
Distributed Protocol Combinators

Kristoffer Just Arndal Andersen1 and Ilya Sergey2

1 Aarhus University, Aarhus, Denmark
kja@cs.au.dk

2 Yale-NUS College and NUS School of Computing, Singapore
ilya.sergey@yale-nus.edu.sg

Abstract. Distributed systems are hard to get right, model, test, debug,
and teach. Their textbook definitions, typically given in a form of repli-
cated state machines, are concise, yet prone to introducing programming
errors if näıvely translated into runnable implementations.
In this work, we present Distributed Protocol Combinators (DPC), a
declarative programming framework that aims to bridge the gap between
specifications and runnable implementations of distributed systems, and
facilitate their modeling, testing, and execution. DPC builds on the ideas
from the state-of-the art logics for compositional systems verification.
The contribution of DPC is a novel family of program-level primitives,
which facilitates construction of larger distributed systems from smaller
components, streamlining the usage of the most common asynchronous
message-passing communication patterns, and providing machinery for
testing and user-friendly dynamic verification of systems. This paper de-
scribes the main ideas behind the design of the framework and presents
its implementation in Haskell. We introduce DPC through a series of
characteristic examples and showcase it on a number of distributed pro-
tocols from the literature.

1 Introduction

Distributed fault-tolerant systems are at the heart of modern electronic services,
spanning such aspects of our lives as healthcare, online commerce, transporta-
tion, entertainment and cloud-based applications. From engineering and reason-
ing perspectives, distributed systems are amongst the most complex pieces of
software being developed nowadays. The complexity is not only due to the in-
tricacy of the underlying protocols for multi-party interaction, which should be
resilient to execution faults, packet loss and corruption, but also due to hard
performance and availability requirements [2].

The issue of system correctness is traditionally addressed by employing a
wide range of whole-system testing methodologies, with more recent advances
in integrating techniques for formal verification into the system development
process [5, 8, 20]. In an ongoing effort of developing a verification methodology
enabling the reuse of formal proofs about distributed systems in the context of
an open world, the Disel logic, built on top of the Coq proof assistant [3], has
been proposed as the first framework for mechanised verification of distributed
systems, enabling modular proofs about protocol composition [24,26].

1

The main construction of Disel is a distributed protocol P—an operationally
described replicated state-transition system (STS), which captures the shape
of the state of each node in the system, as well as what it can or cannot do
at any moment, depending on its state. Even though a protocol P is not an
executable program and cannot be immediately run, one can still use it as an
executable specification of the system, in order to prove the system’s intrinsic
properties. For instance, reasoning at the level of a protocol, one can establish
that a property I : SystemState → Prop is an inductive invariant wrt. a protocol
P.3 A somewhat simplified main judgement of Disel, P ` c, asserts that an
actual system implementation c will not violate the operational specification of
P. Therefore, if this holds, one can infer that any execution of a program c, will
not violate the property I, proved for protocol P. Disel also features a full-
blown program logic, implemented as a Hoare Type Theory [19], which allows
one to ascribe pre- and post-conditions to distributed programs, enforcing them
via Coq’s dependent types, at the expense of frequently requiring the user to
write lengthy proof scripts.

While expressive enough to implement and verify, for instance, a crash-recovery
service on top of a Two-Phase Commit [24], unfortunately, Disel, as a systems
implementation tool, is far from being user-friendly, and is not immediately ap-
plicable for rapid prototyping of composite distributed systems, their testing
and debugging. Neither can one use it for teaching without assuming students’
knowledge of Coq and Separation Logic [21]. Furthermore, system implemen-
tations in Disel must be encoded in terms of low-level send/receive primitive,
obscuring the high-level protocol design.

In this work, we give a practical spin to Disel’s main idea—disentangling
protocol specifications from runnable, possibly highly optimised, systems imple-
mentations, making the following contributions:

– We distil a number of high-level distributed interaction patterns, which are
common in practical system implementations, and capture them in a form of
a novel family of Distributed Protocol Combinators (DPC)—a set of versatile
higher-order programming primitives. DPC allow one to implement systems
concisely, while still being able to benefit from protocol-based specifications
for the sake of testing and specification-aware debugging.

– We implement DPC in Haskell, providing a set of specification and imple-
mentation primitives, parameterised by a monadic interface, which allow for
multiple interpretations of protocol-oriented distributed implementations.

– We provide a rich toolset for testing, running, and visual debugging of sys-
tems implemented via DPC, allowing one to state and dynamically check the
protocol invariants, as well as to trace their execution in a GUI.

– We showcase DPC on a variety of distributed systems, ranging from a simple
RPC-based cloud calculator and its variations, to distributed locking [10],
Two-Phase Commit [7], and Paxos consensus [12,13].

3 Examples of such properties include global-systems invariants, used, in particular,
to reason about the whole system reaching a consensus [22,25].

2

2 Specifying and Implementing Systems with DPC

In this work, we focus on message-passing asynchronous distributed systems,
where each node maintains its internal state while interacting with others by
means of sending and receiving messages. That is, the messages, which can be
sent and received at any moment, with arbitrary delays, drops, and rearrange-
ments, are the only medium of communication between the nodes. DPC takes
the common approach of thinking of message-passing systems as shared-memory
systems, in which each message in transit is allocated in a virtual shared “mes-
sage soup”, where it lingers until it is delivered to the recipient [24,27].

