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Abstract. Extending a programming language with syntactic sugars is
common practice in language design. Given a core language, one can
define a surface language on top of it with sugars. We propose a lazy
desugaring system, which can generate the evaluation sequences of sugar
programs in the syntax of the surface language. Specifically, we define
an evaluation strategy on a mixed language which combines syntactic
sugars with the core language. We formulate two properties, emulation
and laziness, and prove that the evaluation strategy produces correct
evaluation sequences. Besides, we have implemented a system based on
this novel method and demonstrate its usefulness with several examples.

1 Introduction

Syntactic sugar, first coined by Landin [13] in 1964, was introduced to describe
the surface syntax of a simple ALGOL-like programming language which was
defined semantically in terms of the applicative expressions of the core lambda
calculus. It has been proved to be very useful for defining domain-specific lan-
guages (DSLs) and extending existing languages [4, 6]. Unfortunately, when syn-
tactic sugar is eliminated by transformation, it obscures the relationship between
the user’s source program and the transformed program. As a result, a program-
mer who only knows the surface language cannot understand the execution of
programs in the core language, which makes the debugging of programs with
sugars hard.

Resugaring [14, 15] is a powerful existing method to resolve this problem. It
reverses the application of the desugaring transformation. As a typical example of
resugaring, consider the sugars Or1 and Not, defined by the following desugaring
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Surface Language Core Language

(Or1 (Not #t)
desugar−−−−−→ (let (x (if #t #f #t))

(Not #f)) ←−−−−−
resugar

(if x x (if #f #f #t)))

↓ ↓
(Or1 #f (let (x #f)

(Not #f)) ←−−−−−
resugar

(if x x (if #f #f #t)))

↓ ↓
no resugaring (if #f #f (if #f #f #t))

↓ ↓
(Not #f) ←−−−−−

resugar
(if #f #f #t)

↓ ↓
#t #t

Fig. 1: A Resugaring Example.

rules4.

(Or1 t1 t2)
def
== (let (x t1) (if x x t2))

(Not t1)
def
== (if t1 #f #t)

The resugaring process for

(Or1 (Not #t) (Not #f))

is shown in Fig. 1. The sequence of terms on the left shows the evaluation steps
in the surface language, which is obtained from the evaluation sequence of the
desugared program (in the core language) on the right by repeated attempts of
reverse expansion of each sugar.

While this approach is natural, there are two practical problems. First, as
the reverse expansion of sugars needs to match the desugared terms against
the desugaring rules to check whether they can be resugared, it would be very
expensive if the surface program uses a large number of syntactic sugars, or some
syntactic sugars are desugared to complex core terms. Second, in the resugaring
process, many core programs cannot be reverted to surface programs, which
means that many attempts at reverse application of desugaring rules fail and
introduce lots of useless work.

In this paper, we propose a lazy desugaring system, which produces the eval-
uation sequence in the surface language without reverse desugaring. Our key
observation is that if we consider desugaring rules as reduction rules like those
in the core language, then the evaluation sequence of a surface program should
exist in the reduction sequence by these reduction rules. To see this, recalling

4 Throughout the paper, we use #t and #f to represent the Boolean constants true
and false, respectively.
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the example in Fig. 1, we can see from Fig. 2 that the reduction sequence can
be generated by the given desugaring rules and the reduction rules of the core
language; the underlined part is the same as the resugaring sequence on the left
of Fig. 1.

(Or1 (Not #t) (Not #f))
desugar−−−−−→ (Or1 (if #t #f #t) (Not #f))
core−−−→ (Or1 #f (Not #f))
desugar−−−−−→ (let (x #f) (if x x (Not #f)))
core−−−→ (if #f #f (Not #f))
core−−−→ (Not #f)
desugar−−−−−→ (if #f #f #t)
core−−−→ #t

Fig. 2: Proper Desugaring for Resugaring.

Attention should be paid here. There could be many possible reduction se-
quences if we do not restrict how to apply desugaring rules. For instance, Fig. 3
gives another possible evaluation sequence. Here, from this sequence, we could
not extract the sequence we want, because the term (Or1 #f (Not #f)) is lost.
How can we make sure that a sequence which contains all the evaluation steps
wanted is produced?

