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We present a framework for synthesising formulas in first-order logic (FOL) from examples, which
unifies and advances state-of-the-art approaches for inference of transition system invariants. To do
so, we study and categorise the existing methodologies, encoding techniques in their formula synthe-
sis via answer set programming (ASP). Based on the derived categorisation, we propose orthogonal
slices, a new technique for formula enumeration that partitions the search space into manageable
chunks, enabling two approaches for incremental candidate pruning. Using a combination of ex-
isting techniques for first-order (FO) invariant synthesis and the orthogonal slices implemented in
our framework FORCE, we significantly accelerate a state-of-the-art algorithm for distributed sys-
tem invariant inference. We also show that our approach facilitates composition of different invariant
inference frameworks, allowing for novel optimisations.

1 Introduction

First-Order Logic (FOL) has been used with great success as a foundational tool for modelling and
verifying complex systems. Its applications span various domains, ranging from hardware design [5]
to software verification [21]. These successes are largely attributed to the development of advanced
frameworks that allow for automated verification and synthesis, often supported by high-performance
provers such as Z3 [19] and cvc5 [1].

To achieve fully automated verification of a complex system in FOL, it is often necessary to syn-
thesise formulas capturing the invariants (i.e., the properties always hold) of the system being verified.
Despite the undecidable nature of this task, many recent efforts have made substantial progress to infer
inductive invariants of complex distributed systems (e.g., Lamport’s Paxos consensus protocol [16]) by
synthesising FO formulas from examples: sampled traces of a protocol or counter-examples to induction.
The resulting approaches are implemented by a plethora of distinct frameworks [27, 8], and a systematic
study of their inter-connections is still missing. This raises important questions: are the existing synthe-
sis methods fundamentally non-overlapping? Could techniques developed for one approach be adapted
to benefit others? Addressing these questions would not only deepen our understanding of the underly-
ing methodologies but also enable the development of superior tools for formula synthesis, potentially
improving scalability of automated verification tools across various domains.

In this paper, we present a unified framework for synthesising bounded first-order formulas from
examples—first-order structures that the formulas satisfy. Our framework is designed to encode and
combine diverse synthesis techniques, enabling seamless integration with different high-level algorithms
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for invariant inference. To achieve this, we have conducted a detailed study of nine recent approaches
for invariant inference of distributed systems (DS), each of which offered a different take on inductive
synthesis of FO formulas. We summarise our study in two main observations w.r.t. inductive synthesis
of FO formulas, hinting an opportunity for improvement in the state of the art:

O1 Existing techniques fall within a small number of distinct classes, in terms of how they treat their
inputs and results, e.g., how examples are used and how formulas are constructed. We give a uniform
categorisation of these approaches.

O2 Whilst a wide variety of synthesis techniques exists, the vast majority fall into one of two cate-
gories, exploiting the properties of the first-order theories they employ: “redundancy elimination”
and “incremental pruning”.

To make a unified framework that captures O1, we use Answer Set Programming (ASP) [17], to en-
code the enumeration-based FO formula synthesis (as constraint solving) and the customisations and
techniques of the synthesis (as knowledges representation). To improve on the existing techniques, we
exploit O2 by proposing the idea of orthogonal slices (also implemented by ASP) of the FO search space:
a new approach to efficiently prune candidate formulas during the inductive synthesis. The key idea of
orthogonal slices is to partition the search space into ordered slices, where the synthesis of former slices
can be used to prune the latter slices using either satisfied or unsatisfied formulas. The practical benefits
of the unified framework, FORCE (First-Order synthesiser via oRthogonal sliCEs), are demonstrated
by improving two state-of-the-art DS invariant synthesisers, DuoAI [27] and Flyvy [8], without any con-
ceptual modifications to their high-level algorithms. Our results show that our framework is sufficiently
expressive and extensible to encode and compose existing formula synthesis techniques, advancing the
state of the art in DS invariant synthesis.

2 Overview

We start with a primer on inductive synthesis of FO formulas—a common subroutine in existing invariant
inference frameworks for distributed systems (DS). Then we summarise nine notable existing approaches
for DS invariant inference (with the earliest dated 2019), concluding with a brief description of our ASP-
based framework to capture various aspects of the synthesis and its particular instance, orthogonal slices.

2.1 Problem Definition

First-Order Language. In this work, we focus on system properties that are expressible in a first-order,
many-sorted logic with equality, following the common textbook definitions. A signature Σ= ⟨C,R,F,S⟩
consists of: a set of constant symbols C, a set of relation symbols (predicates) R, a set of function symbols
F , and a set of sorts S for the variables, constants, and function symbols. In the rest of this paper we
assume all signatures to be finite, i.e., the sets C, R, F , and S are finite.

Logic terms are defined recursively. A term is either a constant c ∈ C, a variable x, or a function
symbol f ∈ F applied to other terms (e.g., f (x1,x2)). Logic atoms are the basic formulas formed by
applying relation symbols from R or equality to terms of appropriate sorts; and a literal is an atom or
its negation (i.e., ¬p(x)). Formulas are constructed by closing literals under logical connectives (i.e.,
conjunction ∧ and disjunction ∨) and quantification (universal ∀ and existential ∃). It is well-known
that any FO formula can be transformed into an equivalent formula in prenex normal form, where all
quantifiers are placed at the beginning. In this structure, the prefix includes the quantifiers, and the
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matrix consists of the remaining Boolean components. For example, the formula ∀x : s1∃y : s2. p(x,y)∨
(¬q(x)∧ r(y)) is in prenex normal form, with prefix ∀x : s1∃y : s2 and matrix p(x,y)∨ (¬q(x)∧ r(y)).

