having a

monad collect information in between function calls provides with the an

ordered and concrete trace of semantics.

Let: x <- (Lit (Int32 42)) = ((Int32 42))
Fun: Var z: (Variable x)
Let: f <- (Fun: Var (z) Body: Variable x) = (<closure>)
Variable: x -> ((Int32 42))
Let: y <- (Variable x) = ((Int32 42))
Variable: y -> ((Int32 42))
Let: a <- (Variable y) = ((Int32 42))
Variable: a -> ((Int32 42))
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4.2.2 Specialising Collecting Abilities

Now that we have finally built a system to collect some data, we can

redefine some collection processes to get further insight into the program.

This section details how we can specialise our current implementation to

allow for collection of the types of data flows into each variable.

To do so, we update SemanCollect from its previous form, of being

a (string list), that stores trace of semantics as strings. SemanCollect

will now contain a dictionary of variables and data passed to them, as

well as the pre-defined trace of expression evaluations. The type of

SemanCollect is now:

((String.t * String.t) List.t * String.t List.t)

Since only Let expressions introduce new data flows into variables,

the collection procedure is updated accordingly.

| Let (i, _, lhs, rhs) -> ...
collecting_semantics thunk loc

(new_flow (Var i) (fst lhs),
(let_semantics i lhs lval))

The function new_flow updates the dictionary with new data from lhs

to flow into Var i. Once the function evaluates and we have populated

our dictionary with all variable definitions, we can experiment with re-

structuring our data to get the information we need.

For example, after running the example program mentioned above (Fig-

ure 4.7), we can traverse the dictionary to find all variables and literals

that flow into our variable definitions.

Variable x -> ( Lit (Int32 42) )
Variable f -> ( Fun: Var (z) Body: Variable x )
Variable y -> ( Variable x <- Lit (Int32 42) )
Variable a -> ( Variable y <- Variable x <- Lit (Int32 42))
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Chapter 5

Case Study

Having developed the general framework for dynamic semantics collec-

tion, we explore strategies for populating and refining our SemanCollect

for testing specific static code analyses. One of such static code analyses

is a static type checker.

Scilla has its own type checker which statically checks that contracts

are well-typed [23]. Ensuring type-soundness of contracts is crucial for

providing safety guarantees in block-chain programming. Scilla design-

ers argue that well-typed contracts do not go wrong but can fail with

expected failures only [23]. As such, it is important to make sure that the

type checker is, indeed, bug free.

In this section, we demonstrate how we integrated type flow collec-

tion into our monad, applying it to testing the Scilla’s type checker re-

sults.

5.1 Accumulating Type Flows

Scilla programs come in several shapes: type annotated (after type check-

ing) and unannotated (that are evaluated). Our goal is to make sure that
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the former is correct with regard to running with the latter, which is done

by checking if the concrete flow of literals (which are typed) is coherent

with the ascribed types of named variables. In essence, we must check

only expressions of type T flow into an expression x of type T (x:T).

5.1.1 Enhanced Monadic Collection Procedures

First, we define our procedure to extract types from expressions. Scilla

programs that are evaluated are not type annotated. Therefore, we find

out the types of our variables by extracting the types of literals that flow

into them. For example, given an expression

let x = Int32 1 in
let y = x in
y

we can only know the type of y by knowing (Int32 1) flowed into it

through x.

Referring back to SemanCollect, let’s redefine its type to contain the

types of the expressions stored (Figure 5.1). We include type option as

many of our expressions are not typed when first collected.