(Or1 (Not #t) (Not #f))
desugar−−−−−→ (let (x (Not #t)) (if x x (Not #f)))
desugar−−−−−→ (let (x (if #t #f #t)) (if x x (Not #f)))
core−−−→ (let (x #f) (if x x (Not #f)))
core−−−→ (if #f #f (Not #f))
core−−−→ (Not #f)
desugar−−−−−→ (if #f #f #t)
core−−−→ #t

Fig. 3: Improper Desugaring.

The key insight of our approach is that we can delay the application of
desugaring rules (sugar expansion) until it becomes necessary so that later re-
verse expansion in the original resugaring becomes unnecessary. To do so, we
treat the surface language and the core language as one mixed language, regard
desugaring rules as reduction rules of the mixed language, and derive the context
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rules of the mixed language to indicate when desugaring should take place. Our
main technical contributions can be summarized as follows.

– We propose a lazy desugaring method, which evaluates sugar programs on
the surface level. It guarantees that the evaluation sequence of a program
in the mixed language is correct in the sense that it corresponds to the
evaluation sequence of the fully desugared program in the core language,
and that it is sufficient (complete) in the sense that it contains all evaluation
steps we want in the surface language.

– We present a novel algorithm to calculate the context rules and the reduction
rules for syntactic sugars to achieve lazy desugaring. Using the algorithm, we
can get a new reduction strategy for the mixed language, based on which the
evaluation sequence in the syntax of the surface language can be obtained.

– We have implemented a system based on this approach, and tested it with
many non-trivial examples, which shows the promise of the system.

The rest of our paper is organized as follows. We start with an overview
of our approach in Section 2. We give the template for language definition in
Section 3, which makes clear what languages are supported. We then present the
algorithm of lazy desugaring with its properties in Section 4. We briefly discuss
the implementation of the system, and give some examples in Section 5. We
discuss related work in Section 6 and conclude the paper in Section 7.

2 Overview

In this section, we give a brief overview of our approach. Given a very tiny
core language and a surface language defined by a set of syntactic sugars, we
shall demonstrate how we can obtain the evaluation sequence of a program with
sugars in the syntax of the surface language by lazy desugaring.

Consider the following simple core language, which contains Boolean expres-
sions using the if construct.

t ::= (if t t t)
| #t
| #f

The semantics of the language is given by reduction semantics: we have two
reduction rules:

(if #t t1 t2)→ t1
(if #f t1 t2)→ t2

together with the following context rules specifying the reduction order.

C := (if C t t)
| • ▷ context hole

The surface language is defined by two syntactic sugars:

(And t1 t2)
def
== (if t1 t2 #f)

(Or t1 t2)
def
== (if t1 #t t2)
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Now let us demonstrate how to evaluate (And (Or #t #f) (And #f #t)) by
lazy desugaring to obtain the evaluation sequence on the surface level as follows.

(And (Or #t #f) (And #f #t))

−→ (And #t (And #f #t))

−→ (And #f #t)

−→ #f

Step 1: Calculating Context Rules and Reduction Rules for Sugars

In lazy desugaring, we first decide when a sugar should be desugared. To this
end, from the context rules of the core language, we automatically derive the
following context rules for the sugars.

C ::= (And C t2)
| (Or C t2)
| •

The idea of derivation will be discussed in Section 4. Intuitively, from the
context rules of (if t1 t2 #f), we can see that the condition, t1, is always eval-
uated first, so (And t1 t2) should also have t1 evaluated first. This is indicated
by the context rule of And. Similarly, we can calculate the context rule for Or.

Step 2: Forming Mixed Language with Mixed Reduction Rules

To treat desugaring rules and the reduction rules (of the core langugage) in
one reduction system, we mix the surface language with the core language as in
Fig. 4, and define →m, a one-step reduction for the mixed language (the letter
m stands for “mixed”). It is derived from the reduction rules of the core lan-
guage and the desugaring rules of the surface language. Note that the desugaring
rules are a bit different from the initial definition. For instance, the desugaring

rule (And t1 t2)
def
== (if t1 t2 #f) has been changed to the reduction rule

(And v1 t2)→ (if v1 t2 #f) in Fig. 4, indicating that this reduction rule can be
applied only when the first argument of Add has been reduced to a value. This
change in fact follows from the context rules ontained at step 1.