Definition 1 (First-Order Synthesis Problem) Given a set of formulas Ω0 over signature Σ and a set
of FO structures σ = {M1, . . . ,Mk}, where each Mi is a model over Σ, find a set of formulas Φ =
{φ1, . . . ,φn} ⊆Ω0 s.t. ∀φ ∈Φ:

1. ∀M ∈ σ .M |= φ , (satisfies all input FO structures),
2. FreeVars(φ) = /0, (closed formula),
3. ∃M ̸∈ σ .M ̸|= φ , (non tautology),
4. ∀φ ′ ∈Φ.φ ̸= φ

′∧φ ̸|= φ
′, (no formula entails another).

In other words, the problem is to find in search space Ω0 a conjuncted set of well-formed formulas Φ that
satisfy all the given first-order structures in σ . Such a conjunction describes the “most precise” formula
that satisfies all the given structures, because there is no satisfied formula which is entailed by any φi.
The problem can be seen as an instance of the general specification synthesis problem [22] in the setting
of positive-only learning [26]. An example of the problem is illustrated in App. A.

It is worth noting that we make several assumptions and simplifications to the problem definition
above: (1) a disjunction of all input FO structures is always a valid (though overfit) solution, but in
practice, meaningful formulas are to be found in a size-restricted search space; (2) search spaces with
function symbols and constants can be easily handled by introducing new literals [28, §4], so we will
avoid discussing them in detail; (3) we assume users want to synthesise prenex DNF formulas, as DS
invariants are commonly expressed in this form; our techniques can be extended to other FO formulas.

2.2 Taxonomy of Existing Invariant Inference Algorithms

Existing invariant inference methods use different formula enumeration techniques and employ a vari-
ety of optimisations to effectively reduce the search space. We summarise nine representative existing
approaches: I4 [18], FOL-IC3 [13], IC3PO [11], SWISS [12], DistAI [28], P-FOL-IC3 [14], DuoAI [27],
Scimitar [25], and Flyvy [8] (in the order of their publication dates).

The categories are based on five detailed sub-aspects. The first two sub-aspects are “system-level”,
capturing the high-level design of a synthesis framework, while the remaining three are “algorithm-
level”: they define the pruning techniques applied to the brute-force enumeration of the search space.

2.2.1 System-Level Aspects

Inference mode. This aspect determines the way the overall inference procedure uses FO formula
synthesis. In particular, one-shot synthesis [18, 28, 27] generates all satisfied formulas in the search space
given fixed input examples (e.g., sampled traces of a distributed protocol), while multi-shot synthesis
[25, 8] generates a set of candidate formulas incrementally, based on examples obtained incrementally
(e.g., counter-examples of current invariants). Combined approaches [13, 11, 12, 14] use system traces
or counter examples to guide the multi-shot synthesis, calling the synthesis procedure multiple times.

Historically, the majority of multi-shot synthesis algorithms can be seen as extensions of IC3 [2],
while one-shot synthesis can be considered as extensions of Houdini [7]. Crucially, both modes share
the underlying FO synthesis problem similar to the definition of our synthesis problem, which means our
FORCE framework can be used to improve most existing approaches.
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Language restriction. To make the synthesis problem tractable, it is frequently defined for a subclass
of first-order logic. The most common one is the Effectively Propositional Logic (EPR [23, 6]) fragment,
a subset of FOL in which formulas can be transformed into equivalent propositional formulas, allowing
for provably decidable verification.

While EPR and its extensions are applied in most existing approaches with a theoretical decidability
guarantee, in practice, synthesis approaches often impose additional other syntactic constraints. For ex-
ample, the k-pseudo-DNF (proposed in P-FOL-IC3 [14], and further applied to [8]) is a syntax restriction
for practical efficiency: it is based on the observation that the invariant formulas written in such form are
smaller than standard DNF, reducing the search space that needs to be explored. Specifically, a k-pseudo-
DNF formula has the matrix in the form of c1→ (c2∨ . . .∨ck), where ci is a conjunction of literals. This
is essentially a heuristic of the search, which makes sense because implications are commonly used to
express invariants.

DistAI [28] proposed sub-templates (further applied to [27]) for efficiency, exploiting the following
property of first-order logic with equality:

∀X1,X2 : T.mat(X1,X2)≡ ∀X : T.mat(X ,X)∧∀X1 ̸= X2 : T.mat(X1,X2) (0)

With such a property, formula synthesis can avoid enumerating formulas on the LHS of Eq. 0 because
they are equivalent to the conjunction of the two RHS formulas. Therefore, the only enumerations among
two sub-templates on the right are required to synthesis the satisfied formula on the left, resulting in an
accelerated enumeration.

More than syntactic constraints above, specific tools [13, 12, 25, 8] also define their own syntactic
customisations. However, upon close examination of existing invariant inference implementations, we
find that syntactic constraints are not extensible in many tools. For example, extending k-pseudo-DNF
with sub-templates would require modifying any algorithm that manipulates formulas in P-FOL-IC3.

2.2.2 Algorithm-Level Aspects

Redundancy elimination. The most common pruning to apply is redundancy elimination, which is
used in many synthesis tasks. The idea is to simply eliminate the formulas that are equivalent to each
other. Approximations as “pruning by symmetry” (to be detailed in Sec. 3) are often used, where the
symmetry of formulas under quantification is identified to prune away redundant ones. More than the
syntactic-based equivalence, the redundancy can also be introduced by semantics (e.g., tautology and
contradiction), where many case-by-case rules are used in DistAI [28] and DuoAI [27]. An example of
formulas eliminated by this kind of redundancy is the one containing p(X)∧¬p(X) or p(X)∨¬p(X) as
sub-expressions. Another approach to redundancy is elimination canonicalisation, which is implemented
by Flyvy [8]: it also uses symmetry breaking, but defines a partial order of formula sets (instead of the
individual formulas) to eliminate redundancy.