The exact implementation of the per-node internal state might differ from
one node to another, as it is virtually unobservable by other participants of
the system. However, in order for the whole system to function correctly, it is
required that each node’s behaviour would be at least coherent with some notion
of abstract state, which is used to describe the interaction protocol.

In the remainder of this section, we will build an intuition of designing a
system “top-down”. We will start from its specification in terms of a protocol
that defines the abstract state and governs the message-passing discipline, going
all the way down to the implementation that defines the state concretely and
possibly combines several protocols together. For this, we use a standard example
of a distributed calculator.

2.1 Describing Distributed Interaction

C

Compute_Request ([3, 100, 20])

Compute_Response ([123])

S

In a simple cloud calculator, a node takes
one of two possible roles: of a client or of a
server. A client may send a request along
with data to be acted upon to the server
(e.g., a list of numbers [3, 100, 20] to
compute the sum of), and the server in
turn responds with the result of the computation, as shown on the diagram on
the right. For uniformity of implementation, all messages, including the response
of the server are lists of integers. Notice that this description does not restrict
e.g., the order in which a server must process incoming requests from the clients,
which leaves a lot of room for potential optimisations on the implementation side.

In order to capture the behavioural contract describing the interaction be-
tween clients and servers, we need to be able to outlaw some unwelcome com-
munication scenarios. For instance, in our examples, it would be out of protocol
for the server to respond with a wrong answer (in general an issue of safety)
or to the wrong client (in general an issue of security). A convenient way to
restrict the communication rules between distributed parties is by introducing
the abstract state describing specific “life stages” of a client and a server, as well
as associated messages that trigger changes in this state—altogether forming
an STS, a well-known way to abstractly describe and reason about distributed
protocols [14,15].

Let us now describe our calculator protocol as a collection of coordinated tran-
sition systems. The client’s part in the protocol originates in a state ClientInit

containing the input it is going to send to the server, as well as the server’s

3

ClientInit (S, ns)

Blocking

ClientDone (xs)

send (Compute_Request, S, ns)

receive (Compute_Response, S, xs)

ServerReady

send (Compute_Response, S, sum(ns))

receive (Compute_Request, C, ns)

(a) (b)

Fig. 1. State transitions for a client (a) and a server (b) in the calculator protocol.

identity. From this state, it can send a message to server S with the payload
[3, 100, 20]. It then must wait, in a blocking state, for a response from the
server.4 Upon having received the message, the client proceeds to a third and
final state, ClientDone. From here, no more transitions are possible, and the
client’s part in the protocol is completed. A schematic outline of the client pro-
tocol is depicted in Fig. 1 (a).

In our simplified scenario, the protocol for the server (Fig. 1, (b)) can be
captured by just one state, ServerReady, so that receiving the request and re-
sponding to it with a correct result is observed as “atomic” by other parties,
and hence, is denoted by a single composite transition. In other words, at the
specification level, the server immediately reacts to the request by sending a
response.

Notice that the protcol places no demands on the number of clients, servers
or unrelated nodes in the network, nor does it restrict the number of instances
of the protocol are running in a given network. The specification is ”local” to
the parties involved (which in general can number arbitrarily many).

This “request/respond” communication pattern is so common in distributed
programming that it is worth making explicit. We will refer to this pattern
as a pure remote procedure call (RPC) and take it as our first combinator for
protocol-based implementation of distributed systems.

2.2 Specifying the Protocol

We can capture the RPC-shaped communication in DPC by first enumerating all
possible states of nodes in the protocol in a single data type. For the calculator,
the states can be directly translated from the description above to the following
Haskell data type:

data S = ClientInit NodeID [Int]

| ClientDone [Int]

| ServerReady

4 Remember that this is a specification-level blocking, the implementation can actually
do something useful in the same time, just not related to this protocol!

4

NodeID is a type synonym for Int, but any type with equality would serve.
ClientInit contains the name of the server and the list to sum. ClientDone

contains the response from the server. Next, we describe the only kind of ex-
change that takes place in a network of clients and servers communicating by
following the RPC discipline. We do so by specifying when a client can produce
a request in a protocol, and how the server computes the response. Perhaps,
a bit surprisingly, no more information is needed, as the pattern dictates that
clients await responses from servers, and the server responds immediately. This
is the reason why need only enumerate two states for the client, eliding the one
for blocking, as per Fig. 1 (a): the framework adds the third during execution
by wrapping the states in a type with an additional Blocking constructor. 5 The
following definition of compute outlines the specification of the protocol’s STSs:

compute :: Alternative f ⇒ ([Int] → Int) → Protlet f S

compute f = RPC "compute" clientStep serverStep

where

clientStep s = case s of

ClientInit server args → Just (server, args, ClientDone)

_ → Nothing

serverStep args s = case s of

ServerReady → Just ([f args], ServerReady)

_ → Nothing

As per its type, compute takes a client-provided function of type [Int] → Int,
which is used by the server to perform calculations. The result of compute is of
type Protlet f S, where S is the data type of our STS states defined just above
and f is an instance encapsulating a possible non-determinism in a protocol
specification. Later constructions will make integral use of non-determinism to,
e.g., decide on the next transition depending on the external inputs, and the
parameter f serves to restrict what notion of non-determinism is used in the
definition of protocols.6 For now, the result of compute is entirely deterministic.