Now, by using→m, we can get the evaluation sequence in the mixed language
for the program

(And (Or #t #f) (And #f #t))

based on the computation order determined by the context rules obtained at
step 1. The evaluation sequence in the mixed language is shown below.

(And (Or #t #f) (And #f #t))

→m (And (if #t #t #f) (And #f #t))

→m (And #t (And #f #t))

→m (if #t (And #f #t) #f)

→m (And #f #t)

→m (if #f #t #f)

→m #f
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t ::= (if t1 t2 t3)
| (And t1 t2)
| (Or t1 t2)
| #t

| #f

(a) Syntax.

C ::= (if C t2 t3)
| (And C t2)
| (Or C t2)
| •

(b) Context Rules.

(And v1 t2)→ (if v1 t2 #f)
(Or v1 t2)→ (if v1 #t t2)

(if #t t1 t2)→ t1
(if #f t1 t2)→ t2

(c) Reduction Rules.

Fig. 4: A Small Mixed Language.

Step 3: Removing Unnecessary Terms

As seen above, our evaluation sequence in the mixed language may contain
constructs in the core language (e.g. (if #t (And #f #t) #f)). Since our goal
is to show the evaluation sequence of sugar programs, we give a flexible method
to clearly specify a filter showing which terms should be displayed. (A default
filter can be generated automatically.) For example, we may define the following
subset of the mixed language as a filter for displaying:

dt ::= (And dt dt)
| (Or dt dt)
| #t

| #f

With this filter, the sugars And and Or, together with Boolean constants #t and
#f, will be displayed. Notice that we make Boolean values displayable even if
they are in the core language. By clearly specifying what should be displayed,
we can always get the evaluation sequences we need. This practical step is not
essential to our system, so we will not go into detail in the rest of the paper.

In short, given a core language and a surface langugage defined by syntactic
sugars, the major effort to build an evaluator of the surface language is to derive
context rules and reduction rules from sugar definitions, which can be done
automatically by our method and will be explained in detail in the rest of this
paper.

3 Defining Languages and Sugars

As seen in previous sections, by introducing sugars we construct a language
hierarchy, which contains a “core language”, and “surface languages” extended
by sugars. Since our approach needs to inspect and manipulate context rules
and reduction rules explicitly, we give a language template for the definition of
the core language and sugars, which stipulates what languages are allowed in
our setting. These definitions and notations will be used when discussing the
algorithm and its properties in Section 4.
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Syntax
t ::= (head t1 · · · tn) ▷ language constructs
v ::= (head t1/v1 · · · tn/vn) ▷ values

Context
C ::= (head t/v · · · C t/v · · · )∗ ▷ zero or more context rules

| • ▷ context hole

Notion of reduction
R((head t/v · · · )) ▷ one-step reduction without context

Fig. 5: Basic Template for Core Language Definition.

3.1 Core Language

We follow the syntax convention of Lisp for a core language, using S-expressions
to represent programs, and we use reduction semantics to formalize the semantics
of the core language.

The basic template for defining syntax, contexts, and reduction rules is shown
in Fig. 5. This is merely a template for language definitions, with which we can
encode more complex languages. In the template, all elements that are under-
lined will be replaced with some language-specific constructs. For example, head
should be chosen from a set of language constructs specified by the user, such
as lambda, if, let, etc. So the production of t may become t ::= (if t1 t2 t3).
In addition, a language also needs to specify a set of values, which is the set of
terms that can not be further reduced. Values must be defined in the format of
v in Fig. 5. Here t/v means either t or v, and whether it is t or v is fixed in
a given language. To encode the reduction semantics of the language, the user
also needs to specify a set of context rules, in the form of the right-hand side of
the production of C. Finally, the notion of reduction (as described in the liter-
ature [5]) needs to be defined, which is the one-step reduction without context.
For simplicity, we define it using a partial function, R, which yields the reduced
term if the input is reducible, and ⊥ if the input is not reducible. The notion of
reduction should be extensible, in the sense that it can be extended to any mixed
language. The exact meaning of “extensible” will be made clear in Section 3.2.