A more complex but very effective pruning strategy of this category is proposed in DuoAI [27], where
a large number of DNF formulas are shown to be redundant by their decomposition: A≡ B∧C. Similar
to Eq. 0, the formula A can be decomposed into a conjunction of smaller formulas, so the original formula
can be pruned if all the smaller formulas are in the search space. However, the authors of Flyvy (cf. [8,
Appendix D]) found that the decomposition in DuoAI is unsound in certain cases (i.e., it leads to over-
pruning), and proposed an amended version. We found it not easy to switch the DuoAI implementation
to the amended version, as it uses the intermediate results of the original decomposition in the overall
synthesis loop, which also makes it challenging to fairly compare the efficiency of the two methods.
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Fig. 1: The workflow of FORCE.

Incremental pruning. Another inherent part of nearly all efficient approaches to FOL formula synthe-
sis is incremental pruning. The idea is to test formulas against the set of input FO structures in a specific
order, exploiting the entailment relation between formulas to eliminate the need to test some of them.

The implication graph to be detailed in Sec. 4.1 is an effective technique of this aspect from DuoAI [27].
More than this, DuoAI also identify another incremental pruning technique is based on co-implication,
which combines the intermediate results of FO model checking with the redundancy elimination to prune
the search space. For example, if we find that formula ∀x.P(x)⇒ R(x) satisfies all examples, we do not
need to the test any formulas of the form prefix. (P(x)∧R(x)∧F)∨G, since they are co-implied by the
original formula and prefix. (P(x)∧F)∨G.

Other techniques. Several pruning techniques are introduced in existing invariant inference tools [13,
11, 25]. We will discuss them in Sec. 6, as they are not generally applicable to all FO synthesis tasks.

To sum up the taxonomy of existing approaches, it suggests a possibility of a unified framework
to capture the existing techniques for FO synthesis and propose new ones. In particular, we find that
the Language and Redundancy aspects together form a static search space, while the Incrementality
aspect defines the dynamic pruning of the search space during the synthesis. These aspects are applicable
to any FO synthesis problem.

2.3 FORCE: ASP-based Synthesis + Orthogonal Slices

Before the technical details, we give a high-level overview of our ASP-based synthesiser FORCE, whose
workflow is shown in Fig. 1, by combining pruning strategies with the new orthogonal slices technique.
The framework is customised by the grey parts: (1) the FO language (DNF by default) and (2) a set of
pruning rules (predefined but extensible). Given the initial search space Ω0 and a set of FO structures as
input, FORCE starts by splitting the search space of clauses Ωc from Ω0. For further slices of Ωc (called
Ωc1 , Ωc2 , ...), the algorithm generates the formulas in Ωci (by ASP solving), tests them on the examples
(by model checking), and prunes the later slices (Ωc j , j > i) based on the results. Then using the output
of Ωc, the algorithm further builds the search space of formulas other than clauses Ω f into Ω f1 , Ω f2 , . . .,
reusing the same process as in Ωc to generate-test-prune. Finally, FORCE outputs both the clauses and
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1: tmp← init()
2: for all x ∈Ω0 do
3: if pruning1(x, tmp) then
4: continue
5: else if pruning2(x, tmp) then
6: update2(tmp,x)
7: else
8: if Satisfied(x) then
9: tmp.update(x)

return tmp.result

Algorithm 1 Extending Def. 1 with Customised
Pruning Rules

1: function FOSYN(Ω0, σ , prunings)
2: solver← init(Ω0,prunings)
3: while solver.solve() do
4: x← solver.get_current()
5: if Satisfied(x) then
6: yield x

Fig. 2: The synthesis loop (imperative programming vs. ASP solving).

the non-clause formulas that satisfy the inputs. It is called orthogonal because (1) slicing Ω0 into Ωc and
Ω f and (2) slicing of Ωc and Ω f are using different pruning strategies and work together.

3 Static Search Spaces of First-Order Formulas in ASP

We assume the reader is familiar with the basics of ASP, such as rules, choices, aggregates, and refer to
the literature for more details [9]. This section demonstrates how ASP is suitable for encoding the static
search space of FO formulas.

Our high-level approach follows the “generate-and-test” workflow, similar to other invariant synthe-
sis systems, but differs in how the search space and pruning techniques are encoded. ASP is a paradigm
suitable for such exhaustive enumeration with restrictions (search space customisations and pruning tech-
niques in our case). As shown in Fig. 2, existing imperative approaches (demonstrated on the left) require
manual integration of pruning steps (line 3-6), which can lead to brittle and hard-to-maintain code due
to dependencies on intermediate results and evaluation order. In contrast, our ASP-based approach on
the right modularises the search space and pruning strategies directly into the solver (line 2). This ASP-
based “generate-and-test” loop improves extensibility and maintainability, by allowing easier integration
of new pruning rules (as new domain knowledge) and automatic handling of dependencies. In the re-
mainder of this section, we first demonstrate how to encode a basic search for FO formulas and then
show the search is customised with different knowledge of pruning.

