Foundational Multi-Modal Program Verifiers

VLADIMIR GLADSHTEIN, National University of Singapore, Singapore
GEORGE PIRLEA, National University of Singapore, Singapore
QIYUAN ZHAO, National University of Singapore, Singapore

VITALY KURIN¥, Neapolis University Pafos, Cyprus

ILYA SERGEY, National University of Singapore, Singapore

Multi-modal program verification is a process of validating code against its specification using both dynamic
and symbolic techniques, and proving its correctness by a combination of automated and interactive machine-
assisted tools. In order to be trustworthy, such verification tools must themselves come with formal soundness
proofs, establishing that any program verified in them against a certain specification does not violate the
specification’s statement when executed. Verification tools that are proven sound in a general-purpose proof
assistant with a small trusted core are commonly referred to as foundational.

We present a framework that facilitates and streamlines construction of program verifiers that are both
foundational and multi-modal. Our approach adopts the well-known idea of monadic shallow embedding of
an executable program semantics into the programming language of a theorem prover based on higher-order
logic, in our case, the Lean proof assistant. We provide a library of monad transformers for such semantics,
encoding a variety of computational effects, including state, divergence, exceptions, and non-determinism.
The key theoretical innovation of our work are monad transformer algebras that enable automated derivation
of the respective sound verification condition generators. We show that proofs of the resulting verification
conditions enjoy automation using off-the-shelf SMT solvers and allow for an interactive proof mode when
automation fails. To demonstrate versatility of our framework, we instantiated it to embed two foundational
multi-modal verifiers into Lean for reasoning about (1) distributed protocol safety and (2) Dafny-style speci-
fications of imperative programs, and used them to mechanically verify a number of non-trivial case studies.

CCS Concepts: » Software and its engineering — Formal software verification.
Additional Key Words and Phrases: multi-modal verification, mechanised proofs, Lean, Dijkstra monads

ACM Reference Format:

Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey. 2026. Foundational Multi-
Modal Program Verifiers. Proc. ACM Program. Lang. 10, POPL, Article XX (January 2026), 31 pages. https:
//doi.org/10.1145/XXX

1 Introduction

The promise of formal software verification is to deliver programs that are rigorously proven to
satisfy their ascribed specifications, eliminating any possibility of runtime errors. While the past
two decades have seen a surge of large-scale formally verified systems, ranging from compilers [54,
63] and cryptographic libraries [30, 82] to operating systems [37, 51] and distributed consensus

“Work done during a research internship at National University of Singapore.

Authors’ Contact Information: Vladimir Gladshtein, National University of Singapore, Singapore, vgladsht@comp.nus.edu.
sg; George Pirlea, National University of Singapore, Singapore, gpirlea@comp.nus.edu.sg; Qiyuan Zhao, National Univer-
sity of Singapore, Singapore, qiyuanz@comp.nus.edu.sg; Vitaly Kurin, Neapolis University Pafos, Cyprus, v.kurin@nup.ac.
cy; Illya Sergey, National University of Singapore, Singapore, ilya@nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ARTXX

https://doi.org/10.1145/XXX

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

https://orcid.org/0000-0001-9233-3133
https://orcid.org/0009-0008-5378-2815
https://orcid.org/0000-0002-1017-1562
https://orcid.org/0009-0007-9614-8892
https://orcid.org/0000-0003-4250-5392
https://doi.org/10.1145/XXX
https://doi.org/10.1145/XXX
https://orcid.org/0000-0001-9233-3133
https://orcid.org/0009-0008-5378-2815
https://orcid.org/0000-0002-1017-1562
https://orcid.org/0009-0007-9614-8892
https://orcid.org/0000-0003-4250-5392
https://doi.org/10.1145/XXX

XX:2 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

protocols [40, 101, 106], formal verification is far from being considered mainstream in software
development. As noted by practitioners, the cost/benefit ratio of formally proving software systems
correct often makes formal verification a poor choice for code quality assurance [26] in comparison
with lightweight methods for bug finding, such as fuzz testing [12] and symbolic execution [16].

Multi-modal verification is a methodology that aims to lower the cost of adopting formal methods
by combining lightweight and rigorous techniques for checking a program against its specification.
Multi-modal verifiers allow one to run tests, perform symbolic checks, and prove correctness of a
program using deductive reasoning. Since the latter task is by far the costliest in terms of time and
intellectual burden, an ideal verifier should provide a suite of tools to discharge proof obligations
for a program’s correctness, through a combination of automated decision procedures and human-
assisted proofs. As of today, several existing verification frameworks offer features for multi-modal
verification, targeting both general-purpose programming models [43, 55, 71, 89, 98] and problem-
specific modelling domains, such as distributed and security protocols [73, 74, 100]. However, to
the best of our knowledge, no such tool come with formal machine-checked proofs of their own
soundness: that is, none of them provide strong guarantees that the result of successful verification
they report is consistent with the runtime behaviour of the respective program that has been
verified in it.! In other words, such verifiers can miss bugs in programs.

A well-known methodology to engineer a formally sound verifier is to embed its modelling
and specification languages into those of a general-purpose theorem prover, such as Rocq [86] or
Lean [24]. This design shifts the trust from an implementation of the verifier to the implementation
of the underlying prover, as long as the verifier’s own correctness is established in the prover’s
logic. While those provers are also programs, they have a very small trusted core, and are gen-
erally believed to be bug-free. Verification frameworks built this way are called foundational and
are typically employed in correctness-critical domains, such as verification of systems code [5, 17]
and reasoning about programs with complex semantic features [38, 46, 91]. Implementing a foun-
dational program verifier for a new programming language is typically a substantial effort on
its own, and, while several attempts to automate foundational verification have been made re-
cently [22, 33, 90, 94], we are not aware of any such tool providing a full spectrum of multi-modal
verification features: testing, symbolic execution, and automated/interactive deductive proofs.

In this work, we present an approach for building foundational multi-modal program verifiers.

Challenges and key ideas. Any verification task starts from encoding a model of a program and
its desired specification, so the syntax, in which the program and its specification are expressed,
can have a large impact on the verifier’s adoption. Our methodology for implementing verifiers
is by embedding them into the Lean theorem prover and by making use of its support for meta-
programming [80] to provide domain-specific syntax for the users. We aim to provide an experience
where the user need not be proficient in Lean to be able to conduct their verification tasks, by em-
ploying their domain-specific knowledge, while implicitly relying on Lean’s proving capabilities.

While the problem of providing user-friendly syntax can be solved with state-of-the-art meta-
programming techniques, defining the semantics of a verifier’s modelling language, which is both
executable and amenable to automated verification, is the first conceptual challenge we have to solve.
An appealing idea to encode such semantics is by “assembling” them from collections of effects that
a language can express: state manipulation, exceptions, non-determinism, etc. An approach based
on Dijkstra monads [96] provides an elegant theoretical foundation to derive principles for sym-
bolic reasoning about programs with effects from their execution semantics. Unfortunately, the
research on Dijkstra monads to date [4, 70] does not immediately provide a push-button solution

IThis, of course, does not mean that those verification tools are not useful: they are typically rigorously tested, and
soundness-compromising bugs in them are relatively rare, although definitely not non-existent [13].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:3

for deriving a sound automated verifier, stopping just one step short of doing so. We identify this
shortcoming and provide a solution to it by introducing a novel algebraic structure called monad
transformer algebras. We show that a program semantics with execution-time effects that can be
expressed as a composition of monad transformer algebras allows for automated derivation of a
sound symbolic verifier that enjoys automation-friendly verification conditions.

The second conceptual challenge has to do with accommodating two styles of symbolic reason-
ing about code: symbolic execution and deductive verification. The former is more suitable for
reliably identifying true bugs in programs without the need to prove anything [15], while the lat-
ter aims to show the absence of bugs at the expense of having to construct a proof. We reconcile
them by observing that each one of them corresponds to one of two different ways of reason-
ing about non-determinism in a program’s semantics: symbolic execution corresponds to taking
angelic choices that exercise an execution that will likely result in a bug, while deductive verifi-
cation considers demonic non-determinism, effectively checking that every execution satisfies a
desired property [14]. We provide a reusable executable semantics for non-determinism and em-
ploy monad transformer algebras to derive verifiers suitable for both sound symbolic bug-finding
and safety verification for potentially non-terminating, non-deterministic computations.