Protlets (aka “small protocols”) are the main building blocks of our frame-
work. A distributed protocol can be thought of as a family of protlets, each of
which corresponds to a logically independent piece of functionality and can be
captured by a fixed interaction pattern between nodes. In a system, each node
can act according to one or more protlets, executing the logic corresponding to
them sequentially, or in parallel. For this example, there is just the one exchange
of messages, so a single protlet makes for the complete protocol description.

Our framework provides several constructors to build protlets from the data
type description for the protocol state space and the operational semantics of
its transitions. In the example above, RPC is a data constructor, which encodes
the protlet logic by means of two functions. Its first argument, clientStep, pre-
scribes that from ClientInit state, a node can send args to node server, and
the response payload is later wrapped via ClientDone to form the succesor state.
The second argument, serverStep, says that the state ServerReady can serve a

5 See the discussion of executing specification in Section 3
6 One can think of any protocol, whose diagram has a fork, as non-deterministic.

5

request in one step: receiving args and responding with f args in a singleton
list, continuing in the same state. We have now completely captured the above
intuitions and transition system of the calculator in less than ten lines of Haskell.

2.3 Executing the Specification

The immediate benefits of having an executable operational specification of a
protocol is to be able to run it, locally and without needing full deployment
across a network, ensuring that it satisfies basic sanity checks and more complex
invariants.

The execution model for protlets is a small-step operational semantics, with
the granularity of transitions being that of the involved protlets. We take as
machine configurations the entire network of nodes and their abstract states.

In case several protlets of a similar shape are involved (e.g., a node is in-
volved in two or more RPCs), we distinguish them by introducing protlet labels,
a solution that is standard for program logics for concurrency [4, 23]. Having
introduced protlet labels, we can logically partition the local state of each node
along the protlet instance space, maintaining a local state portion “per protlet”,
per node. We represent this operational machine configuration as the datatype
SpecNetwork, which is a record data structure maintaining an environment of
protlets (indexed by their associated labels) and a protlet state for each node
and protocol instance, so that the operational semantics changes one node’s one
protlet’s state at a time. The following code creates a network for the calculator
protocol with two nodes (identified by 0 and 1), both running just one protlet
(labelled with 0), for the input for the example from Section 2.1:

addNetwork :: Alternative f ⇒ SpecNetwork f S

addNetwork = initializeNetwork nodeStates protocols

where

nodeStates = [(0, [(0, ServerReady)])

, (1, [(0, ClientInit 0 [3, 100, 20])])]

protocols = [(0, [compute sum])]

In any given network configuration, many actions can be possible. A node may
be ready to initiate an RPC, or it might be ready to receive a message—many
such actions may be enabled and relevant at once.7 As the purpose of running
the specification is to trace the possible behaviors in the protocol, we choose
the next action to execute in the network by leaving the resolution to the user
of the semantics. To do so, we implement the executable small-step relation as
a monad-parameterised function capturing the possibility of non-determinism
(hence Alternative f). This makes the implementation of the operational se-
mantics simple, yet general, as it just needs to describe an f-ary choice or f-full
collection of transitions at each step:

step :: (Monad f, Alternative f) ⇒ SpecNetwork f s → f (SpecNetwork f s)

The network can be “run” by iterating this small-step execution function with
a suitable instance of f, a standard construction in implementation of a non-
determinism in monadic interpreters.

7 And their abundance is precisely why reasoning about distributed systems is hard.

6

For example, we can instantiate the non-determinism to the classic choice of
the list monad [17], which leads to enumerating every possible action. We can
then iterate the function step by choosing a random possible transition, as in the
following interaction with the library, where we explore the ”depth” of a single
run of the protocol.

> length <$> simulateNetworkIO addNetwork

4

This is coherent with the first example we envisioned wrt. the protocol: there
is (1) the initial state; (2) the state with the client awaiting response, but the
message undelivered; (3) the state with the client waiting and the server having
sent a response; and finally, (4) a terminal state with the client done.

The non-determinism can be similarly resolved by enumerating all possible
paths through a protocol, up to a certain trace length if the execution space is
not finite. If the state space of a network is finite, this can yield actual finite-
space model checking procedures. In the following subsection, we will explore
another alternative to resolving the non-determinism, yielding an unusual yet
very useful execution method.

2.4 Interactive Exploration with GUI

Fig. 2. The interactive exploration tool, loaded with
the calculator protocol.

By delegating the decision
of which transition to fol-
low to the user of an ap-
plication that performs this
simulation, we can allow the
client of the framework to ex-
plore the network behaviour
interactively. The DPC li-
brary provides a command-
line GUI application facilitat-
ing interactive exploration of
distributed networks step-by-
step. Provided an initial network specification like the one described previously,
one can start the session by typing the following:

> runGUI addNetwork

This yields the interface displayed in Fig. 2. By choosing specific transitions in
sequence, the user can evolve and inspect the network at each step of execution.
This is useful for protocol design and debugging, and can help understand the
dynamics of a protocol, and the kinds of communication patterns it describes.