3.1 Encoding the Enumeration

Let us show how to encode FO formula enumeration in ASP. As an illustration, we use DuoAI’s [27]
configuration of FO search space for synthesising invariants of the lockserv distributed protocol.

var: node: n1, n2; lock: l1
relations: lock_msg: node, lock; grant_msg: node, lock;

unlock_msg: node, lock; holds_lock: node, lock;
server_holds_lock: lock

max-literal: 4 max-or: 3 max-and: 3 max-exists: 1

The first two lines, “var” and “relations”, together specify the variables (in node and lock sorts) and
atoms (made out of five relations and valid variables) that can be used in the formulas. Note that the
order of variables in formulas’ prefix is usually fixed in EPR formulas, i.e., the variable l1 cannot appear
before any node variable (n1, n2) in the prefix. The search space of formulas in DNF is then constrained
by the problem-specific customisations: the maximum number of literals in the formula, the maximum
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number of disjunctions, the maximum number of cubes (i.e., conjunctions of literals), and the maximum
number of existential quantifiers. They together define the Ω0 in Def. 1.

Thanks to the simplicity of FO formulas’ prenex normal form, the enumeration can be easily encoded
in ASP. The enumeration of formulas requires generating their two parts: prefixes and matrices, within
the restrictions of the search space. The ASP encoding of the basic search space is illustrated as follows:

var(node, n1). var(node, n2). var(lock, l1). % variables
0{exists(Var): var(Var, _)}1. % prefix bounded by max-exists
rel(lock_msg, (node, lock)). ... % relations
vars((node, lock), (n1, l1)). ... % variable tuples
atom(Pred, Args) :- rel(Pred, Types), vars(Types, Args). % atoms
pos(0..1). cube(1..3). % sign of literal, max-or
0{lit_in_C(P,A,Pos,C):atom(P, A), pos(Pos)}3 :- cube(C). % matrix bounded by max-and
:- #count{P,A,Pos,C: lit_in_C(P,A,Pos,C)} >= 4. % max-literal

In the program above, the prefix and matrix generation of formulas are achieved by the choice con-
struct 0{...}n on exists() and lit_in_C() predicates, which are restricted by the parameters in
the configuration. The last line then eliminates the answer sets where more than four literals are in
the corresponding formula. As an example, the answer set {lit_in_C(lock_msg,(n1,l1),0,1),
lit_in_C(grant_msg,(n2,l1),1,1), lit_in_C(unlock_msg,(n1,l1),0,2), exists(l1)} cor-
responds to ∀n1 n2,∃l1. (¬lock_msg(n1,l1)∧grant_msg(n2,l1) )∨¬unlock_msg(n1,l1). We
should also note that the encoding provided here is to illustrate the basic idea of the enumeration; for dif-
ferent syntactic customisations (e.g., the variable order in the prefix) of FOL formulas, certain predicates
and rules are required to be added to the encoding.

3.2 Encoding Pruning by Redundancy

A particular encoding of a search space can output many answer sets whose corresponding formulas
not necessarily satisfy the examples or even basic well-formedness constraints. For instance, the for-
mula ∀n1.lock_msg(n2, l1) should be ignored because n2 is not in the prefix. As another example,
prefix.lock_msg(n1, l1)∨ lock_msg(n2, l1) is equivalent to prefix.lock_msg(n2, l1)∨ lock_msg(n1, l1)
but can be featured twice as two different answer sets. Our next step is, therefore, to encode those
Redundancy techniques from Sec. 2.2 on the search space to only output well-formed formulas.

Let us illustrate the symmetry-based normalisation technique allowing to exploit equivalence using
ASP; the remaining encoding of redundancy elimination can be found in our implementation. The nor-
malisations are done by building a partial order on the formulas. That is, we can make sure that (1) the
number of literals in cubes (from left to right in a DNF) is non-decreasing, (2) the minimal (in alphabetic
order) literal in a cube i is less than the minimal literal in cube j > i if their number of literals are the
same, and (3) if two variables of one sort vi < v j, then the minimum predicate where vi appears should
be less or equal to the minimum predicate where v j appears. The following ASP program encodes these
pruning rules by constraining the orders in the formula.

lit_no_in(No, C) :- lit_in_C(P,A,Pos,C), lit_no(P,A,Pos,No).
num_lit(C, N) :- cube(C), #count{P,A,Pos: lit_in_C(P,A,Pos,C)} = N.
:- num_lit(C1,N1), num_lit(C2,N2), C1 < C2, N1 > N2.
min_lit(C, Min) :- cube(C), #min{No:lit_no_in(No,C)} = Min.
:- num_lit(C1,N), num_lit(C2,N), min_lit(C1,Min1), min_lit(C2,Min2), C1<C2, Min1>Min2.
min_lit_var(V, Min) :- used_var(V), #min{P:lit_in_C(P,A,_,_), var_in(V,A)} = Min.
:- min_lit_var(V1,Min1), min_lit_var(V2,Min2), V1 < V2, Min1 > Min2.
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∀x.P(x)∨R(x) (1)

∀x.P(x)∨S(x) (2)

∀x.P(x)∨ (R(x)∧S(x)) (3)

3

1 2

Fig. 3: Left: Formulas example. Right: Implication graph of the formulas.

To summarise this section, we have shown that for the synthesis of FO formulas, the existing techniques
can be easily encoded in ASP, which works as the backbone of our synthesiser. The expressive power of
ASP allows us to encode existing techniques shown in Sec. 2.2 concisely and make them work together
efficiently, being further optimised with our new pruning technique, described in the next section.

4 Dynamic Search Spaces via Orthogonal Slices

Armed with the ASP-based framework formula enumeration in the previous section, which allows one to
combine pruning techniques, we propose orthogonal slices to handle the dynamic search space, which (1)
generalises the state-of-the-art incremental pruning technique implication graph (IG), and (2) introduces
a novel complementary pruning to resolve the bottleneck of IG. Both are achieved by slicing the FO
search space into smaller ordered parts, and easily implemented by ASP’s incremental solving.