The languages defined using this template, while having a restricted form
of syntax, can be arbitrarily complex, since the notion of reduction, R, can be
any partial function as long as it is extensible. We encode the language in the
running example, the Boolean language, using our template, in Fig. 6. Note that
constants can be encoded as language constructs with zero arguments, such as
(true). And #t is merely a shorthand of (true). In Section 4, we use Cc to
denote contexts generated by the non-terminal C of any given core language. In
this example, one valid context is

(if (if • #t #f) #f #t).
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Syntax
t ::= (if t1 t2 t3) ▷ language constructs

| (true) | (false) ▷ constants
v ::= (true) | (false) ▷ constants are values

Context
C ::= (if C t1 t2) ▷ evaluating the condition first

| • ▷ context hole

Notion of reduction
R((if (true) t2 t3)) = t2 ▷ one-step reduction without context (true branch)
R((if (false) t2 t3)) = t3 (false branch)

Fig. 6: Core Language Example: Boolean Expressions.

Sugar definition

(Sg t1/v1 · · · tn/vn)
def
== t

Fig. 7: Sugar Definition.

Given a language definition, we can describe a small-step reduction of the
core language with a partial function as follows.

Rc(t) =

{
Cc[t

′] ▷ if t = Cc[t0] and R(t0) = t′

⊥ ▷ otherwise
(1)

And we naturally require that the reduction of any term t is deterministic, i.e.,
there does not exist more than one term t′ such that t can be reduced to.

3.2 Mixed Language

Given a core language, we can define syntactic sugars on top of it. In the theo-
retical discussion, we assume for simplicity that only one sugar is defined based
on the given language. The sugar definition follows a strict pattern, as illus-
trated in Fig. 7. We use Sg to denote a new sugar name, and use ti’s and vi’s
as metavariables (for terms and values), which appear on the right-hand side
(rhs). To distinguish the constructs from the core language and the names of
sugars, we make the head of the core language constructs in lowercase and the
first letter of sugar names in uppercase. Below is an example of a sugar definition
based on pre-defined sugars And, Or and core language’s construct not.

(Sg1 t1 t2 mt3)
def
== (And (Or t1 t3) (not t2))

To simplify later discussion of our algorithm, we assume that any metavari-
able on the left-hand side (lhs) of a sugar definition appears only once on the
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Syntax
t ::= ... ▷ terms in the core language form

| (Sg t1 · · · tn) ▷ sugars

v ::= ... ▷ values in the core language
Context
C ::= ... ▷ context rules of the core language and hole

| (Sg t/v · · · C t/v · · · )∗ ▷ zero or more Sg’s context rules

Notion of reduction
(head t/v · · · )→m1

t ▷ remained reduction rules of core language
(Sg t/v · · · )→m1

t ▷ reduction rule derived from desugaring rules

Fig. 8: Template for the Mixed Language.

rhs (linear expansion). (The restriction can be lifted with a simple extension.)
Given a sugar definition, we now define the mixed language. The mixed language
simply allows the sugar to appear as any part of a term. Formally, the syntax
of the mixed language is defined in Fig. 8. Notice that the arguments of a core
language’s head can also be a sugar now, like in

(if (And #t #f) #f #t).

We use D to denote the outermost desugaring function induced by the sugar
definition. For example, we have

D((And (And #t #f) #t)) = (if (And #t #f) #t #f)

for the And sugar above. Then we can naturally define the fully desugaring
function, DF , which works as traditional desugaring, recursively expanding all
sugars of the input term. Formally, DF is defined as follows.

DF ((Sg t1 · · · tn)) = DF (D((Sg t1 · · · tn)))
DF ((head t1 · · · tn)) = (head DF (t1) · · · DF (tn))

With the definition of DF , we can now make the meaning of the extensible
property of the core language clear.

Definition 1 (Extensible). The notion of reduction R of a core language is
extensible, if for any possible sugar, and for any term t in the mixed language,

DF (R(t)) = R(DF (t)), if R(t) ̸= ⊥.