For example, in Fig. 3 we show the subsequent prompt after showing the
selection of Option 1:

SentMessages 0 1 [Message {_msgFrom = 1, _msgTag = "compute__Request",...

SentMessages is a human readable piece of data that represents the option of
sending in protocol instance 0, from node 1 the message with sender 1 of tag
"compute__Request". Here, the recipient and message content is elided for issues

7

of screenspace, but as the window is enlarged, so is the depth of information
provided to the client of the framework.

The state view is then shows that Node 0 now has said message waiting for
it in the soup, and Node 1 is now blocking. The user is then presented with
subsequent possible choices, here the option for the calculator to receive the
request and send the response in one atomic action, as dictated by the protocol.

Fig. 3. Choosing option 1 in the prompt from Fig. 2.

Additionally, as can be seen
in Fig. 2, in the interac-
tive tool we enrich the pos-
sible transitions at every step
with the possibility of a node
to go off-line. In effect, it
means it will stop processing
messages, modelling a benign
(non-byzantine) fault. Other
nodes cannot observe this and
will “perceive” the node as
not responding. This, however, becomes very useful when we move to explore
protocols that allow for partial responses among a collection of nodes, as in the
case of crash-resilient consensus protocols.

2.5 Protocol-Aware Distributed Implementations

Distributed systems protocols serve as key components of some of the largest
software systems in use. The actions taken in the protocol are governed by
programs outside the key protocol primitives, so it is vital that implementations
can integrate with software components in real general-purpose languages. We
here present such a language with primitives for sending and receiving messages
as an embedded domain-specific language (EDSL) in Haskell. This allows use
of the entire Haskell toolkit in engineering efficient optimised implementations
relying on distributed interaction.

Naturally, as implementations deviate from the protocols (in the way they,
e.g., implement internal state), we want to ensure that the they still adhere to
the protocol as specified. To achieve this, we introduce primitives for annotat-
ing implementations with protocol-specific assertions. These annotations can be
ignored by execution-oriented interpretations aiming for efficiency rather than
verification guarantees.

The following code implements a calculator server in plain Haskell using do-
notation to sequence effectful computations. The effects are described by type
class constraints: MessagePassing provides a send and receive primitive, and
ProtletAnnotations providing the enactingServer primitive, explained below.

addServer :: (ProtletAnnotations S m, MessagePassing m) ⇒ Label → m a
addServer label = loop
where

loop = do
enactingServer (compute sum) $ do

Message client _ args _ _ ← spinReceive [(label, "Compute__Request")]
send client label "Compute__Response" [sum args]

loop

8

By using type classes describing operations, we allow for several different inter-
pretations of this code. For instance, by interpreting the send and receive as
POSIX Socket operations, we obtain a subroutine in the IO Monad, Haskell’s
effectful fragment, that we can integrate into any larger development with no
interpretive overhead. The spinReceive operation is defined using recursion and
a primitive receive operation that attempts to receive an incoming message with
a tag from amongst a list of canidate message tags in a non-blocking manner.

The body of addServer is annotated with a (compute sum) protlet, enforcing
that the server responds to the client atomically (in terms of message passing)
and to perform the sum function (or something observationally equivalent) on the
supplied arguments. By bracketing the receive and send in the enactingServer

primitive, the implementation declares its intent to conform to the server role of
the RPC, as dictated by the protocol. Once we have a client to play the other role
in the protocol, we will demonstrate how this intent can be checked dynamically.
The message tags that appear in the code are by convention the tags used in the
RPC protocol, i.e., the name of the protocol with a suffix indicating the role in
the RPC that the message plays.

In contrast Disel and other static verification frameworks that enforce pro-
tocol adherence via (dependent) type systems (embedded in Coq or other proof
assistants) [11,24], we verify protocol properties dynamically. The tradeoff is that
of coverage versus annotation and proof overhead. We can, through exploiting
executable specifications, check that a single run of a program adheres to a
protocol. Notice that addServer is, like the specification of the compute protlet,
agnostic in the number and kinds of other nodes in the network. Its behaviour is
locally and completely described by its implementation, and is segregated from
interfering with unrelated protlets via the label parameter. We refer the reader
to the development for a number of client component implementations.

Let us now reap the benefits of protocol-aware distributed programming en-
abled by DPC and dynamically check that the implementations do indeed fol-
low the abstract protocols. We achieve this by interpreting the EDSL into a
datatype of abstract syntax trees (AST) that makes it possible to inspect their
evaluations at run time. We give a small-step structural operational semantics
to this language, and, precisely like the exectuable specifications, lift the evalu-
ation of a single program to that of an entire network of programs, by assigning
each program a node identifier in the network. Here, the global state (of type
ImplNetwork m Int, with m constrained as in addServer/addClient) is just the
message soup, and the node-local state is the program itself. Such an evaluation
is implemented by the following function.

runPure :: ImplNetwork (AST s) a → [(TraceAction s, ImplNetwork (AST s) a)]

Here, the AST data type is the HOAS AST for message-passing implementa-
tions to be interpreted. The result of running the network is a (possibly infinite)
list of TraceActions and the network configurations they lead to. We can simulate
a full run of the network by taking the last network in this list, provided the net-
work terminates. Messages can be examined by considering the soup component
at every step of evaluation.