4.1 Implication Graphs

Amongst the proposed pruning techniques for distributed system invariant synthesis in Sec. 2.2, impli-
cation graph of FO formulas is a prominent one. An IG is a directed graph where each node represents
a formula, and an edge from A to B indicates that A implies B. The pruning is processed by removing
formulas that are implied by already satisfied formulas from the search space, dynamically, to acceler-
ate the synthesis process. That said, we can call it “pruning by satisfied formulas”. The IG-based tool
DuoAI [27] can infer inductive invariants for many complex protocols where no other existing tools can.

Example 1 (An Illustration of the Implication Graph Shown in Fig. 3) Formula (3) implies both for-
mula (1) and formula (2). If formula (3) is satisfied, then formulas (1) and (2) are automatically satisfied
and can be pruned from the search space.

4.2 From the Formula to the Search Space

The first step of the orthogonal slices is to abstract the entailment relation from formulas to the level of
the search spaces, then synthesise formulas following the partial order on the search spaces to achieve
incremental pruning. We represent a FO formula search space by means of imposing syntactic constraints
of the candidates, with the sets of possible values as arguments. As such, the search space is the Cartesian
product of those sets, where each element describes a sub search space.

Definition 2 (Template of First-Order Formulas and Its Slicing) A template T of first-order formulas
is defined by a tuple of parameter sets T = (P1, . . . ,Pn), where each Pi represents a set of possible values
for a parameter. The search space Ω(T ) defined by T is the Cartesian product of these parameter sets.
A valid slicing of T (called SL(T )) is defined as a partitioning of T into sliced-templates {T1, . . . ,Tj},
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where each sliced-template Ti = (Pi1, . . . ,Pin) corresponds to a subset of the parameter sets. The search
space Ω(T ) is then partitioned into subsets {Ω(T1), . . . ,Ω(Tj)}, where:

Ω(T ) =
n

∏
i=1

Pi.
j⋃

i=1

Ω(Ti) = Ω(T ), and Ωm∩Ωn = /0 for all m ̸= n.

This ensures that the entire search space is covered, without overlap between slices, and each slice Ωi

corresponds to a sliced-template Ti.

Example 2 (A Template of lockserv in Sec. 3.1) • The number of existential quantifiers ne,

• The number of variables used in each sort in a tuple tv = (nv1, . . . , nvi, . . .),

• The number of literals in each cube sorted in a tuple tl = (nl1, . . . , nli, . . .).
And the parameters of the template (after the redundancy pruning in Sec. 3.2) are:

• Pne = {0,1}

• Ptv = {(0,1),(1,0),(1,1),(2,0),(2,1)}

• Ptl = {(1),(2),(3),(1,1),(1,2),(1,3),(2,2),(1,1,2)}

Now we describe the slicing for “pruning by satisfied formulas”, which is defined by the partial order
of the sliced-templates (and their parameters).

Definition 3 (Partial Order for Parameters of Templates) Given two parameters Pix and Piy as sub-
sets of Pi in a template T = (P1, . . . ,Pi, . . . ,Pn), we say that Pix is less or equal than Piy (denoted as
Pix ⪯ Piy; Pix ≺ Piy in case Pix ̸= Piy) w.r.t. SL(T ) if

∀T1 = (P′1, . . . ,Pix, . . . ,P′n), T2 = (P′1, . . . ,Piy, . . . ,P′n) ∈ SL(T ),
∀φ ∈Ω(T1), ∃φ ′ ∈Ω(T2) such that φ

′ |= φ .

Definition 4 (Partial Order for Sliced-templates) Given two sliced-templates Ti = (Pi1, . . . ,Pin) and
Tj = (Pj1, . . . ,Pjn) sliced from SL(T ), we say that Ti is less or equal than Tj (denoted as Ti ⪯ Tj) if
∀k ∈ [1,n],Pik ⪯ Pjk, where the equality holds if and only if Pik = Pjk for all k ∈ [1,n].

With two definitions above, the whole search space of FO formulas is sliced (and ordered) by the
partial order; we call this procedure SPLITTEM. Note that possibly the search space’s parameters are
not as regular as in Ex. 2, but the worst case of the partial order is exactly the implication graph: the set
of possible formula candidates is the only parameter, and the partial order is defined by FO entailment.
This says, the parameterisation of FO search space by syntactic constraints is “always” possible.

Example 3 (Partial Order of the Templates in Ex. 2) The partial order of the templates’ parameters
of lockserv is defined as follows:

• For ne, it follows the integer order: {0} ≺ {1}.

• For tv, the set {(nv1,nv2, . . . ,nvi, . . .)} ≺ {(nv1,nv2, . . . ,nvi +1, . . .)}

• For tl, the set {(nl1,nl2, . . . ,nli, . . .)} ≺ {(nl1,nl2, . . . ,nli−1, . . .)} and
{(nl1,nl2, . . . ,nli, . . .)} ≺ {(nl1 +1,nl2, . . . ,nli,1)}
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The partial order on template parameters is defined consistently with formula entailment relations: by
swapping ∀ into ∃, a formula becomes more general; by replacing one variable with a fresh one (together
with the formula decomposition, proven in [28, §4]), a formula becomes more general; by deleting a
literal from a cube or adding a new cube, a formula becomes more general. Therefore, by obtaining the
partial order of a slicing of the search space, the “pruning by satisfied formulas” is naturally achieved.