The last challenge we have to address is providing smooth language-agnostic integration be-
tween two styles of deductive program verification: automated and user-assisted. The former style
is more popular in standalone intrinsic code verifiers, such as Dafny [58], Viper [76], and Verus [55],
which require the user to annotate a program with the specification and invariants, emitting verifi-
cation conditions (VCs) that are then discharged by an external automated solver. The latter style
is predominant in foundational verifiers embedded into an interactive theorem prover that state
the verification conditions extrinsically and use the underlying prover’s interactive proof mode
to discharge them [5, 44, 53]. Both styles have their merits: while the former greatly reduces the
burden on the human prover, the latter provides more fine-grained control over the proof process.
We adopt the intrinsic proof style, embedding our verification condition generators into Lean and
developing language-independent automation techniques for proving VCs with the help of off-
the-shelf solvers, such as Z3 [23] and cvc5 [8], as well as interactively. We show that our proofs
often require no manual effort at all, while the ability to combine automated and interactive modes
allows for verifying programs outside the reach of existing intrinsic automated verifiers.

We implement these ideas in Loom—a foundational framework for deriving verifiers embed-
ded into Lean proof assistant. We showcase Loom by instantiating it to two realistic multi-modal
verifiers, using the outlined above techniques in tandem to test and verify a series of case studies.

Contributions. In summary, our work makes the following contributions:

e Our main pragmatic contribution is Loom: a framework for embedding multi-modal verifiers
into Lean with foundational end-to-end correctness guarantees and a good support for user-level
automation. Loom comes with a library of shallowly-embedded computational effects, including
state, divergence, and non-determinism, and allows for multiple styles of verification: testing,
symbolic execution, and deductive proofs, both interactive and automated (Sec. 2).

e Our main theoretical contribution is a framework of ordered monad (transformer) algebras: an
algebraic structure that streamlines deriving of correct-by-construction deductive verifiers from
executable semantics represented by compositions of computational monads. Loom comes with
a library of monad algebra instances for common effects that can be easily extended (Sec. 3).

e We demonstrate how to automate derivation of foundational deductive verifiers from monad
algebra instances using Lean’s type class resolution mechanism (Sec. 4).

e We show how to express divergence in our framework in a way that avoids coinductive defini-
tions (Sec. 5) and present a monad transformer algebra for non-determinism (Sec. 6).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:4 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

e We implemented two foundational multi-modal verifiers on top of Loom: (1) Veil 2.0, a complete
overhaul of the Veil verifier for distributed protocols in first-order logic [83], now featuring exe-
cutable semantics (Sec. 7), and (2) Velvet, a new Dafny-style verifier for an imperative language
featuring arrays, unbounded loops, and the constrained random choice operator (Sec. 8). We used
both verifiers to test and prove several non-trivial real-world case studies correct, highlighting
the unique capabilities of multi-modal verification in a foundational proof assistant.

The entire development of this paper comes with end-to-end correctness proofs done in Lean.

2 Overview

We start by building the intuition for Loom’s design and outlining the experience of using it. To do
so, we will go through stages of developing a multi-modal verifier for Cashmere—a toy imperative
WHILE-style language for implementing simple monetary operations, embedded into Lean.

2.1 Embedding Stateful Computations into Lean

Programs in Cashmere manipulate a simple state that contains a single mutable component rep-
resenting the balance on a user’s account (for demonstration purposes, let us forgo realism and
assume the language only supports one user). We begin by implementing a function that with-
draws a desired amount from a current balance. Its code is shown in Fig. 1a, and it is defined in
a Lean monad StateM, which represents a stateful computation, first reading the current value of
the user account’s balance (line 3) and then updating it with the new amount (line 4).

Lean’s meta-programming facilities make it easy to disguise the code in Fig. 1a, to make it look
closer to familiar imperative code by adding syntax (balance := ...) for updating mutable state
components, for returns clause to specify the return value, as well as require/ensures statements
to specify its execution contract in terms of pre- and postconditions. The code in Fig. 1b macro-
expands to the original code in Fig. 1a, which can be executed in Lean natively using the StateM. run
function. Based on the user-provided ensures annotation, the definition in Fig. 1b also generates
the corresponding correctness theorem for withdraw, which we will discuss next.

2.2 Specifying Stateful Computations with Loom

The correctness theorem generated by Loom for withdraw from its specification looks as follows:
V amount by, {Ab. b = byq} withdraw amount {Ares b. b+ amount = by4} (1)

The Hoare triple (1) is quantified over the input amount and the pre-defined ghost logical vari-
able b4 capturing the initial balance. Its precondition is a predicate on the program state b, stating
that its initial state is b,q. The postcondition is a predicate on the program result res (of type Unit)
and the final state, also denoted as b. It states that the final balance state plus the input amount
is equal to the initial balance (for now, we allow the balance to be negative). The program with
require/ensures clauses is macro-expanded to a term triple P ¢ Q, where triple is Loom’s defi-
nition that can be used for computations ¢ in any monad M that is equipped with an instance of
MAlgOrdered type class (explained in Sec. 3.3). To instantiate this type class, one has to provide:

(1) A complete lattice L, to serve as the assertion language for computations in M, used to state
pre- and postconditions. One can think of it as a type of propositions over the respective state.

(2) A symbolic runner function p : M L — L, which interprets M-computations ending with a
postcondition in L as assertions in L. Specifically, p “treats” assertions as values: it “runs” the
computation f, returning an assertion that must hold in order for all its “resulting” assertions
to hold true. One can think of y as a weakest precondition predicate transformer for a fixed
postcondition. It also provides meaning to the annotations such as invariant, assert, etc.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:5

1 abbrev Bal := Int

2 def withdraw (amount : Nat) : StateM Bal Unit := do
3 balance < get

4 set (balance - amount)

-

bdef withdraw (amount : Nat) returns Unit
ensures balance + amount = balanceOld do
balance := balance - amount

[FIEN]

(b) Changing balance with macros
(a) Changing balance of the account

1 instance: MAlgOrdered (StateM Bal) (Bal = Prop) where 1 bdef withdraw (amounts : List Nat) returns Unit
2 p (f : Bal » (Bal » Prop) x Bal) := 2 ensures balance + amounts.sum = balanceOld do
3 Ab=> 3 let mut tmp := amounts
4 let (post, b') :=f b 4 while tmp.nonEmpty
5 post b’ 5 invariant balance + amounts.sum =
6 . —= A proof that p is monotone 6 balance0Old + tmp.sum do
7 let amount := tmp.head
(c) Embedding stateful computations 8 balance := balance - amount
9 tmp := tmp.tail

(d) Session-based withdrawal loop
Fig. 1. Programming and verification in Cashmere

(3) A proof that y is monotone w.r.t. the order on L. This requirement will be explained in Sec. 3.

Changing the shapes of M and L would require a different instance of MAlgOrdered. Luckily, Loom
minimises such implementation overhead by providing a methodology for assembling computa-
tions modularly as a combination of monads and monad transformers including StateT, ReaderT,
ExceptT, etc. That is, if the semantics of a computation can be expressed as a composition of these
transformers [67], Loom will derive the corresponding instance of MAlgOrdered automatically.
Coming back to our example, the assertion language L for StateM Bal computations is just a
type of predicates on the balance value Bal » Prop. It follows that y has type StateM Bal L = L,
which unfolds into (Bal » (Bal = Prop) x Bal) - Bal = Prop. Lines 3-5 of Fig. 1c show elements
of its implementation. The function y’s first argument is f : Bal » (Bal » Prop) x Bal, which
performs a stateful computation and returns both a poststate (b') and an assertion about that post-
state (post); ¢ runs f on the initial state b and returns its output assertion applied to its resulting
state. Having provided the implementation of y, together with the proof of its monotonicity w.r.z.
implications on Bal = Prop (Sec. 3 will describe the general structure), Loom derives the weakest
precondition transformer wp [25] for StateM Bal computations. The statement (1), thus, becomes

Y amount byig b, b= bgq = wp (withdraw amount) (Ares b’. b" + amount = bog) b (2)

For this example, wp(withdraw amount) post returns A b.post () (b — amount), meaning that the
postcondition post will hold on a final state b if it holds on the computation’s output () : Unit,
and the state b — amount. After substituting this into the statement (2), the obtained verification
condition (VC) can be discharged either via translation to SMT-LIB with one of existing Lean-
SMT toolkits [75, 84], or via Lean’s own tactics. To improve both automation and human-assisted
proving experience, for more complicated VCs, Loom provides a tactic to split them into separate
goals, where each goal corresponds to a proof supporting one ensures or invariant annotation.
For this example, the proof of the VC can be obtained by running Lean’s standard aesop tactic [68],
thus, delivering an independently verifiable certificate of correctness in a form of Lean proof term.