9

We can verify that our implementation indeed adheres to the desired protocol
by the trace produced by runPure on a network configuration, ensuring that (a)
every observable action is compatible with the state that the node is supposed
to be in, and (b) checking the messages expected from these states. For this, we
implement yet another operational semantics, where the machine configuration
is a protocol state for every node id, and the program is a trace of primitive
actions. The interpreter faults if the current action is not applicable to the state,
or sends or receives messages not prescribed by the specification. We can run the
adherence checker on a prefix (e.g., of length 15) of the infinite trace as follows:

> checkTrace addNetwork $ fmap fst . take 15 $ runPure addConf

Right ()

The result of Right () indicates success: the trace did indeed conform to the
protlet annotations of the program, assuming the initial state of the implemen-
tations in addConf assumed an initial abstract state corresponding to the the
network state of addNetwork.

What happens if we introduce a mistake in the implementation? For instance,
if we erroneously annotate the server as intending to serve a product function
(instead of sum), we will fail protocol adherence, because the specification does
not agree on the content of the messages. In a different scenario, if we run the
client implementation twice, the checker would report an error, as this is not
allowed by the protocol: the client would have brought itself to the terminal
state ClientDone by the first RPC, and, hence, cannot proceed. By enriching
dynamic testing with protocol adherence checks we believe we can achieve greater
assurances of the correctness of our implementations without resorting to use
full-blown verification frameworks [8, 24].

3 Framework Internals

3.1 The Specification Language

A full distributed system specification consists of a collection of nodes, each
assigned a unique node identifier, and a collection of protlets for each instance
label. A node owns local state, partitioned according to protocol instance labels.
A protlet describes one exchange pattern between parties. A collection of protlets
over the same state space then describe an entire protocol.

In the overview we saw the simplest protlet, the pure RPC, but through ex-
ploration of examples and case studies, we have discovered a number of such
patterns, each more general than the previous. These are implemented as exten-
sions to the Protlet data type. One such is the broadcast protlet, integral for
describing multi-party protocols.8

data Protlet f s =
| RPC String (ClientStep s) (ServerStep s)

| Broadcast String (Broadcast s) (Receive s) (Send f s)

| ...

8 We elide the other protlet constructors, which can be found in our implementation.

10

The component functions of the protlets reuse a number of common type ab-
breviations, here ClientStep, Send etc. All are at work in the above listing. This
common structure unifies their implementation in the operational semantics.
The expansion of, e.g., the Broadcast synonym is as follows:

type Broadcast s = s → Maybe ([(NodeID, [Int])], [(NodeID, [Int])] → s)

This models a “partial” function on states s, saying under which conditions a
node can initiate a broadcast, by enumerating the recipients and the body of
the messages to them, along with a continuation processing the received answers
with their associated senders. This continuation is stored in the implicit blocking
state during actual execution of the specification.

The specification language is given a non-deterministic operational semantics
as described in Section 2.3. Recall the network step function:

step :: (Monad f, Alternative f) ⇒ SpecNetwork f s → f (SpecNetwork f s)

It is implemented by computing an f-full of possible transitions for every node
in the network and combining the result of taking all possible transitions on the
current network. The key operation of step is a dispatch on the current protocol
state of a node:

case state of

BlockingOn _ tag f nodeIDs k →
resolveBlock label tag f nodeID inbox nodeIDs k

Running s → do

protlet ← fst <$> oneOf (_globalState Map.! label)

stepProtlet nodeID s inbox label protlet

The constructors BlockingOn and Running are supplied by the framework. The
first is used to track the terms under which a node is blocking: what message(s)
it needs to continue and from whom. resolveBlock computes whether the con-
ditions are met for the current node to continue.

Here, _globalState is the mapping of collections of protlets (i.e., a protocol)
from instance labels. We then choose between protlets using oneOf :: [a]→f a.
stepProtlet dispatches control based on a case distinction on the protlet con-
structor: for example, here is the branch for the Broadcast protlet:

stepProtlet :: (Monad m, Alternative m) ⇒
NodeID → s → [Message] → Label → Protlet m s → m (Transition s)

stepProtlet nodeID state inbox label protlet = case protlet of
...
Broadcast name broadcast receive respond →

tryBroadcast label name broadcast nodeID state inbox <|> -- (1)
tryReceive label (name ++ "__Broadcast") receive nodeID state inbox <|> -- (2)
trySend label respond nodeID state inbox -- (3)

...