The ASP encoding of “pruning by satisfied formulas” is done by multi-shot solving [10], which is
standard to achieve incremental solving in ASP. The sketch of its encoding is as follows:

#program inv(prefix,matrix).
:- output(Prefix, Matrix), pre_weaken(Prefix, prefix), mat_weaken(Matrix, matrix).

which says that the formula entailed by the inv (i.e., a satisfied formula) should not be generated. The
entailment checking is implemented by variable substitution together with prefix and matrix weakening
(detailed in our implementation).

4.3 Slicing DNF Modulo Clauses

The problem of implication graph (or “pruning by satisfied formulas” in general) is its scalability: the
search starts from the root to leaves of the graph (top to bottom in Fig. 3), but the number of root nodes is
still exponential in the search space’s size. To see the issue, let us take the formula prefix. (lit11∧ lit12∧
lit13)∨ (lit21 ∧ lit22) as an example: it can be a root node used to prune the formula prefix. lit1i ∨ lit2 j

because of the entailment. However, checking all root formulas has complexity of O(n5) (n is the number
of literals), but this effort prunes only formulas using O(n2) space.

Intuitively, if “pruning by satisfied formulas” is costly when using the result of a larger search space
to prune the smaller one, its dual version–“pruning by unsatisfied formulas”, should solve it. This idea,
however, is not immediately applicable for two reasons: (1) the two pruning strategies have different
directions (general-to-specific v. specific-to-general), which means an algorithm needs to deal with both,
and (2) for complex problems, the majority of formulas are unsatisfied (they do not cover all examples),
which means reducing the search space too many times incurs a large performance overhead.

Our solution to the first issue is simply another slicing, which is orthogonal to the slicing of templates:
first synthesising clauses (disjunctions of literals) by slicing them from the whole search space (named
SPLITDNF), and then pruning the search of DNF synthesis based on the unsatisfied clauses. To further
address the second issue, we avoid the high-cost of “pruning by unsatisfied clauses” by constructing the
DNF search space from the satisfied clauses. The definition of DNF search space construction given
below describes the pruning of this slicing.

Definition 5 (Possibly satisfied DNF modulo clauses) Given a set of satisfied (w.r.t. input examples)
clauses Φc, a formula in DNF of the form prefix. (lit11∧ . . .∧ lit1k1)∨ . . .∨ (litm1∧ . . .∧ litmkm) is possibly
satisfied only if

∀li ∈
m⋃

i=1

{liti1, . . . , litiki}, prefix. l1∧ . . .∧ lm

is satisfied w.r.t. Φc. The function constructing DNFs is denoted as BUILDFROMCLAUSES.

In plain words, a formula in DNF is added into the search space only when all clauses it entails
satisfy all input FO structures. The reason we resolve the bottleneck of “pruning by satisfied formulas”
is evident: the search space of clauses, which is exponential in the number of cubes, is much smaller
than the search space of DNF (exponential in the number of literals) for most cases. Moreover, since
this search space construction is also naturally encoded by ASP, all existing techniques to formulas in
Sec. 2.2 are directly applied to further refine this search space built from clauses.
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Synthesis ASP Connection
Parameterised search space choice constructs set Cartesian product
Slicing external statement set partition
Static pruning integrity constraint set comprehension
Dynamic pruning multi-shot solving set union, difference

Tab. 1: The connection between synthesis and ASP.

4.4 The Synthesis Algorithm

Algorithm 2 The Core Algorithm of FORCE
1: function FORCE(Ω0, σ , prunings = pre_def)
2: Φc, Φ f ← /0
3: Ωc← SPLITDNF(Ω0)
4: for Ωci ∈ SPLITTEM(Ωc) do
5: Φi← FOSYN(Ωci, σ , prunings)
6: Φc←Φc∪Φi
7: prunings← prunings.update(Φi)

8: Ω f ← BUILDFROMCLAUSES(Φc, Ω0)
9: for Ω f i ∈ SPLITTEM(Ω f ) do

10: Φi← FOSYN(Ω f i, σ , prunings)
11: Φ f ←Φ f ∪Φi
12: prunings← prunings.update(Φi)

13: Φc← FILTERIMPLIED(Φc, Φ f )
14: return Φc∪Φ f

Given the formula synthesis algorithm in
Fig. 1 for an input search space, and the two
approaches to slice the search space, the pro-
cedure for synthesising formulas is given by
Algorithm 2: first synthesise clauses by its
sliced template (lines 4 to 7), then synthesise
other formulas by the sliced template of DNF
modulo clauses (lines 9 to 12), finally normal-
ising the satisfied formulas and output (lines
13 and 14). The input pruning rules are cus-
tomisable, but we pre-defined existing redun-
dant and incremental rules in Sec. 2.2. The
soundness of the algorithm w.r.t. orthogonal
slices (i.e., it does not over-prune) is guaran-
teed by the fact that if a formula A is pruned,
A is either unsatisfied, having being pruned by unsatisfied clauses in DNF modulo clauses, or satisfied
but more general than a satisfied formula which prunes A in a sliced template.

Looking back to the whole synthesis process, both static and dynamic search spaces we discussed
are essentially achieved by different set operations, which is the algorithmic reason for us to use ASP. In
Tab. 1, we summarise the connection between the synthesis problem and ASP by unifying them as set
operations, which hopefully helps the readers from either synthesis or ASP background to understand
“why and what synthesis task is suitable for ASP”.

5 Experimental Evaluation

5.1 Implementation and Settings

Our implementation of FORCE combines the use of ASP (250 lines for the enumeration plus 80 lines
for pruning, which is extremely concise to encode the different existing and new pruning techniques),
and C++ to call APIs of Clingo [9] (400 lines for the synthesiser call functions, and 200 lines to integrate
with other systems). The benchmarks are run on a MacBook Pro with 8-core M1 Pro CPU, 16GB RAM.
The current version of FORCE is available at https://zenodo.org/records/15654427.