It is saying that, for any term t that is reducible by the notion of reduction,
reducing it first and then fully desugaring it will be the same as fully desugaring
it first and then reducing it. One can easily check that reductions of our familiar
language constructs are usually extensible. For example, the reduction rules of
if is extensible, since it treats t2 and t3 as a whole, and thus the order of the
reduction and the desugaring does not matter.
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4 Lazy Desugaring Algorithm

As shown in Section 2, given a core language, sugar definition and any term
with sugars, we can get the evaluation sequence of the term as the output. To
obtain the sequence, the first step is to generate the reduction semantics for
the mixed language, which is non-trivial. Then the sequence can be obtained
easily by recursively applying the one-step reduction on the term in the mixed
language. In this section, we start by describing a procedure that generates the
reduction semantics of the mixed language in Section 4.1, and then show that
the semantics gives the correct evaluation sequence in Section 4.2.

4.1 Algorithm Desciption

Supposing that we have a core language, we use the following function getRules

to generate the reduction semantics for a given desugaring rule (i.e., a sugar
definition):

Dlhs
def
== trhs, where Dlhs = (Sg t1/v1 · · · tn/vn),

and the generated semantics consist of zero or more context rules of the sugar,
and exactly one reduction rule corresponding to the original desugaring rule.
These rules, together with the context rules and reduction rules of the core
language, form the semantics of the mixed language. The following function
getRules calculates the context rules and the reduction rule of Sg, which are
put in a set.

getRules(Dlhs
def
== trhs) =



{[ti := C]Dlhs} ∪
getRules

(
[ti := vi]

(
Dlhs

def
== trhs

))
▷ if ∃ i, Cc, s.t. trhs = Cc[ti]

{Dlhs →m1
trhs}

▷ otherwise

The substitutions are on the metalanguage level. For example, [ti := C] means
substituting a context hole C for metavariable ti. Metavariables ti and vi are
implicitly replaced with symbols ti and vi, respectively (because our sugar def-
inition and context rules use different notations). The substitution produces a
new rule. Rules need to be interpreted properly to represent actual contexts.
Intuitively, the function tries to match the rhs of sugar definition with context
rules of the core language, and calculates the context rules of the sugar accord-
ingly. When the expansion cannot be matched with any core context rules, we
acquire the last item of the returned list, Dlhs →m1 trhs, which is the reduction
rule (notion of reduction) of the sugar in the mixed language.

To demonstrate how getRules runs, we explain how the following invocation
executes.

getRules((And t1 t2)
def
== (if t1 t2 #f))
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In the first step, trhs is Cc[t1], where Cc is (if • t2 #f). The metavariable
t1 is matched with the hole, so the first rule to be output is the context rule
(And C t2), indicating that the first operand of And sugar should be evaluated
first. Then the algorithm runs recursively, calling

getRules((And v1 t2)
def
== (if v1 t2 #f)).

This time there does not exist i, Cc, such that trhs = Cc[ti], so the second rule
output is the reduction rule

(And v1 t2)→m1
(if v1 t2 #f).

Finally, with the context rule and the reduction rule, the reduction semantics
of the mixed language can be formed (as partly seen in Fig. 4), following the
template in Fig. 8.

Based on the setting in the previous section, we can generate the semantics
of the mixed language by the rules of the core language and the calculated rules.
Following the definition of Cc and Rc in Section 3.1, we define the contexts of
the mixed language, Cm, and the partial reduction function, Rm, based on the
mixed language’s semantics as well. If there are more than one sugar definition,
we calculate their rules and add them to the mixed language one by one. With
the first sugar’s rules calculated, the language mixed by the core and the first
sugar becomes the new core language of the second sugar, and so on. If one
desugaring rule’s rhs depends on another syntactic sugar, the previous one’s
rules should be obtained first. Therefore, the context rules of sugars derived by
the algorithm must not be cyclically dependent for mutual recursive sugars.5

Finally, given any term in the mixed language, we can evaluate it by the mixed
semantics.

4.2 Properties

What will the semantics of the mixed language do? It is important to answer the
question because the evaluation sequences produced by lazy desugaring should
be meaningful enough to have a practical use. In this section, we state and prove
two important properties about the mixed semantics: emulation and laziness.

Emulation The first property, emulation, adapted from the original resugaring
work by [14], is described as follows (a diagram illustrating the property graphi-
cally is shown in Fig. 9). It says that, a one-step reduction of any t in the mixed
language either (1) corresponds to a reduction of the desugared program in the
core language, or (2) corresponds to a single-step expansion of the sugar.