2.3 Adding Non-Terminating Loops

Next, let us extend Cashmere with loops. This will make it possible to implement a procedure for
handling multiple withdrawals in a single session by passing a list withdrawal amounts to withdraw
(cf Fig. 1d) decrementing the balance by the value of each of the list’s elements in a loop (lines 4-9).
An observant reader might notice that we do not supply an explicit termination measure for the
loop—the mechanism of potentially non-terminating computations is enabled by Lean’s machinery
of partial fixpoint, which we will touch upon in more details in Sec. 5. To support reasoning about

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:6 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

such partial loops, Loom implements the proof principles for partial correctness, wherein any
postcondition holds true for a loop that does not terminate. By the virtue of shallow embedding
into Lean, Loom supports the execution of divergent computations natively (i.e., not by extraction,
and linking with external code as done in Rocq [65]). In addition, Loom allows one to reason
about non-terminating computations both intrinsically (via loop invariants) and extrinsically (via
explicit theorems), disentangling proofs of partial and total correctness (cf. Sec. 2.4).

A popular way to encode semantics of non-

1 instance : MAlgOrdered (StateT Bal DivM)
terminating computations is via coinductive - (Bal - Prop) where
definitions [62, 102], which, at the time of this j H rﬁ:téhBilb»wffﬁm” ((Bal > Prop) x Bal)) := A b =>
writing, are missing from Lean. Instead of us- s | some (post, b') => post b’
ing coinduction, to encode divergence, we will 2 | mone => True -= for partial correctness

change the underlying monad of our examples
to StateT Bal DivM Bal where StateT is a state
monad transformer [67], and DivM is an alias for Option. The semantic value of divergent computa-
tions will correspond to none. Although the assertion language L for StateT Bal DivM remains the
same, we need to change the definition of y and re-prove its properties, as shown at lines 3-6 of
Fig. 2: now f b can return none, in which case we simply return True. The choice of the value for
none is dictated by the notion of partial correctness; in Sec. 5, we will explain the choice, as well
as its alternative, and will show how to avoid doing the monotonicity proofs altogether.

The property we want to verify is that the initial balance is the same as the final one plus a sum
of withdrawn amounts. To support automated VC generation for new withdraw function, we need
to add a invariant annotation to the loop. Loom will generate a VC for the desired property based
on its ensures and invariant annotations and will dispatch it automatically with the help of aesop.

Fig. 2. Specifying divergent computations

2.4 Proving Total Correctness

The obvious problem with partial correctness semantics is that any postcondition trivially holds
for divergent computations. For instance, removing the last two lines of Fig. 1d, withdraw will
make it run forever, but its VC will still be discharged successfully. Loom allows one to control the
semantics of divergent computations by changing line 6 in Fig. 2 to False. In this case, the weakest
precondition of a divergent computations would be False, so no postcondition could be proved for
them. To enable an intrinsic proof of withdraw function, one would need to add an extra annotation
with the decreasing measure after the invariant clause, such as decreasing amounts.length.

To accommodate both partial and total correctness proofs, we define withdraw using the Option
monad, where it might diverge. A correctness proof of withdraw in the total semantics, thus, en-
sures that withdraw terminates, so Loom derives for it the following correctness statement:

YV amounts bog, {Ab. b= byq} withdraw amounts {Ares b. b + amounts.sum = b4}

It implies that, for any amounts, the outcome of withdraw is always some (res, b), so that we can ex-
tract its result and state for the postcondition. We will show in Sec. 8 that, to get a total correctness
proof for a program, one can first prove its partial correctness w.r.t. a desired property and then,
separately, prove that True as a postcondition holds in the total semantics. Loom automatically
combines these two proofs into a proof of total correctness w.r.t. a desired property.

2.5 Reasoning about Programs with Exceptions

Until this point, the type of Cashmere state was Int, and the programs did not enforce a clearly de-
sirable property that the value of the balance always remains positive. To eliminate such scenarios
in our running examples, we will change the implementation of withdraw to throw an exception
if one is attempting to withdraw a larger value than the one of the current balance. The amended

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:7

1 bdef withdraw (amounts : List Nat) returns Unit 1 bdef withdraw returns (history : List Nat)
2 require balance > amounts.sum 2 require balance > 0
3 ensures balance + amounts.sum = balance0Old do 3 ensures balance + history.sum = balance0Old do
4 let mut tmp := amounts 4 let amounts :| amounts.sum < balance
5 while tmp.nonEmpty 5 let mut tmp := amounts
6 invariant balance + amounts.sum = 6 while tmp.nonEmpty
7 balanceOld + tmp.sum 7 invariant balance + amounts.sum =
8 decreasing tmp.length do 8 balanceOld + tmp.sum
9 let amount := tmp.head 9 invariant balance > tmp.sum
10 if amount > balance then throw "Insufficient funds" 10 decreasing tmp.length do
11 else balance := balance - amount 11 let amount := tmp.head
12 tmp := tmp.tail 12 if amount > balance then
. . . 13 throw "Insufficient funds"
(a) Withdrawal with exceptions " else
15 balance := balance - amount
p (f : ExceptT a BankM (Bal = Prop)) := 16 tmp := tmp.tail

p (m := BankM) do
let ex < (f : BankM (Except a (Bal = Prop)));
return ex.getD (A _ => False)

17 return amounts

PO RN

(b) Semantic embedding of exceptions (c) Withdrawal with non-determinism

Fig. 3. Cashmere programs featuring exceptions and non-determinism

code is shown in Fig. 3a (lines 10-12). Note that now, to statically ensure that the exception is not
thrown, we have added a precondition requiring that the current balance is greater than or equal
to the sum of the amounts in the list passed as the argument (line 2).

To support exceptions in the executable semantics, we will have to adjust our computational
monad once again, making it into ExceptT String (StateT Bal DivM) Bal where ExceptT is the
exception monad transformer and String is the type of exceptions. Luckily, due to the similar-
ity in the working of the state and exception monad transformers, this time, we do not need
to fully redefine the semantic embedding. Instead, we can define the new version p function by
reusing the old one. Fig. 3b shows a definition of y for ExceptT String (StateT Bal DivM), where
StateT Bal DivM is abbreviated as BankM. This definition immediately delegates to the old p func-
tion for BankM, which in its turns expects an element of type BankM (Bal - Prop). To construct the
latter, we first trivially cast f to BankM (Except String (Bal = Prop)) by unfolding the definition
of ExceptT, and then extract its result using Except.getD, which retrieves an actual value of type
Bal = Prop from Except String (Bal = Prop), returning a default element (in this case, constant
(X _ => False)) if it is an exception. In general, Loom is capable to automatically derive an in-
stance of MAlgOrdered for monads enhanced with exceptions, based on an “inner” instance and the
instance for ExceptT String. Since line 4 of Fig. 3b returns (A _ => False) for exception-throwing
computations, the derived weakest precondition for withdraw will be just False for such executions.
Hence, the specification ascribed in Fig. 3a ensures that, once verified, withdraw is exception-free.