We ran FORCE on a set of benchmarks from the work on DuoAI [27], the most efficient state-of-the-
art DS invariant inference tool. Briefly speaking, DuoAI’s algorithm is an enumeration-based inductive
synthesis using sampled traces of the protocols as examples, followed by an optimised Houdini [7]. Since
the formula enumeration component has non-negligible run time (detailed later), reducing the overhead

https://zenodo.org/records/15654427
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Fig. 4: Invariant synthesis. Results are normalised w.r.t. FORCE run times.

of the enumeration part can significantly improve the overall performance.
Note that (at least) two unsound optimisations were made in DuoAI: the first is an over-pruning,

found and rectified by [8]: DuoAI identifies formulas that can be decomposed into smaller formulas,
then not testing the original formula to reduce the search space; however, a subset of those should not be
decomposable, which leads to unsoundness by missing possibly satisfied formulas. The second unsound
optimisation is the use of restricted quantifiers of formulas; specifically, the default setting of DuoAI only
allows arbitrary quantifiers over the last three variables in a template (e.g., for Q1X1.Q2X2.Q3X3.Q4X4,
Q1 can only be ∀), which results in an incomplete search in general, but practically works for their
benchmarks. We treat the first issue as a bug, and the second observation as domain-specific knowledge
that encodes an extra constraint on the search space.

5.2 Results and Analysis

Our performance statistics are shown in Fig. 4. We selected six complex distributed protocols from the
DuoAI suite for evaluation on synthesising inductive invariants. FORCE was given the same input as
DuoAI: traces as input examples and a search space configuration which contains the inductive invariant.
For each protocol, we benchmark with two configurations: one with the restricted quantifier limitation
from DuoAI and one without it. The unrestricted quantifier setting is indicated by a ∗ in the figure when
enabled. The reason for showing only 10 data points, rather than 12, is that the difference of quantifier
restriction did not affect the small search space for the first two smaller protocols. We fixed the over-
pruning bug in DuoAI (referring to the result as “fixed DuoAI”) with our best effort for a fair comparison.
That said, we also provide results of the “original” DuoAI version as a reference point.

The results show that FORCE significantly outperforms fixed DuoAI in all benchmarks, and also
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beats the original (unsound) DuoAI in most cases. The difference in performance is larger without the
quantifier restriction. As a reference, the original DuoAI’s runtime to synthesise invariants for Paxos,
FlexiblePaxos and MultiPaxos are 60.4s, 78.7s and 1,549s, respectively; this means the enumeration in
DuoAI is the main bottleneck for complex protocols, so the improvement is effective for overall runtime.

The improvement is mainly sourced from the effective pruning by DNF modulo clauses (Sec. 4.3):
as the clause synthesis part in the bars shows, FORCE takes (slightly) longer time on the clause synthesis
than DuoAI, and results in a much shorter time for the remaining synthesis by reducing the search space.
The huge difference for cases without quantifier restriction is also explained for the same reason: taking
Paxos as an example, the number of satisfied clauses increased from 134 to 141 when disabling the
restriction in FORCE, which means the increased search space for DNF is not much (with 36s difference
of time); but for DuoAI, the enumeration explores the whole new search space (thus 76s difference
in total). Note that abstracting the formula into the search space as in Sec. 4.2 allows parallelism of
the formula synthesis in FORCE, which also contributes to the efficiency, but it is specific to (1) the
implementation of parallelism, and (2) the multi-threaded solving in Clingo, which is not essential to
discuss here. The overall extra time when disabling the parallelism in our system varies from 50% to
100%, which shows potential improvement with a better implementation of parallelism.

Another interesting comparison w.r.t. to the unsoundness in DuoAI is shown between the red and blue
bars: the fixed version takes a longer time to explore the (now larger) search space, but the clause syn-
thesis time is lower, because additional discovered satisfied formulas prune the clauses entailed (which
also implies the unsoundness of original DuoAI). By analogy with our orthogonal slices, they are using
results from “larger slices” to prune the “smaller slices”, which results in inefficiency, as expected (see
Sec. 4.3). From a high-level aspect, this comparison illustrates the common trade-off between complete-
ness and efficiency in synthesis tasks, but FORCE achieves complete search with even better efficiency
comparing to the original DuoAI by spending minor extra time (in the green bars) to synthesise clauses.

5.3 On Composability of FORCE

More than the performance benefits of the orthogonal slices, the “solver-aided” feature of FORCE is also
promising: it works as a general framework to combine different approaches by providing a common
interface for FO synthesis. To illustrate this, we built the bridges for both DuoAI and Flyvy [8] (about
200 lines of code for each), and used the clause output (i.e., part of Fig. 2 before line 8) to optimise Flyvy.

The high-level task of Flyvy is to output the strongest inductive invariant (that contains a set of
FOL formulas) given a distributed system protocol and a bounded FO language. Without describing
the details of Flyvy’s algorithm, it is clear that if Flyvy is obtaining formulas, those formulas can be
bounded by DNF modulo clauses. We use the traces obtained from DuoAI together with the bounded
language to synthesise satisfied clauses and output them as an ASP program by FORCE, then restricting
the formulas in Flyvy by calling the ASP program to filter out the unnecessary formulas. The results show
that, for two most complex protocols can be synthesised in Flyvy, Paxos and FlexiblePaxos, the sizes
of the output invariants are reduced by about 13% (165/1260) and 7% (61/816) respectively on average
(detailed in App. B), and they remain strongest in the sense that unnecessary formulas are removed during
the intermediate steps of Flyvy. We believe it is a promising direction to explore different combinations
of existing approaches with the power of FORCE.