(((String.t * LType.t option)
* (String.t * LType.t option)) List.t * String.t List.t)

FIGURE 5.1: Type of SemanCollect

With our new type for SemanCollect, we update our flow collection

procedure new_flow (Figure 5.2). Originally, new_flow only collected a

flow of an expression v2 into v1 by storing them as pairs (v1, v2). We

include a type parameter that records the type of v1 (either None or Some

ty). The type of v2 is only known if it is a literal, i.e. a constant, the type

of which we can easily extract.
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let new_flow v1 v2 (ty: SType.t option):
((String.t * LType.t option) * (String.t * LType.t option)) =

let v1' = (no_gas_to_string v1, ty) in
match un_gas v2 with
| Literal l ->

begin
match l with
(*Closures don't have serialised types*)
| Clo _ -> (v1', (no_gas_to_string v2, None))
| _ ->

match literal_type l with
| Ok ty' -> (v1', (no_gas_to_string v2, Some ty'))
| Error _ -> (v1', (no_gas_to_string v2, None))

end
...

FIGURE 5.2: new_flow function

5.1.2 Propagation of Logic in Evaluator

With our new collecting procedures ready, we plan where to insert them

throughout the evaluator to collect the flows. For this, we define more

concretely what we mean by expressions flowing into other expressions:

Definition 1. An expression e1 flows into another expression e2 when

we see the evaluator run bind() binding the evaluated expression e2 onto

e1 in some environment. This includes what expressions flow into func-

tion parameters and its local variables during applications.

Abiding by definition 1, we propagate the use of new_flow in Let, Fun,

App, and MatchExpr expressions, all of which bind variables in local and

global environments.

We highlight how we incorporate the collecting procedures for appli-

cations App due to the complexity of handling closures. Since the Scilla

interpreter is closure-based, its Fun expressions are evaluated to closure

Clo. Thus, when running an application of some variable x to some func-

tion f, f is only stored as a closure in the global environment forbidding
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(* Expected result: 1 *)
let x = Int32 42 in
let f = fun (z : Int32) =>

let b = x in
fun (c : Int32) => z

in
let a = Int32 1 in
let d = Int32 2 in
f a d

FIGURE 5.3: Example Program in Scilla 2

us to access the function’s parameters and their types. In other words,

SemanCollect cannot collect what function parameters is the expression

being passed to.

To solve this issue, we store the new_flow function in the closure as

well. When the function is called for evaluation, it runs the collecting

procedure that records the function parameter and its type. To collect

what expressions flow into the function parameters, we record the iden-

tifiers of the expressions in App expression evaluations before running the

closures.

5.1.3 Results

Consider the following Scilla program that includes applications in

Figure 5.3. Running the enhanced monadic evaluator on the program

gives us the following set of flow accumulations:

(Variable x, ___),(Lit (Int32 42), Int32)
(Variable f, ___),(Fun (Var z: Int32), Int32)
(Variable a, ___),(Lit (Int32 1), Int32)
...

Note how only literals and function parameters have their types pre-

defined. For the rest, we must infer them from the literals that have flown

into them. Doing so, we get the following collection:



Chapter 5. Case Study 36

Variable x: Int32 <- ((Lit (Int32 42): Int32))
Variable f: Int32 <- ((Fun (Var z: Int32): Int32))
Variable a: Int32 <- ((Lit (Int32 1): Int32))
Variable d: Int32 <- ((Lit (Int32 2): Int32))
Variable z: Int32 <- ((Variable a: Int32) <- (Lit (Int32 1): Int32))
Variable b: Int32 <- ((Variable x: Int32) <- (Lit (Int32 42): Int32))
Variable c: Int32 <- ((Variable d: Int32) <- (Lit (Int32 2): Int32))

5.2 Testing Scilla’s Static Type Checker

Out strategy for testing Scilla’s static type checker involves confirming

the inferred type of expression x is correct via runtime. In essence, we

can do that by checking for x:T - only expressions of type T float into it.

From our results in section 5.1.3, this can be done by simply checking if

the list of expressions flowing into a named variable match types.