A node attempting to advance a protocol using the Broadcast protlet can do so
if it is (1) a client ready to perform a broadcast; (2) a server ready to receive
such a broadcast; or (3) a server that is ready to respond to a broadcast. The
try functions all follow the same structure: check that the user-provided protlet
component functions apply, and if so, generate an appropriate transition. For
instance, here is the signature of one such function for Broadcast:

11

tryBroadcast :: Alternative f ⇒ Label → String → Broadcast s →
NodeID → s → [Message] → f (Transition s)

Interpretations of Protocols. As described in Section 2.3, the operational seman-
tics of protocols can be instantiated to obtain different interpretations. We here
look at bounded model checking mentioned in passing in the overview. We can
use the List monad to enumerate all execution paths in a breadth-first manner:

simulateNetworkTraces :: SpecNetwork [] s → [[SpecNetwork [] s]]

This yields a list-of-lists where the nth list contains all possible states after
n steps of execution, in a breadth first enumeration of the state space. Each
constituent list of states is necessarily finite, but the list-of-lists need not be in
the case of infinite network executions. By virtue of Haskell’s lazy evaluation,
such a computational object is useful. We can then write a procedure that, given
a trace, applies a boolean predicate at every step of the trace.

checkTrace :: Invariant m s Bool → m → [SpecNetwork f s] → Either Int ()

The Invariant data type is an abbreviation for a boolean predicate on the type
s that additionally takes some “meta-data” m, like “roles” in a protocol, needed
to express the invariant. The procedure checkTrace returns Right () to signify
that there were no violations of the invariant, while it returns Left n to report
that the nth state was the first state to violate the invariant. With this language
of predicates we can build invariants and with the aforementioned checking pro-
cedure we can perform (bounded) checking that an invariant is in fact inductive
(i.e., holds for each state). In the case of a finite state space, this amounts
to real verification of inductive invariants. The most sophisticated example we
have successfully specified is an inductive invariant for a Two-Phased Commit
protocol [24], for which we refer the curious reader to the implementation.

3.2 The Implementation Language

The monadic langugage for message-passing programs is implemented as an
EDSL in Haskell. This has the benefit of providing all the standard tools for
writing Haskell programs; all the abstraction mechanisms and organisational
principles are at hand to write sophisticated software, including lazy evaluation,
higher-order functions, algebraic data types and more. By virtue of the modu-
larity offered by the approach of EDSLs, it is straightforward to give multiple
interpretations of such programs.

At the time of this writing DPC’s implementation fragment came with three
interpretations of the monadic interface:

1. The AST monad used for dynamic verification of implementation adherence of
the implementations to protocols, and covered in detail in Section 2.5.

2. A shared-memory based interpretation where nodes are represented as threads,
and message passing is performed by writing to shared message queues using
non-blocking concurrency primitives.

3. An interpretation for distributed message passing.

12

In the third case (true distribution), we give an interpretation into IO com-
putations performing message passing through POSIX Sockets. For this, each
computation needs an “address book” mapping NodeIDs to physical addresses
(concretely, IP adresses and ports). Additionally, each program will have ac-
cess to a local mailbox, represented by a message buffer being filled by a local
thread whose only function is to listen for messages. These two pieces of data
are collected in a record of type NetworkContext. Computations running in such
a context are captured in a type synonym over the ReaderT monad transformer:

newtype SocketRunnerT m a = SocketRunnerT {

runSocketRunnerT :: ReaderT NetworkContext m a }

What follows is the implementation of the send primitive in this particular
instance of the message-passing interface:

instance (MonadIO m) ⇒ MessagePassing (SocketRunnerT m) where

send to lbl tag body = do

thisID ← this

let p = encode $ Message thisID tag body to lbl

peerSocket ← (!to) <$> view addressBook

void . liftIO $ Socket.send peerSocket p mempty

The code for sending messages is, thus, implemented in a form of a Reader-like
computation over an IO-capable monad m as indicated by the MonadIO constraint.
It starts by building a Message containing the supplied tag, body, receiver (to)
and label, along with the executing nodes ID, as supplied by another primitive,
this. It then uses encode to serialize this message into bytestring p. p is then
sent to the appropriate peerSocket, as resolved by the addressBook, using the
System.Socket.Send operation from the POSIX Socket library for Haskell. The
monadic glue code (and the rest of the Haskell toolkit) is interpreted by choosing
an appropriate base monad for the interpretation, e.g., the IO monad. Ultimately,
we build the following function for running the system:

defaultMain :: NetworkDescription → NodeID → SocketRunner a → IO ()

It takes a NetworkDescription, which maps NodeIDs to physical addresses, a
NodeID with which to identify this node, and a computation in the above de-
scribed interpretation of message passing programs. The result is an IO () com-
putation that establishes (if run on each machine) a fully connected mesh net-
work with every node in the supplied network description, and then proceeds
to run the supplied computation, passing messages accordingly. This interpre-
tation can be used to facilitate integration of DPC-based implementations with
real Haskell code once they have been assured to comply with their protocols.

4 Evaluation

The implementation of DPC is publicly available online for extensions and exper-
imentation.9 We now report on our experience of using DPC for implementing
and validating some commonly used distributed systems.

9 https://github.com/kandersen/dpc

13

https://github.com/kandersen/dpc

Protocol Impl Protlets LOC RPC ARPC Notif Broad OneOf Quorum

Calculator X 1 10 X X X
Lock Server 4 73 X X X
Concurrent Database 3 23 X
Two-Phase Commit 2 43 X
Paxos X 2 42 X

Table 1. A summary for implemented systems: protocol, runnable implementation,
count of constituent protlets, size of encoding (lines of code), employed combinators.

4.1 More Examples

In order to evaluate the framework, we have encoded a number of textbook
distributed protocols, translating their specifications to the abstractions of DPC.
By doing so, we were aiming to answer the following research questions:

1. Are our Protlet-based combinator sufficiently expressive to capture a variety
of distributed systems from the standard literature in a natural way?