2.6 Modelling Non-Determinism in Program Semantics

As another effect, Loom supports non-deterministic computations, which are useful, for instance,
to model interactions with Input/Output. Continuing with our example, instead of passing a list of
amounts to deduct from the account balance to withdraw as an argument, we can model it as a non-
deterministic choice provided by the user interactively. Line 4 of Fig. 3¢ shows how that can be
implemented in Cashmere by making use of Dafny-style let-such-that operator : | (also known as
Hilbert’s epsilon operator) [59]. The semantics of such a choice in our example can be summarised
as “picking a random sequence of amounts to withdraw, such that the sum of the amounts does
not exceed the current balance”. The non-deterministically picked amounts also serves as the result
of the whole procedure, which we name history, as it contains the latest history of withdrawals.
Loom derives VC to prove the new version of withdraw correct by assuming demonic semantics
for the non-deterministic choice. That is, the correctness theorem for withdraw will ensure that

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:8 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

its post-condition holds for all values of amounts satisfying the constraint at line 4. Furthermore,
given a generator for values of type List Nat, Loom will provide a sound execution of withdraw,
where it will attempt to generate amounts candidates until it finds one satisfying the amounts. sum
< balance condition. Sec. 6 describes the implementation of this feature in detail.

2.7 Symbolic Execution with Angelic Non-Determinism

In addition to modelling demonic choices for the sake of safety reasoning, Loom also allows to use
angelic non-determinism to support symbolic execution of programs. As the last variation to our
example, imagine that the withdraw implementation from Fig. 3¢ does not impose any constraints
on the choice at line 4. In such a case, it would be nice to prove (in the sense of program logics for
under-approximate reasoning [77, 107]) that the exception at line 10 may be thrown. To achieve
this, we instruct Loom to use angelic non-determinism and treat exceptions as “success” (the exact
mechanism will be shown in Sec. 4). With this semantics, we will try to prove False post-condition.
Intuitively, verification of such goal can only succeed if an exception is thrown, because, in this
case, the VC will ignore any postcondition and will just return True.

In the interest of space, we do not show the code of this example here, but it can be found in
our Lean development, along with the Lean proof of its incorrectness.

2.8 Putting It All Together

We demonstrated how to implement a series of examples, building a Lean-embedded verifier for
a custom effectful language using Loom (and a bit of Lean meta-programming). As of now, Loom
comes with an extensible library of monad transformers for modelling a variety of computational
effects, including StateT, ReaderT, ExceptT, NonDetT, DivM, and Gen; the last one is the Lean
monad for random sampling [56] in the style of QuickCheck [19].

Some of Loom’s supported effects include parameters that define their execution semantics and
VC generation. For ExceptT with exceptions of type ¢, one can specify how to treat exceptions: as
failures, as successes, or by using a custom exception handler of type ¢ — Prop. For DivM, one can
control the symbolic treatment of diverging computations: partial or total. In the first case, one
does not have to provide a decreasing measure; in the second, correctness proofs guarantee that the
program always terminates. Finally, for NonDetT one can control how to treat non-deterministic
choices: demonically or angelically. The former case corresponds to accounting for all possible non-
deterministic choices, which is useful to prove program safety. The latter corresponds to symbolic
model checking and is useful to prove the presence of a bug or reasoning about reachability.

In the next section, we explain the theoretical foundations of Loom and its mechanism of monad
transformer algebras that enables automatically deriving VC generators for executable semantics.

3 Deriving Verifiers via Monad Transformer Algebras

Atthe heart of Loom’s theoretical foundations is a subclass of Dijkstra (i.e., specification-producing)
monads [4, 70, 96] allowing for “push-button” derivation of generators of Floyd-Hoare-style verifi-
cation conditions (VC) [31, 45], which often can be discharged using first-order logic solvers [8, 23].
In this section, we outline the necessary background on Dijkstra monads (Sec. 3.1), followed by a
discussion of their pragmatic shortcomings for automatically deriving VC generators (Sec. 3.2). We
then introduce additional restrictions on Dijkstra monads captured by the ordered monad algebras
structure that makes it possible to automate the derivation of VC generators for the respective
computation monads (Sec. 3.3). The section culminates with the novel idea of monad transformer
algebras, extending the benefits of monad algebras to a large class of monad transformers, allowing
for automated derivation of VC generators for semantics involving multiple effects (Sec. 3.4).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:9

3.1 Background on Dijkstra Monads

Dijkstra monads [4, 70, 96] are a well-studied formalism for enabling deductive reasoning about
effectful monadic computations. Ahman et al. have proposed an approach to derive, for a given
monad M, which is used to perform computations with some effect (e.g., state manipulation or ex-
ceptions), a corresponding canonical specification monad [4]. Such specification monads allow one
to state logical specifications of monadic computations using a tailored version of Dijkstra’s weak-
est precondition calculus [25], composing the specifications for program commands in a monadic
style, mimicking the way ordinary monads implement “effect passing”, with the ultimate goal to
enable Hoare-style program verification [45]. In addition to providing a recipe to derive canoni-
cal specification monads for computational monads (which themselves can be assembled out of
several monad transformers [67]), the work by Ahman et al. introduced a general approach for
establishing soundness of a user-defined specification monad w.r.t. some computational monad.?

As an example, for the state monad StateM o «, consider a specification monad StateW ¢ «,
which is defined as (¢ — o — Prop) — (o0 — Prop). The intuition behind this definition is
that computations in StateW o « correspond to weakest precondition transformers. That is, a value
w of type StateW o a encodes a specification of some computation done in StateM ¢ a, which,
taking a desired post-condition post on its final state, returns the sufficient precondition w post
to hold on the initial state. As any other monad, specification monad interface consists of the
the implementations of functions (1) pure : @ — Wa needed to inject pure values in monadic
computations and (2) bind : Wa — (¢ — Wp) — WJ needed to compose computations (or,
in this case, specifications). For StateW ¢ «, the standard definitions are pure x = Apost. post x
and bind w f £ Apost. w (Ares. f res post). The implementation of bind first obtains the weakest
precondition of an application f res with respect to a given postcondition post, and then uses it as
a postcondition for w, to derive the weakest precondition of the composition.

The specifications in StateW are not yet connected to the computations in StateM. Such a con-
nection is given by the morphism W®Psitem : StateM o a — StateW o « defined as follows:

WPstatem (m : StateM o) £ A post (s : o). let (res,s”) = (m s) in post res s’ (3)

In plain words, we say that for a given post-condition post, W®Pstatem m post returns a pre-
condition, which holds on an initial state s if and only if post holds on the result res of the computa-
tion m s and its final state s’. Such transformation ‘W% in general has the type Vo, M « — W a and
defines a semantic mapping of a whole program (i.e., m : M) to its specification (in the monad W)
by “running” m via the call m s. To enable modular reasoning about computations in m, we should
be able to derive the weakest precondition of a composite computation from its parts. The laws
allowing us to do that for a computation monad M and a specification monad W are as follows:

Vx, WP (pure, x) = purey, x (4)
Vm f, WP (bindy m f) = bindy (WP m) (Ar. WP (fr)) (5)

To give more intuition on how these laws are related to compositional program verification, recall
that bind m f usually encodes a sequential composition of a command m and its continuation f. In
this context, the law (5) states that to get its specification, we just need to compose the specification
of m with the specification of f applied to m’s result r. The only “basic” rules that need to be proven
are those specific to a monadic computation M in question, such as get/set for StateM.

An additional property of ‘W that is essential for scalable verification in practice is monotonic-
ity. For StateM, this property means that for a stateful computation m, and any two post-conditions

2This is useful for computation monads such as List, which cannot be represented as a monad transformer [2] and, thus,
does not yield with a canonical instance of a Dijkstra monad following Ahman et al.’s methodology.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:10 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

post, and post,, if post; r s implies post, r s for any r and any state s (i.e., post; refines post,) then
Vs, W®Pstatem m post; s = WPsiatem m post, s (6)

This property is crucial for reusability of specifications and their proofs. For example, proving
WP m (As. s = 5) means that we also have a proof of WP m (As. s > 0).

To conclude our tour of a specification monad for StateM, we show that W®siaem defined
via (3) can be used to define program correctness statements in a form of Floyd-Hoare triples:

{pre} m{post} = Vs. pre s = WPstatem m post s (7)

The above means that pre implies the weakest precondition of m w.r.t. postcondition post.