6 Related Work and Discussion
Inductive Logic Programming. Our work is closely related to the field of Inductive Logic Program-
ming (ILP, [20, 3]), which focuses on learning logic programs inductively. Concretely, the state-of-the-art
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ILP system Popper [4] shares a similar workflow with FORCE: in a “generate-test-prune” loop, both sys-
tems use ASP to generate the candidate and prune the search. There are two main differences between
FORCE and Popper: (1) the preferred candidate (among all correct solutions) in ILP is the most general
program because both positive and negative examples are given; while in FORCE, the output is the con-
junction of most specific formulas that satisfies all positive examples, because “logical true” is always a
valid general formula in absence of negative examples. (2) the properties of FO formulas expose more
domain knowledge to be encoded by ASP for pruning compared to Horn clauses.

Other Approaches for Invariant Inference. Among the techniques shown in Sec. 2.3, techniques
from three tools (in the Other techniques category) have not been encoded into FORCE yet. Two of them
share similarities in how they improve the inference process: FOL-IC3 [13] is an inference framework
building on a first-order logic separability solver; IC3PO [11] is an invariant inference tool based on the
relation between the symmetry of satisfied FO structures and the necessary quantification in satisfying
formulas in FOL. Both of them are based on PDR/IC3 [2], where the generalisation of FO structures
is performed based on a small set of examples (usually less than 10, in contrast with DuoAI, SWISS,
and FORCE, where the generalisation is among thousands of examples). From a technical perspective,
their techniques can be encoded into FORCE, since both are SAT-based. However, the scalability of their
techniques make them not generally applicable to large sets of examples, which we will discuss later.

Scimitar [25], unlike most of the related works where a “global” inductive invariant is inferred, is a
tool that infers “local” invariants for each transition state in the distributed system protocol. It builds an
inductive proof graph that abstracts the protocols, and locally synthesises the invariants for each node in
the graph, where the local synthesis problem is an instance of our FO synthesis.

Discussion on Inductive Generalisation. The least general generalisation [24] is known to be a foun-
dational result in the field of bottom-up inductive logic programming, where the given programs (bot-
toms) are generalised to the general program (top). In contrast, FORCE is a top-down approach by
“generate-and-test”. Notably, in the domain of distributed systems invariant inference, the authors of the
SWISS tool [12] described their “failed attempt” to use constraint solving for bottom-up generalisation
(without a detailed explanation). This is coincident with our observation that the bottom-up generali-
sation (like FOL-IC3 and IC3PO) is not scalable to large sets of examples compared to the top-down
approach. We provide our own explanation: given a whole search space, any example can be regarded as
a constraint to prune the search; while the cost for the constraints can be considered linear in the number
of examples, the benefit of pruning decreases as the number of constraints increases. This brings a pos-
sible further work to combine the top-down and bottom-up approaches by using subsets of examples for
utilising the bottom-up generalisation.

Outside the domain discussed above, [15] is a notable work from automata theory that studies the
learnability (w.r.t. generalisation) of formulas in finite variable logic. It does not focus on the concrete
algorithm in practice, but show potential to extend FORCE to logics more general than FOL.

7 Conclusion
In this work, we proposed a unified ASP-based framework FORCE for synthesising formulas in first-
order logic from examples. To do so, we used ASP as a framework for implementing inductive formula
synthesis offering constraint solving to encode the search and rule-based knowledge to prune the search
space. Using our ASP-based encoding, we proposed orthogonal slices—a novel technique that signifi-
cantly accelerates formula synthesis. Finally, we have shown that declaratively capturing the essence of
different approaches for formula synthesis in ASP enables a more efficient and composable solution.
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{p,q,r}, and S = {X}. The synthesis problem is defined with the inputs:

• the set of FO formulas is restricted to the form of ∀X : lit1 or ∀X : lit1∨ lit2, which is a disjunction of one
or two literals with one universal quantifier. Without the pruning, Ω0 contains (2∗3)+ (2∗3)2 = 42
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• the set of FO structures is σ = {M1,M2}, where M1 and M2 are two models over Σ sharing the universe
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1. M1: [pM1 = {x0, x1}, qM1 = {x1, x2}, rM1 = /0]
2. M2: [pM2 = {x0, x1}, qM2 = {x2}, rM2 = {x1}]

And the output of the synthesis problem based on Def. 1 is a set of formulas

Φ = {∀X .p(X)∨q(X),∀X .p(X)∨¬r(X)}.

As a simple case of the sliced-template, our algorithm will first find satisfied formula in ∀X : lit1
(and fails), then checking the satisfied formula in ∀X : lit1 ∨ lit2 (with the two formulas successfully
found). The inputs of FORCE, the bounded FO search space and the real traces of distributed system
protocols, are much more complex. An interested reader can refer to configs/ and traces/ folders in
https://github.com/verse-lab/FORCE for the real instances.
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Fig. 5: Optimising Flyvy via DuoAI’s output.

B Additional Statistics of Sec. 5.3

As said in Sec. 5.3, there are only two non-trivial protocols in Flyvy’s benchmark that have quantifier
alternation, for which we can produce comparable results. For both protocols, we execute the original
Flyvy and the optimised Flyvy for 5 times with the sizes of the output (been discussed) and the runtime
shown in Fig. 5. Performance-wise, we did not achieve notable improvement on the runtime of Flyvy,
which is not unexpected, since the bottleneck of Flyvy is not the synthesis; instead, the SMT solving in
Flyvy dominates the runtime and makes the runtime unstable.
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