2. Is it common to have realistic protocols that require more than one combi-
nator, i.e., can be efficiently decomposed into multiple Protlets?

3. What is the implementation burden for encoding systems using DPC?

The statistics for our experiments is summarised in Table 1.
The framework has been shaped by the explorations of protocols that we

have made, but we believe that the answer to Q1 is affirmative, supported by the
variety of protocols we have so far explored. The answer to Q2 is also affirmative.
Complex protocols from literature decompose into interactions shaped as RPCs,
notifications, etc, and we manage to capture all of them in protlets. Simply put,
for every arrow in a diagram of the network indicating a communication channel,
the protocol has a protlet detailing the exchanges occuring across that channel.
For instance the two-phase protocols like Paxos and Two-Phase Commit (2PC)
naturally decompose into two broadcast/quorum phases, while more asymmetric
protocols like distributed locking [10] requires as many as four protlets.

Regarding Q3, the lines of code versus complexity of protocol are indicative
of a positive relationship between complexity and effort to encode a protocol,
which is desireable. That is, a lot of complexity is encapsulated by the treatment
of combinators, so the coding effort in the framework is very light.

The nature of the verification that the framework enables is naturally not
strictly sound (as it is dynamic), but techniques like bounded model checking
are readily explorable. With it, we have been able to validate, e.g., correctness
for the 2PC protocol [24], a not an insignificant proof burden.

The framework also affords exploration in other directions than we have men-
tioned so far. We have experimented with enriching the message passing language
with operations for shared-memory concurrency and thread-based parallelism.
The database example in the table uses node-local threads to maintain a database
that is served by two different threads. Our approach to dynamic checking of
protocol adherance scales to concurrency, and we have a concurrent Calculator
server serving multiple arithmetic functions in parallel.

14

4.2 A Case Study: Constructing and Running Paxos Consensus

For a representative exploration of the capabilities of DPC we turn to a study
of the Paxos Consensus [2,6,12]. Paxos solves a problem of reaching a consensus
on a single value agreed upon across multiple nodes, of which a subset acts as
proposers (who suggest the values) and another, complementary subset acts as
acceptors (who reach an agreement). The nature of the Paxos algorithm lends
itself well to interactive exploration and the specification should be robust to
issues that appear specifically in distributed systems, like arbitrary interleaving
of messages, message reorderings, and nodes going offline. The tools we have
developed so far are enough to explore these aspects of the protocol.

We can specify this protocol in DPC with relatively little code. We further
generalise the Broadcast combinator to “quorums” — broadcasts that await only
a certain number of responses before proceeding. We introduce another entry in
our Protlet datatype for capturing this pattern.

data Protlet f s = ...

| Quorum String Rational (Broadcast s) (Receive s) (Send f s)

The Quorum protlet is and acts identical to the Broadcast protlet, but it is
further instrumented by a rational number indicating the number of responses
to await before proceeding. We encode the dissection of nodes into proposers
and acceptors directly in the state of the protocol, similar to how we dissected
the state space of the cloud server along Client/Server lines. The proposer starts
in (ProposerInit b v as) with the desire to propose to acceptors as the value v

with priority (ballot) b. We encode this with a quorom protlet:

prepare :: Alternative f ⇒ Label → Int → Protlet f PState
prepare label n = Quorum "prepare" ((fromIntegral n % 2) + 1) propositionCast ...

where
propositionCast = λcase

ProposerInit b v as → Just (zip as (repeat [b]), propositionReceive b v as)
_ → Nothing

Here, prepare is parameterised by the number of participants. Hence, the protlet
dictates we should wait for a majority quorum, to avoid ties in the system. The
listing shows the initiation of the first broadcast as representative of the rest of
the implementation. The proposer starts in an ProposerInit state, in which it
initiates a broadcast poll of all as acceptors, sending its ballot b.

The second phase of the protocol is encoded as another Quorum protlet, where
the proposers react to the outcome of the responses on the first polling. The
interactive exploration tool can be used to explore, for instance, the robustness
of the protocol with respect to crashing participants versus crashing proposers,
and why a quorum size of

(
n
2 + 1

)
acceptors is sufficient for reaching consensus.

The explored implementation demonstrates use of the state monad to organise
the acceptor as an effectful program, and a callback to provide the ballot to the
proposer, using features of Haskell, while retaining the benefits of the framework.
Neither effect is possible to express at the protocol specification level.

15

5 Related Work

Declarative programming for distributed systems. In the past five years, several
works were published proposing mechanised formalisms for scalable verifica-
tion of distributed protocols, both in synchronous [5] and asynchronous set-
ting [24,27]. All those verification frameworks allow for executable implementa-
tions, yet the encoding overhead is prohibitively high, and no abstractions for
specific interaction patterns are provided in any of them. Most of the DSLs for
distributed systems we are aware of are implemented by means of extracting
code rather than by means of a shallow DSL embedding [9, 16, 18]. Mace [9],
a C++ language extension and source-to-source compiler, provides a suite of
tools for generating and model checking distributed systems. DistAlgo [18]
and Splay [16] extract implementations from protocol descriptions.