Before we move on, note that this recipe to define Hoare triples is somewhat bespoke for
state monad. Specifically, the form of StateW as well as definitions (7) and (3) crucially rely on
the structure of StateM. To wit, for the List monad, the specification monad would look like
(¢ — Prop) — Prop: it would feature no “state” component o, and for a given postcondition
post, the weakest precondition would have to hold for all (or at least one, depending on the de-
sired verification style—more on that in Sec. 6) elements of the list to satisfy post. The Hoare triple
definition would have to be adapted accordingly. It is natural to wonder: (a) how do specification
monads W for a given computation monad M would look in general and (b) whether it is always
possible to define a Hoare triple in a chosen specification monad? To answer these questions, let us
discuss the metatheory of Dijkstra monads and the pragmatic limitations caused by its generality.

3.2 Specification Monads and Hoare Triples

To tackle the concerns raised above, let us first identify a common pattern in the specification
monads we have seen so far: StateW o ¢ £ (@ — o — Prop) — (o — Prop) for the state monad,
and ListW ¢ £ (¢ — Prop) — Prop for the list monad. Clearly, both such monads resemble
the continuation monad Cont L « £ (¢ — L) — L, where, in the former case L is ¢ — Prop,
and in the latter, L is just Prop. To capture this pattern, the general type of specification monads
we will be considering in this work will be Cont L a, and we will refer to the type L as assertion
language. The intuition behind identifying an assertion language for a monad M is simple: it is just
a type of assertions, which one can state about computations done by elements of M. An assertion
language defines the type of pre- and postconditions for monadic computations, and one should
expect an assertion language itself to come with some properties that make it useful for writing
specifications. In this work, we require each assertion language L to be a complete lattice, which
guarantees that its elements (i.e., assertions) come equipped with many useful operations, such
as meet and join for disjunction and conjunction, top and bottom for truth and falsity, supremum
and infimum for existential and universal quantifiers, and partial order for implication.

Now, given a specification monad Cont L « for a computation monad M, with WP : M o —
Cont L a being a weakest precondition morphism (so far, bespoke for L and M) and < being a
partial order on L, a Hoare triple for a monadic computation m : M can be defined as follows:

{pre} m{post} = pre < WP m post (8)
The following property of ‘W% generalises the monotonicity requirement (6) for StateM:
Vm (post; post, : & — L), (V(x : a), post; x < post, x) = WP m post; < WP m post, (9)

Notice that by imposing the lattice structure on L, we manage to generalise (and, thus, automate)
almost all steps from Sec. 3.1 towards defining Hoare triples for a given computational monad M
and a specification language L. The recipe boils down to using Cont L « as a specification monad
for M, defining triples as done in (8). The only wrinkle is that one still has to explicitly provide

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:11

the weakest precondition morphism ‘WP : M ¢« — Cont L a: remember, for StateM monad the
definition has been provided in an ad-hoc way by (3), and it would look differently for ListM.

Indeed, for many sensible choices of M and L, it is possible to define ‘W% explicitly and prove
its properties (4), (5), and (9), to obtain the suitable Hoare logic. However, the lack of automation
in this aspect is what stands in the way of “push button” generation of sound program verifiers for
languages with arbitrary executable semantics expressed as a composition of monadic effects.’

This brings us to the main conceptual contributions of this work: (1) identifying an algebraic
structure that relates a computation of type M and an assertion language L, and allows for deriving
a morphism W® for M and L, which satisfies the properties (4), (5), and (9), thus, automatically
delivering a sound Hoare logic (and the respective VC generator) for M, and (2) extending this
structure to executable semantics that are defined as combinations of multiple effects.

3.3 Monad Algebras

For a given monad M, there is a one-to-one correspondence between weakest precondition mor-
phisms WP : M a — Cont L « satisfying properties (4) and (5) (but not necessary (9)) and
structures called monad algebras that relate M with an assertion language L:*

Definition 3.1 (Monad Algebra). For a given computational monad M we say that type L and a
morphism p : M L — L form a monad algebra if the following two laws hold:

(1) forany p : L, pu (pure p) = p
(2) foranym: M a, f,g: a > ML, if Vx, u(f x) = u(g x) then p(m >= f) = y(m >= g)

In this context, the type L is referred to as monad algebra object.

Before providing an intuition for this definition, we enhance the notion of a monad algebra to
extend this one-to-one correspondence to weakest precondition morphisms that are monotone (9):

Definition 3.2 (Ordered Monad Algebra). A complete lattice L with a partial order < and a mor-
phism p : M L — L form an ordered monad algebra for a monad M if the following laws hold:

(1) forany p : L, p (pure p) = p
(2) foranym :Ma, f,g:a = ML, if Vx, u(f x) < p(g x) then p(m >= f) < p(m »= g)

The only difference with Definition 3.1 is that we replace “=” with “<” in the second law. From
here on, we will only consider ordered monad algebras, referring to them as just monad algebras.
Intuitively, the first law of Definition 3.2 states that the “symbolic run” of computation simply
returning an assertion p is just p, while the second law captures the monotonicity property of p.
That is, strengthening some part of the symbolic run of a program (by, e.g., imposing a stronger
assertion at the end) should only strengthen the overall outcome of a symbolic run.

Let us show how to derive a morphism W% from a given u of a monad algebra:

WP :Ma— (a—>L)—> L= A(m:Ma) (post: a — L). u (post <> m) (10)

The <> operator above is a monadic mapping of type (¢« —) — M « — M f. To understand the
intuition behind (10), note that post <> m is essentially the same monadic computation as m but
returning an assertion post a instead of an “ordinary” value a. Applying u to (post <> m) results
in a precondition that must hold before running post <> m for it to return a true assertion.

For W% defined this way, we can state the following theorem (which we proved in Lean):

3In this work we deliberately do not account for all possible monadic implementations of effects, as some effects can have
multiple representations. For instance, non-determinism can be represented via backtracking, lists, trees, etc [3, 42, 49].
4This observation is discussed in Sec. 4.4 of the paper by Maillard et al. [70], who derive Dijkstra monads using a more
general mechanism of effect observations [47], which does not guarantee the monotonicity property (9).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:12 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

THEOREM 3.3 (PROPERTIES OF ‘WP DERIVED FROM ORDERED MONAD ALGEBRA). If an assertion
language L and a morphism i : M L — L form an ordered monad algebra for a monad M, then WP
derived using (10) satisfies the properties (4), (5), and (9).

As mentioned in Sec. 3.1, W% with properties (4), (5), and (9) immediately provide rules to com-
pose the weakest preconditions of basic operations into specifications of composite programs. That
said, we have not yet discussed how to derive “W®s for basic operations for a given monad (e.g.,
get/set of StateM). While we do not automate this aspect in this work, these derivations can be
usually done mostly mechanically by unfolding the respective definitions of y and WP.

As an example, consider the derivation of ‘W% for StateM’s get operation, i.e., a computation
of type StateM o o which returns an underlying state. By definition, we unfold get into As. (s, s):
for an initial state s, get’s outcome is this exact state s, hence the following derivation:

W®PstateM o gt pOst s = [istatem o (post $> get) s (11)
= HStateM U(pOSt ® As. (S, S)) S (12)
= UstateM o (AS. (post s, s)) s = post s s (13)

The last line (13) of the derivation above can be validated by unfolding the definition of pstatem o-

Following the outlined methodology, obtaining a Hoare-style verifier and a respective VC gen-
erator for a computation monad M boils down to (a) selecting an assertion language L and a mor-
phism p (both are usually relatively straightforward, as shown in Fig. 1c), (b) proving the laws
stated in Definition 3.2, and (c) deriving the definitions of “W® for all operations specific to the
monad. However, interesting programs rarely involve just one effect (e.g., just state), so next, we
will show how to extend this approach to semantics of computations combining multiple monads.

3.4 Monad Transformer Algebras

In the previous section, we have discussed a recipe to derive weakest precondition calculi for
specification monads of the form Cont L a by leveraging the mechanism of monad algebras. In
this section, we will address the challenge of deriving monad algebras for composite monads.