Property 4.1 (Emulation). For any term t = (H t1 · · · tn) where H is a core
construct head or a sugar name Sg, either Rm(t) is not defined, or one of the

5 The sugars with cyclic dependence on evaluation contexts are ill-formed for general
desugaring.
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t DF (t)

Rm(t) Rc(DF (t))

Mixed language Core language

desugar

desugar

(case 1)

de
sug

ar

(ca
se

2)mixed reduction core reduction

Fig. 9: Illustration of Emulation.

following statements holds: (Case 1) DF (Rm(t)) = Rc(DF (t)); and (Case 2)
DF (Rm(t)) = DF (t).

Proof. By structural induction on the term t.

– Base case. If t is a normal form, Rm(t) = ⊥, which clearly satisfies the
property.

– Induction hypothesis. Every sub-term of t, namely ti, follows the emu-
lation property.

– Induction step. If t is not a normal form, we conduct the proof with a
case analysis.
1. H = Sg, and Rm(t) expands the outermost Sg in t. Thus, we have

DF (Rm(t)) = DF (t).

It turns out that the equation of case 2 holds.
2. H = Sg, and Rm(t) reduces ti, i.e.,

Rm(t) = (Sg t1 · · · Rm(ti) · · · tn).

In this case,

DF (Rm(t)) = D((Sg DF (t1) · · · DF (Rm(ti)) · · · DF (tn))).

On the other hand,

DF (t) = D((Sg DF (t1) · · · DF (ti) · · · DF (tn))).

If DF (Rm(ti)) = DF (ti), case 2 holds. Otherwise, if DF (Rm(ti)) =
Rc(DF (ti)), with Lemma 4.1 (which we state and prove later), we have

Rc(DF (t)) = D((Sg DF (t1) · · · Rc(DF (ti)) · · · DF (tn))).

Thus, we conclude that either DF (Rm(t)) = DF (t) or DF (Rm(t)) =
Rc(DF (t)) holds.
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3. H = head, and Rm(t) is an application of the notion of reduction to t
itself (the outermost head). In this case, we are going to prove that the
equation of case 1 holds. That is,

DF (R((head t1 · · · tn))) = R((head DF (t1) · · · DF (tn))).

This is exactly the definition of the extensible requirement of the notion
of reduction in the core language.

4. H = head, and Rm(t) reduces ti. First, Rm and Rc will reduce a term
with the same index in

(head t1 · · · tn)

and
(head DF (t1) · · · DF (tn)),

respectively. The left-hand-side

DF (Rc(t)) = (head DF (t1) · · · DF (Rm(ti)) · · · DF (tn)).

As for the rhs of case 1 and 2, we have

DF (t) = (head DF (t1) · · · DF (ti) · · · DF (tn))

and

Rc(DF (t)) = (head DF (t1) · · · Rc(DF (ti)) · · · DF (tn)).

By induction hypothesis, we can conclude that either DF (Rm(t)) =
DF (t) or DF (Rm(t)) = Rc(DF (t)) holds.

In the above proof, we use Lemma 4.1 (for the second case at the induction
step), which is stated and proved as follows.

Lemma 4.1. For a term

t = (Sg t1 · · · tn),

if
Rm(t) = (Sg t1 · · · Rm(ti) · · · tn), (2)

and DF (Rm(ti)) ̸= DF (ti), then

Rc(DF (t)) = D((Sg DF (t1) · · · Rc(DF (ti)) · · · DF (tn))).

Proof. Equation (2) suggests that the sugar Sg is given a context rule like

(Sg t/v · · · Ci · · · t/v)

in the mixed semantics by the getRules algorithm. According to the algorithm,
D(t) will also reduce at ti’s location for core context rule. Because DF (Rm(ti)) ̸=
DF (ti),Rm(ti) reduces ti by core language’s reduction rule (as opposed to desug-
aring), so DF (ti) can be reduced by core language’s reduction. Thus, the lemma
holds.



14 Z. Yang et al.

Laziness Another property is laziness, which guarantees that desugaring acts
as “lazy” as possible. In other words, the algorithm exposes as many terms in
the surface level as possible. This property is crucial to the usefulness of lazy
desugaring.

With the desugaring rule of a sugar Sg, we can define a termn → term
function DSG (the terms can be natually extended to metavariables) such that

DSG(t1, · · · , tn) = D((Sg t1 · · · tn)).