In a recent work, Brady has described a discipline of protocol-aware program-
ming in Idris [1], in which adherence of an implementation to a protocol is
ensured by the host language’s dependent type system, similarly to Disel, but
in a more lightweight form. That approach provides strong static safety guar-
antees; however, it does not provide dedicated combinators for specific protocol
patterns, e.g., broadcasts or quorums.

DPC’s protlets adapt Disel’s protocols, that are phrased exclusively in terms
of low-level send/receive commands, which should be instrumented with protocol-
specific logic for each new construction. While it is possible to derive DPC’s
protlets in Disel, extracting them and ascribing them suitable types requires
large annotation overhead.

6 Conclusion and Future Work

Declarative programming over distributed protocols is possible and, we believe,
can lead to new insights, such as better understanding on how to structure
systems implementations. Even though there are several known limitations to
the design of DPC (for instance, in order to define new combinators, one needs
to extend Protlet), we consider our approach beneficial and illuminating for the
purposes of prototyping, exploration, and teaching distributed system design.

In the future, we are going to explore the opportunities, opened by DPC, for
randomised protocol testing and lightweight verification with refinement types.

Acknowledgements. We thank PADL’19 referees for their many helpful sugges-
tions. The authors’ work on this project has been supported by the grant by UK
Research Institute in Verified Trustworthy Software Systems (VeTSS).

References

1. E. Brady. Type-driven development of concurrent communicating systems. Com-
puter Science (AGH), 18(3), 2017.

2. T. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering
perspective. In PODC, pages 398–407. ACM, 2007.

3. Coq Development Team. The Coq Proof Assistant Reference Manual, 2018.

4. T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafeiadis.
Concurrent Abstract Predicates. In ECOOP, volume 6183 of LNCS, pages 504–
528. Springer, 2010.

16

5. C. Dragoi, T. A. Henzinger, and D. Zufferey. PSync: a partially synchronous
language for fault-tolerant distributed algorithms. In POPL, pages 400–415. ACM,
2016.

6. Á. Garćıa-Pérez, A. Gotsman, Y. Meshman, and I. Sergey. Paxos Consensus,
Deconstructed and Abstracted. In ESOP, volume 10801 of LNCS, pages 912–939.
Springer, 2018.

7. J. N. Gray. Notes on data base operating systems. In In Operating Systems, pages
393–481. Springer, 1978.

8. C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts,
S. T. V. Setty, and B. Zill. IronFleet: proving practical distributed systems correct.
In SOSP, pages 1–17. ACM, 2015.

9. C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat. Mace:
Language support for building distributed systems. In PLDI, pages 179–188. ACM,
2007.

10. M. Kleppmann. How to do distributed locking. https://martin.kleppmann.com/
2016/02/08/how-to-do-distributed-locking.html, 08 Feb 2016.

11. M. Krogh-Jespersen, A. Timani, M. E. Ohlenbusch, and L. Birkedal. Aneris: A
logic for node-local, modular reasoning of distributed systems, 2018.

12. L. Lamport. The Part-Time Parliament. ACM TOPLAS, 16(2):133–169, 1998.
13. L. Lamport. Paxos made simple, 2001.
14. L. Lamport and F. B. Schneider. Formal foundation for specification and verifi-

cation. In Distributed Systems: Methods and Tools for Specification, An Advanced
Course, volume 190 of LNCS, pages 203–285. Springer, 1985.

15. B. W. Lampson. How to build a highly available system using consensus. In
WDAG, 1996.

16. L. Leonini, E. Riviere, and P. Felber. SPLAY: distributed systems evaluation made
simple (or how to turn ideas into live systems in a breeze). In NSDI, pages 185–198.
USENIX Association, 2009.

17. S. Liang, P. Hudak, and M. P. Jones. Monad transformers and modular inter-
preters. In POPL, pages 333–343. ACM Press, 1995.

18. Y. A. Liu, S. D. Stoller, B. Lin, and M. Gorbovitski. From clarity to efficiency for
distributed algorithms. In OOPSLA, pages 395–410. ACM, 2012.

19. A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: De-
pendent types for imperative programs. In ICFP, pages 229–240, 2008.

20. C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff.
How Amazon web services uses formal methods. Commun. ACM, 58(4), 2015.

21. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In CSL, volume 2142 of LNCS. Springer, 2001.

22. G. P̂ırlea and I. Sergey. Mechanising blockchain consensus. In CPP, pages 78–90.
ACM, 2018.

23. I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification of fine-grained
concurrent programs. In PLDI, pages 77–87. ACM, 2015.

24. I. Sergey, J. R. Wilcox, and Z. Tatlock. Programming and proving with distributed
protocols. PACMPL, 2(POPL):28:1–28:30, 2018.

25. R. van Renesse and D. Altinbuken. Paxos made moderately complex. ACM Comp.
Surv., 47(3):42:1–42:36, 2015.

26. J. R. Wilcox, I. Sergey, and Z. Tatlock. Programming Language Abstractions for
Modularly Verified Distributed Systems. In SNAPL, pages 19:1–19:12, 2017.

27. J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and T. E.
Anderson. Verdi: a framework for implementing and formally verifying distributed
systems. In PLDI, pages 357–368. ACM, 2015.

17

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html

	Distributed Protocol Combinators