For example, assume we have defined a monad algebra instance for a monad M, and now we
want to add a state component to it by making use of the StateT monad transformer. Do we have
to define an instance of monad algebra for StateT ¢ M « from scratch, proving all the required
properties, or is there a compositional way to do so, allowing for proof reuse? Below, we provide an
approach to achieve the latter, by introducing a monad algebra analogue for monad transformers.

The main idea is simple: for a given monad transformer T, which “adds” a particular effect, let
us define a monad algebra instance of this transformer as it were applied to an arbitrary monad
M, which itself already came with a monad algebra instance formed by L and p. We illustrate how
it can be done for StateT. First, assuming that assertion language for M is L, we have to define an
assertion language for StateT o M. For the assertions on stateful computations in StateT o M, we
want to be able to state everything we could have stated for M, and additionally reason about state.
This suggests to define the new assertion language as ¢ — L. Now, we need to define pstatet & pm Of
type (StateT c M (o — L)) — (o0 — L) by making use of pp; : M L — L. Before going through its
definition, remember that StateT o M « is defined as 0 — M(a X ¢): given an initial state of type
o, computations in StateT o M « yield monadic executions in M carrying result « and an updated
state. Therefore, for m of type ¢ — M((c — L) X o), we define

HstateT o M M = A(s :). pm(apply > (m s)) (14)
Above, apply : (¢ — f) X @ — [is a function that applies the first element of a pair to the second

one. In the definition (14), we first run m on an initial state s to get a monadic computation m s of

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:13

type M((o — L) X o). Next, we apply the predicate it returns (of type (¢ — L)) to the updated
state (of type o) via “apply <$>”. The result of this operation (apply <> (m s)) has type M L, so at
the end we can apply py to obtain an assertion of type L.

As we prove in our Lean development, by assuming that pa satisfies laws from Definition 3.2,
we can derive the same laws for pistatem o That means, when composing StateT with other mon-
ads, one would not have to redefine and reprove everything from scratch, getting a correct-by-
construction ordered monad algebra. Furthermore, defining y for transformers this way makes
it possible to derive the weakest preconditions of transformer-specific basic computations by ab-
stracting over the structure of monad algebras of underlying monads! For example, for the get
operation of type StateT o M o, defined as As. pure(s, s), the weakest precondition is as follows:

WP get post s = fistateT o M(pOSt <$> get) s (15)
= UstateT o M(post <> As. Pure(s» s)) s = HstateT o m(4s. Pure(POSt 5,8)) s (16)
= pp (apply < pure(post s, s)) = pp(pure(post s s)) = post s s (17)

In the derivation above, steps (15) and (16) correspond to steps (11) and (13) from the ‘W% deriva-
tion of get in Sec. 3.3, while step (17) follows from the law pp(pure p) = p from Definition 3.2.

Now, we are ready for the first attempt towards defining a monad algebra analogue for monad
transformers. If a monad algebra is defined for a monad algebra object (cf. Definition 3.1) repre-
sented by Lean type L, then, for a monad transformer which transforms a monad into another,
such an object should be correspondingly a type constructor, or more specifically, an endofunctor
on Lean types (i.e., a mapping Type — Type that preserves identity and function composition). For
instance, for StateT o M, we defined its monad algebra object to be Fstater » M = AL.0c — L, where
L is amonad algebra object for M. This suggests to define a monad transformer algebra for a monad
transformer T as an endofunctor F, such that for any monad algebra formedby Land p: ML — L,
there exists a function Fu : T M(F L) — F L satisfying the monad algebra laws. In this work, we
impose one extra constraint on F, which is useful for deriving verifiers automatically.

To identify the problem with the definition suggested above, imagine you are working with
the monad T M defined as a transformer T applied to a monad M. Assume that the monad M
comes with a basic operation g : M « (think get from StateM) and the transformer T provides an
operation t : T M f5, which is agnostic to the underlying monad M. With the definition above, if
our library contains the ‘W derived for ¢, we can directly use it in our proofs, as this definition
is agnostic to any particular monad M. However, this does not apply to the computation g. Even
if our library contains the W derived for M, a monad T M will not use q directly, but will rather
run lifty g instead (where liftr is a monad morphism for lifting computations from an arbitrary
monad M to T M, supplied as a part of the interface of the monad transformer T).

If we want to enable automated derivation of W®'s for lifted computations from M irrespective
of the shape of the composite monad, we need to impose a law on the definition of a monad
transformer algebra that states how to commute lift and ‘W%. Let us first show how this law can
be stated in terms of lift and p, and then derive a correspondent law for ‘W%. To develop the
necessary intuition, consider our running example of StateT. We can show that for m : M(c — L)

HStateT o M(liftStateT oM m) = A(S : O')- ,UM(m <& S) (18)

Above, <& is a function of atype M (¢ > L) > 0 > M L> In plain words, if we have a lifted
monadic computation m of type M (¢ — L), then this computation clearly does not affect the state
introduced by the state transformer. So, in order to eliminate the part of m’s outcome responsible
for state (c — — partin ¢ — L), we simply need to apply this outcome assertion to the initial

SHere, <&> is defined as A m s.(A(f : ¢ — L).f s) < m. It only requires M to be a functor.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:14 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

state s (since this state is not modified by m’s computation). This is done via m <& s. The result
of this expression has type M L, so we can apply up to it to get a value of type L.

The definition (18) is what we would like to have in the general case, as it expresses the outcome
of the symbolic run prp of a T-lifted computation from M in terms of py. To make it hold for
arbitrary monad transformers, not just StateT, let us understand the demonstrated trick with <&>:
using the function As. m <& s, we have turned m : M(o — L) into a function of a type 0 — M L.
Abstracting over the functor o — — (which is specific to StateT) and replacing it with an abstract F,
we realise that there should be a way to turn m : M(F L) into a value of F(M L). In other words,
there should exist a so-called distributive-law between F and M.

At the time of this writing, there was no known general recipe to derive such laws between
arbitrary endofunctors and monads [109]. However, in all our examples, endofunctors F are rep-
resentable: they are of the form ¢ — — for some type a (such functors are called Hom-functor
and denoted Hom(a, —)). Luckily, in this case one can define a general notion of <& of type
M(F L) — F(M L) by exercising the trick we did with StateT verbatim. First, we get a repre-
sentation of F as Hom(a, —) turning M(F L) into M(a — L), then we apply <& to get @ — (M L),
and finally, we “fold” the representation of F back to get F(M L). We will abbreviate these steps
as distrp : M(F L) — F(M L). We are now ready to introduce monad transformer algebras.

Definition 3.4 (Monad Transformer Algebra). Assume T is a monad transformer and F is a repre-
sentable endofunctor. We say that F is a monad transformer algebra over T if

(1) for any monad algebra formed by L and p, there exists a function Fu : T M(F L) — F L, such
that F L and Fy form a monad algebra over T M, and
(2) for such Fu and any m : M(F L), Fu(lifty m) = pp < (distrp m).

Thanks to the second law, we can derive a desired property for W% of lifted computations:

THEOREM 3.5 (‘W% FOR LIFTED COMPUTATIONS). Assume a monad transformer T and an endo-
functor F form a monad transformer algebra. Assume also a monad M and L form an (ordered) monad
algebra. Then for anym : M a and post : « — F L

WP ram(liftryr m) post = (WP m) <$ (distrg post) (19)

A pragmatically-minded reader might wonder why calculating the right-hand side of (19) is
simpler than implementing its left-hand side explicitly. Note that the type of post can be written
as Hom(a, —)(F L), so distrg, according to its definition, will turn it into F(Hom(a, —)(L)) =
F(a — L). Now, as our F is representable (i.e, it is Hom(f, —) for some f), it should be clear
that the application of distrp corresponds to just swapping arguments in post : ¢« — (f — L),
returning a value of type f — (a — L). This form of the assertion is now “passed” (via <>) to the
“inner” weakest precondition transformer ‘W% s m, resulting in the outcome of type § — L. This
operation of pushing the assertions to the right specification monad can be effectively automated,
yielding a push-button derivation of W% for lifted monadic computations.