Then it is obvious that

DF ((Sg t1 · · · tn)) = DSG(DF (t1), · · · , DF (tn)). (3)

Property 4.2 (Laziness). For any term t = (Sg t1 · · · tn), if

Rc(DF (t)) = DSG(DF (t1), · · · ,Rc(DF (ti)), · · · , DF (tn)) (4)

then there exists j, such that

Rm(t) = (Sg t1 · · ·Rm(tj) · · · tn).

That is to say, the sugar Sg will not be expanded in the mixed language, if
the reduction occurs at one of the expanded DF (ti) in DF (t).

Proof. Equations 3 and 4 imply

DSG(t1/v1, · · · , tn/vn) = Cc[ti]

where the j-th sub-metavariable is vk when DF (tk) is a value, or tk otherwise.
Then according to the first branch of function getRules, the context rule

[ti := C]Dlhs will be obtained, where Dlhs = (Sg t1/v1 · · · tn/vn). Then for
any k, such that DF (tk) is a value,

– if all tk are also values, then based on the context rule above, equation j = i
holds;

– otherwise, simply assume that th is the only sub-term which is not a value,
when DF (tk) is. Based on the function getRules, one of the context rule
before computing [ti := C]Dlhs will make th be a context hole, equation
j = h holds. (If th is not the only one, there must be one of th corresponding
to the former context hole.)

5 Case Studies

We have implemented our lazy desugaring system in PLT Redex [5], a semantic
engineering tool based on reduction semantics [7]. It provides a useful environ-
ment for combining the core language’s semantics with rules from our algorithm.

We have successfully tested a bunch of syntactic sugars with our system.
In this paper, for the lack of space, we only describe the core algorithm of our
method in Section 4, but other features like hygienic, (mutual) recursive, pattern
based can be handled by simple extensions of our basic algorithm.
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5.1 Simple Examples

We have seen several simple sugars in our running example, and we will give
other examples to demonstrate some interesting observations.

It is not hard to convert from SKI combinator to call-by-need lambda calcu-
lus. Consider the S combinator as an example, which can be defined as a sugar
below.

S
def
== (λN (x1 x2 x3) (x1 x3 (x2 x3)))

The interesting point is that we can use the call-by-need lambda calculus to
force an expansion of a sugar in case we need it. For example, we may consider
defining S in another form:

(S t1 t2 t3)
def
== (let (x t3) (t1 x (t2 x))).

In this case, the expansion of S will not happen until enough sub-terms have
been normal-formed, which is different from the original combinator.

Similarly, recall the And sugar defined before. We may redefine it with call-
by-need lambda calculus as follows.

ForceAnd
def
== (λN (x1 x2) (if x1 x2 #f))

Given any program with (ForceAnd t1 t2) as its sub-term, when (ForceAnd t1
t2) should be reduced, the evaluation sequence will look like this.

(. . . (ForceAnd t1 t2) . . .)
−→ (. . . ((λN (x1 x2) (if x1 x2 #f)) t1 t2) . . .)
−→ (. . . (if t1 t2 #f) . . .)
−→ . . .

5.2 More Examples

Since the essential idea of our approach is not complex, it is possible to extend
the basic algorithm to handle many kinds of complex sugar features. In this
section, we give two examples of hygienic sugar and higher-order sugar.

Given a typical hygienic sugar

(HygienicAdd t1 t2)
def
== (let (x t1) (+ x t2)),

for the program

(let (x 2) (HygienicAdd 1 x)),

the existing resugaring approach [15] uses an abstract syntax DAG to distinguish
different variables x in the desugared term

(let (x 2) (let (x 1) (+ x x))).
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But in our lazy desugaring setting, the HygienicAdd sugar is not expanded until
necessary. The sequence will be as follows.

(let (x 2) (HygienicAdd 1 x))

−→ (HygienicAdd 1 2)

−→ (+ 1 2)

−→ 3

Higher-order functions from the functional language are introduced to many
other programming languages as important features. We attempt to process the
higher-order sugar with our method, for example, with the sugar6

(Filter t (list v1 v2 ...))
def
== (let (f t)

(if (f v1)
(cons v1 (Filter f (list v2 ...)))