Re-evaluating the program at Figure 5.3 gives us
...
Variable b: Int32 <- ((Variable x: Int32) <- (Lit (Int32 42): Int32))

=> Flows type check
Variable c: Int32 <- ((Variable d: Int32) <- (Lit (Int32 2): Int32))

=> Flows type check

Running a similar program to the one in Figure 5.3, but replacing (let

d = Int32 2) with (let d = "abc"), we get the following type error:
...
Variable b: Int64 <- ((Variable x: Int64) <- (Lit (Int64 42): Int64))

=> Flows type check
Variable c: Int64 <- ((Variable d: String) <- (Lit (String "abc"): String))

=> Flow does not type check

The following framework is run on 105 Scilla programs provided by

the Scilla designers as test programs. All of the 105 programs were con-

sidered "good", i.e., statically type sound. Our results concluded that type

soundness held up dynamically for all of the programs as well. There-

fore, we are not able to find any bugs in the type checker from running

these programs.
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In a larger context, testing the type checker with 105 human written

programs may not yield substantial results. In order to comprehensively

test the type checker, we need a random Scilla program generator that

could generate a good distribution of semantically correct programs [13].

5.3 Running the program

The code for the progress implemented in this chapter exists in a public

fork of the Scilla interpreter1.

After following the compilation steps articulated in the README file,

running the eval-runner binary with the flag -output-seman, followed

by a path to a JSON file, will output the results of the dynamically col-

lected data into the specified file.

Here’s an example of a command of execution:

eval-runner -gaslimit 10000 -output-seman a.json -libdir
src/stdlib tests/eval/good/let.scilexp

1https://github.com/tramhnt99/scilla

https://github.com/tramhnt99/scilla
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Chapter 6

Discussion

6.1 Future Work

The focus of this project is to provide a proof of concept of refactoring

a production scale definitional interpreter with a semantics collecting

monad to test static code analyses. We successfully extracted some dy-

namically collected semantics which we used to confirm the results of

Scilla’s static type-checker. The future work can focus on implementing

a parser that would allow us to broaden the scope of the kind of static

analyses we can test.

Our immediate next task is to implement a parser that parses the re-

sulting strings, storing dynamically collected semantics, back to their re-

spective structures without losing any precision. This prevents us from

being limited by handling collected data as strings, and provides us with

broader possibilities of the kinds of analyses we can test.

An example of such analysis is the type-flow analysis used for monomor-

phisation [15]. Monomorphisation is a process by which function types

are made precise because polymorphic functions are difficult to reason

and slow to compile. A monomorphisation pass uses type-flow analysis,
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which statically determines what types certain variables might take on

during run time. As such, testing type-flow analysis is a direct extension

from our current strategies of testing type checkers.

Additionally, the following framework can be further developed to

test a newly developed static program analysis tool called CoSplit [17].

CoSplit statically infers properties of smart contracts that are used for

maximising parallelism to achieve scalability in blockchain protocols [17].

As CoSplit runs static analysis on contracts written in Scilla, we can ex-

tend this project’s program for future testing of CoSplit.

6.2 Conclusion

In this project, we presented a detailed approach of incorporating a se-

mantics collecting monad into the real world definitional interpreter. We

started by demonstrating monadic parameterisation of a simple System F

interpreter that does not have a monad. By embedding the CPS monad

into our new monadic System F interpreter, we presented how we can

get the same trace of semantics from the tail-recursive monad. Finally,

we integrated the ideas to enhance the Scilla interpreter for testing its

static analyses.

Integrating our monad into Scilla required overcoming many chal-

lenges. Firstly, we devised a suitable notion of our monadic semantics

to integrate with Scilla’s non-serialised closures and abstraction defini-

tions. Those definitions required us to make explicit the type of the data

structures storing our semantics, which influenced our choice of storing

them as strings. Putting our framework together, we achieved a proof of

concept for recording dynamic semantics of programs in Scilla.
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The results of chapter 5 which show how our concrete semantics checked

the static type checker, highlight our achievement of successfully monad-

ically refactoring a production-scale interpreter to extract the necessary

dynamic analysis for testing static analyses. Overall, we hope the project’s

novel approach for testing static analyses sows the seeds for new oppor-

tunities within the field programming languages.
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