Our framework Loom comes with instances of monad transformer algebras for monad trans-
formers encoding common effects, such as state (both mutable and immutable), exceptions, and
several others. A user of Loom willing to implement their own program verifier only has to choose
a composition of transformers capturing their executable semantics to enjoy a sound VC gener-
ator derived automatically. One can also extend Loom with new monad transformers to support
additional effects by providing suitable monad transformer algebra instances. In the next sections
we will discuss the Lean-powered automation provided by Loom for deriving verifiers (Sec. 4) and
describe Loom support for two important effects: divergence (Sec. 5) and non-determinism (Sec. 6).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:15

class MAlgOrdered (1 : outParam (Type v)) class MAlgLift (m : semiOutParam (Type u - Type Vv))
[Monad m] [CompleteLattice 1] where (1 : semiOutParam (Type u))
p:ml->1 [Monad m] [CompletelLattice 11 [MAlgOrdered m 1]
p_ord_pure : V 1, u (pure 1) =1 (n : (Type u > Type w)) (k : outParam (Type u))
p_ord_bind {a : Type v} : [Monad n] [CompleteLattice k] [MAlgOrdered n k]
Vfg:a>ml), pof <pog- [MonadLiftT m nl where
Vx:ma, p(x>>=f) < pu(x>>=g) [cl : LogicLift 1 k]
wp_lift (x : m a) : wp (LiftM n x) post = 1liftM (wp x) post
Fig. 4. Ordered monad algebra type class Fig. 5. A type class for monad transformer algebras

4 Encoding and Automating Loom Meta-Theory with Lean Type Classes

In this section, we discuss elements of our Lean library enabling automated verifier derivation.

Inferring assertion languages. Fig. 4 shows an encoding of the ordered monad algebra as a type
class MAlgOrdered paraphrasing Definition 3.2 in Lean. This class requires an assertion language
type 1 to be a complete lattice, and the type m should be a monad, i.e., it should have pure and
bind functions. The only unusual bit in our encoding is the annotation outParam of the type class
argument 1, which means that, even if the type of the assertion language is unspecified, Lean will
try to infer it automatically based on the type class instances available in the context. To explain
the true utility of outParam, assume we have a computation of type StateM Int Unit and want to
get its weakest precondition by passing it to the respective wp function. Remember that the wp
function has the following type for a computation monad m and an assertion language 1 (Sec. 3.2):

VY {m : Type u -> Type v} {a 1 : Type u} [MAlgOrdered m 1], ma > (a > 1) » 1

When we apply wp to ¢ : StateM Int, Lean is able to automatically infer its arguments m and «
from the type of ¢, but type 1 is not known. However, thanks to the fact that 1 is marked as an
outParam, it can be synthesised from the MAlgOrdered instance for StateM automatically.

Scoped monad algebra instances. For extra flexibility, Loom makes it easy to control semantics
of the weakest precondition calculi for the same monad by providing multiple scoped instances
of MAlgOrdered for it in different namespaces. For instance, for DivM we have two instances with
True and False values for none (cf. Sec. 2.3-2.4). One of them is defined in the Lean namespace
PartialCorrectness and the other one in TotalCorrectness. Each instance is marked as scoped,
meaning that they are only available in the respective namespaces and do not conflict with each
other. As an example, to get a total, demonic semantics treating exceptions as success, one needs
to open TotalCorrectness, DemonicChoice and ExceptSuccess namespaces.

Representing monad transformer algebras. Fig. 5 shows the Lean definition of a monad trans-
former algebra, which is quite different from what that of Definition 3.4. We encode it this way
because Lean does not have a type class for monad transformers. To make class resolution more
ergonomic and efficient, Lean encodes monad transformers as a type class for monad lifting:

class MonadLift (m : Type u > Type v) (n : Type u > Type w) where ...

This class specifies how to embed a monad m into a monad n. To follow this idiom in Loom, we
implemented a type class MAlgLift, asserting that an ordered monad algebra for m and 1 can be
lifted into an ordered monad algebra for n and k. By default, MAlgLift gives us (1) LogicLift 1 k
representing the language k as @ > 1for some a, and (2) wp_1ift lemma, which is the Lean encoding
of the equality (19). The wp_lift lemma relies on the LogicLift class, which provides the 1iftM
function to lift wp x : Cont 1 « to Cont k a, corresponding to distrp from Definition 3.4. Even
though MAlglLift requires supplying a proof of the property of wp, but not of i1, we define an instance
that derives the proof of wp_lift from m’s y and its properties. Given an arbitrary computation in m,
Loom’s derive_lifted_wp command lifts its definition to the respective target monad n, provided a

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:16 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

suitable instance of MAlgLift (which is usually derived automatically). For example, given a lemma
specifying the weakest precondition for get : StateT o m o, for an arbitrary monad m

#derive_lifted_wp (o: Type u) for (get : StateT o m o) as n o

derives the weakest precondition for get function lifted into the monad n supporting stateful com-
putations, so that the VC generator automatically produces VCs for get in the monad n.

5 Monad Algebra for Divergence

In this section, we outline the mechanism to define partial functions in Lean, and explain how
to link it to the notion of monad algebras (Sec. 3.3) for reasoning about partial correctness in
the presence of loops. Crucial to our goals will be a monad algebra instance for the Option monad,
which is used in Lean to model divergence. For this monad, one can set the assertion language L to
be Prop, p(some p) to be p, and p(none) to be True or False, depending on the desired verification
style: the former defines partial correctness, while the latter corresponds to total correctness.

5.1 Divergent Computations in Lean

Lean allows one to define generally-recursive functions inside a class of monads that come with a
chain-complete partial order (CCPO) on the type of their computations.

Definition 5.1 (Chain-Complete Partial Order). A partial order < on a type A is called chain-
complete if for any chain a; < a; < ... in A there exists the least upper bound | |; a; in A.

Definition 5.2 (Chain-Complete Monad). A monad M is called chain-complete if it provides a
chain-complete partial order on M « for any result type a.

For general recursion, it is additionally required that bind is monotone with respect to this CCPO:

Definition 5.3 (Monotonicity of bind). A chain-complete monad M is called monotone if for any
my,my:Ma, fi,fr:a— MPp,ifm; <myandVx, fi x < fy x thenmy >= fi <my >= f.

With the Definitions 5.2 and 5.3 holding for a monad M, Lean defines generally-recursive monadic
computations in M following a Knaster-Tarski-style construction [1, 10]. A trivial instance of a
chain-complete monotone monad is Option. In this case, CCPO is defined as an order that only
asserts that none < some x for any x. Moreover, the Lean standard library establishes that if M
is a chain-complete monotone monad and is transformed with one of the standard transformers,
such as StateT, ExceptT, ReaderT, etc, the resulting monad remains chain-complete and monotone.
Given such a monad and a function f : M &« — M a (i.e, function which takes the recursive call
as an argument), Lean defines its fixpoint as | |, x, where f T . M a — Prop (pronounced
“f iterated”) is an inductively defined smallest set such that (1) for the bottom element L of a
corresponding CCPO, f L € f1*, (2) for each x € f1*, f x € f1*, and (3) for each chain ¢ : M a —
Prop such that ¢ C f1*, the least upper bound of ¢ is also in fT*.

With these amenities, Lean can define general loops (including while-loop) for a chain-complete
monotone monad M without having to provide a termination measure. Loom exploits this feature,
providing a general iteration operator iter [102, Sec. 3.2], which can be used to express many
different kinds of loops, including while, for, do-while, etc. The definition of iter is parametric in
an underlying monad M and has the type « — (@ — M(a + ff)) — M f. Intuitively, the output
type of the iter-loop body can be either « or f, which is modelled by taking a tagged union of
those types, denoted as +. The type « is ascribed to a value that is being computed by the each
iteration of the loop and passed to the next iteration. The type S corresponds to a value indicating
termination of the loop: if the result of the loop body is b : f§, then the loop terminates. Clearly,
no one guarantees that the body of the iter-loop will ever return a value of type f, hence this loop

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:17

Va, {inv(inla)} m {ab: a+ B, inv(ab)} Va, {inv(inla)} m{ab:a+ p, inv(ab) A"ab < a™}
{inv(inl ag)} iter ag m {b, inv(inr b)} {inv(inl ag)} iter ag m {b, inv(inr b)}

(a) Partial iteration rule (b) Total iteration rule

Fig. 6. Total and partial iteration rules

might diverge. Even though Lean can execute such an operator natively, it does not provide us a
standard invariant-based reasoning mechanism to reason about its safety. In the next section, we
will define such a mechanism by harnessing the structure of monad algebras.