(Filter f (list v2 ...))))

(Filter t (list))
def
== (list)

and we obtain the following sequence with the example.

(Filter (λ (x) (and (> x 1) (< x 4))) (list 1 2 3 4))

−→ (Filter (λ (x) (and (> x 1) (< x 4))) (list 2 3 4))

−→ (cons 2 (Filter (λ (x) (and (> x 1) (< x 4))) (list 3 4)))

−→ (cons 2 (cons 3 (Filter (λ (x) (and (> x 1) (< x 4))) (list 4))))

−→ (cons 2 (cons 3 (Filter (λ (x) (and (> x 1) (< x 4))) (list))))

−→ (cons 2 (cons 3 (list)))

−→ (cons 2 (list 3))

−→ (list 2 3)

6 Related Work

As we discussed before, our work is closely related to the pioneering work of
resugaring [14]. The idea of “tagging” and “reverse desugaring” is a clear ex-
planation of “resugaring”, but it becomes very complex when the rhs of the
desugaring rule becomes complex. Our approach does not need reverse desug-
aring, which is both more powerful and efficient. For hygienic sugar, compared
with the approach of using DAG to solve the variable binding problem [15],
our approach of “lazy desugaring” can achieve natural hygiene with a hygienic
expansion.

Macros as multi-stage computations [10] is a work related to our lazy ex-
pansion of sugars. Some other work [16] on multi-stage programming [18] in-
dicates that it is useful for implementing domain-specific languages. However,
multi-stage programming is a meta-programming method, which mainly aims
for runtime code generation and optimization. In contrast, our lazy desugaring
method treats sugars as part of a mixed language, rather than separating them

6 The expression ‘t ...’ means zero or more t as a pattern.



A Lazy Desugaring System for Evaluating Programs with Sugars 17

by staging. Moreover, lazy desugaring gives us a chance to derive evaluation
rules of sugars, which is an advantage over multi-stage programming.

The lazy desugaring used to be explored [3]. They model the expansion with
explicit substitutions [1] and delay the expansion by subtle rules. They also de-
clare the benefit to avoid unnecessary expansions. While their main contribution
is a formal semantics of macro expansion, the macros in a program do not pre-
serve their original formats. In contrast, our lazy desugaring can preserve the
sugars as long as they do not have to be expanded.

There is a long history of hygienic macro expansion [12], and a formal specific
hygiene definition was given by specifying the binding scopes of macros [11].
Another formal definition of the hygienic macro [2] is based on nominal logic
[9]. Instead of designing something special for the hygienic sugar as by [15], our
method can be easily combined with the existing hygienic method, because the
reverse desugaring is not needed.

Our implementation is built upon PLT Redex [5], a semantics engineering
tool, but it is possible to implement our approach with other semantics engineer-
ing tools [17, 19] which aim to test or verify the semantics of languages. Their
methods can be easily combined with our approach to implementing more general
rule derivation. Ziggurat [8] is a semantics extension framework, also allowing
defining new macros with semantics based on existing terms of a language. It
should be useful for static analysis of the mixed langugage in our approach.

7 Conclusion

In this paper, we propose a novel lazy desugaring method which smartly evalu-
ates the programs with sugar. Our algorithm automatically generates the mixed
language semantics from the core language and the sugar definition, and achieves
“resugaring” by outputting the evaluation sequence of a program with sugars
based on the mixed language semantics. In our method, the most important
point is delaying the expansion of syntactic sugars by deriving suitable context
rules, which decide whether the mixed language should reduce the sub-term by
reduction rules of the core language or expand a sugar term. Our approach is
flexible for more extensions.

There are some interesting future works. One is to extend the framework
from evaluation to other language components such as type system, analyzer,
and optimizer. Also, we find it possible to derive stand-alone evaluation rules
for the surface language by means similar to how we calculate context rules.
This would make it more convenient to develop domain-specific languages. The
usefulness of lazy desugaring’s expressiveness is also worth exploring, since some
ill-formed sugar definitions7 for the general desugaring can be handled by lazy
desugaring.

7 For example, (Odd t)
def
== (let (x t) (if (> x 0) (not (Odd (- x 1))) #f)) is

ill-formed because of expansion without termination, but can be avoided by lazy
desugaring.
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