5.2 Reasoning about Partial and Total Correctness with Loops

Loom’s general Hoare-style rules for iter are depicted at Fig. 6. Both of those rules rely on a tra-
ditional loop invariant inv. To match the type of iter discussed above, the invariant inv has the
type a + f — L, with L denoting assertion language associated with the monad M. Intuitively,
inv : « + f — L bundles together two functions: invj, : « — L and invi,, : f — L. The former
is used to express an invariant which must hold on the result computed by each iteration of the
loop, and the latter expresses the condition which must hold upon the loop’s termination. The rule
depicted at Fig. 6a expresses the partial correctness property of the iter operator. If the invariant
holds on the initial value ay : «, injected into & + f via inl, we want to prove that after executing
the iter-loop, the invariant will hold on the final loop result b : f, injected into « + f via inr. This
rule corresponds to the partial semantics of iter, as it does not feature any condition to enforce its
termination. The total correctness rule (Fig. 6b) is similar, but it also has a condition to enforce the
loop termination. This condition is expressed via "ab < a™ assertion, where "-7 is a notation to
inject pure (i.e., effect-agnostic) propositions into L. It means that the loop result ab : a + f is less
than q if it is of a form inl @’ and is vacuously true otherwise.

It turns out, the second rule is a valid rule for an arbitrary monad algebra where one can define
the iter operator. However, for the first rule to be sound, an extra relation should hold on the
definition of ‘W% s operator and the CCPO of M. For example, let us take M = Option, applying
iter to a body implemented as m = Aa. pure(inl a), a function with no effect, and always returning
result of type a. As in this case we will never get a result of type S, iter will diverge. Therefore,
the rule’s precondition holds for a trivially true invariant. At the same time, iter ay m is none, so
if we take ppr(none) = False, the respective ‘WP y(iter ap m) will return False, and the rule’s
conclusion will not hold. To resolve this unsoundness, we introduce partial monad algebras.

Definition 5.4 (Partial Monad Algebra). Assume M is a chain-complete monad. A monad algebra
formed by L and i : M L — L is called partial if for any chain ¢ € M a, A\ ,cc WP m(m) post <
WP (Lnec m) post holds, where A is the meet (e.g., conjunction) on the assertion type L.

To understand the meaning of this definition, assume c is a chain representing the set of it-
erations of a function f. Definition 5.4 states that if a precondition pre implies all the weakest
preconditions ‘W (m) for every m in the chain c, then it also implies the weakest precondition
of the least upper bound of the chain, which coincides with the least fixpoint of f. In other words,
to prove a property about the fixpoint of f, it is enough to prove it for each iteration of f.

To understand why Option with p(none) = False is not a partial monad algebra, assume that
c is an empty chain. Then the left-hand side of the inequality in Definition 5.4 is a conjunction
over an empty set, i.e., True, and its right-hand side is the weakest precondition of the least upper
bound of the empty chain, i.e., False. As a valid example of a partial monad algebra, we can take
the Option monad with p(none) £ True. Moreover, for each monad transformer shipped with

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:18 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

inductive NonDetT M a where def p (x : NonDetT M L) : L := match x with
| pure : a = NonDetT M « | pure p =>p
| vis {f} : M f > (B > NonDetT M a) > NonDetT M « | vis x cont => um ((A a => p (cont a)) <$> x)
| pick () : (r » Prop) » (r > NonDetT M @) = NonDetT M a | pick 7 p cont => [] a € p, p (cont a)
(a) A monad transformer for non-determinism (b) A monad algebra instance for NonDetT

Fig. 7. Nondeterministic monad transformer and its monad algebra instance

Loom, we have also proven that it preserves the partial monad algebra structure. That is, for a set
of standard transformers T, we prove that if F forms a monad transformer algebra on T (Sec. 3.4),
and L comes from a partial monad algebra on M, then F L is a partial monad algebra for T M.
In practice, it means that we provide rules for partial correctness triples for all compositions of
supported effects defined as stacked transformers with the Option monad “at the bottom”.

6 Specifying and Executing Non-Deterministic Computations

This section describes Loom’s monad transformer for non-deterministic computations NonDetT
mentioned in Sec. 2.6-2.7. First, we will show how to define a monad transformer algebra instance
for NonDetT, and then discuss the execution semantics for this monad transformer.

6.1 Monad Transformer Algebra for Non-Determinism

We define a monad transformer for non-determinism using a variant of a so-called program monad,
whose simplified version is shown in Fig. 7a [64]. The first two constructors are analogous to the
definition of the Interaction Tree structure [102], and correspond to the pure and bind operations.
The third constructor encodes a Hilbert’s epsilon operator [34], whose operational meaning corre-
sponds to non-deterministically picking an element of type 7 satisfying the predicate p.

To implement an instance of a monad transformer algebra for NonDetT, recall that a monad
algebra for some monad M is formed by the ordered assertion language (L, =) and the “symbolic
run” function y : M L — L. What would be a monad algebra for NonDetT M? Intuitively, for a non-
deterministic computation that ends with some assertion from L, we would like this assertion to be
true for all or at least one of possible outcomes of the computation, depending on the verification
style one wants to use—so called demonic or angelic non-determinism [14]. This suggests that the
assertion language for NonDetT M should be the same as that for M, and the semantics for a
program would be expressed as a conjunction/disjunction of the assertions for each outcome.

The function p implementing this intuition is depicted in Fig. 7b. For a pure assertion p : L, it
simply returns p. For a vis of x : M § and cont : § — NonDetT M L, the definition first recursively
applies y to cont obtaining a predicate of type f — L. Next, this predicate is applied to x via <$> to
get an element of type M L. Since we assumed that M already comes with monad algebra instance,
we can apply the respective up extracted from this instance to get an element of type L. For a
non-deterministic choice pick, the definition takes an infimum [| of all semantics of y(cont a) for
each a from p, for which we require L to be a complete lattice. This definition corresponds to a
demonic choice semantics for non-determinism. In our framework, we also provide an instance
for an angelic choice semantics of NonDetT, which is obtained by taking the supremum at the
definition of pick Fig. 7b. In the interest of space, in this section we only discuss the former.

For the type 7 and a predicate p : T — Prop, one can define the semantics of the Hilbert’s epsilon
operator pickSuchThat (denoted as x :| p in the language of Dafny verifier [59]) as follows:

pickSuchThat 7 p 2 NonDetT.pick 7 p NonDetT.pure (20)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:19

inductive Extract : NonDetT M a = Type where def NonDetT.run (x : NonDetT M «) : Extract x > M «

| pure : V x : «a, Extract (NonDetT.pure x) | pure x => purey x

| vis {f} (x cont) : (V y : B, Extract (cont y)) > | vis x cont contEx => x >>= (A a =>
Extract (NonDetT.vis x cont) NonDetT.run (cont a) (contEx a))

| pick (r p cont) [Findable 7 pl : | pick 7 p cont contEx => match find 7 p with

(Y t : 7, Extract (cont t)) - | some x => NonDetT.run (cont x) (contEx x)

Extract (NonDetT.pick 7 p cont) | none => L

(a) Choices for non-deterministic computations (b) Running computations in NonDetT

Fig. 8. Auxiliary definitions to run NonDetT

6.2 Executing Non-Deterministic Computations

Let us show how to soundly execute computations in NonDetT for demonic choice and the par-
tial correctness semantics. Our accompanying formalisation provides implementations for other
choices of semantics. We will show how to build a function NonDetT.run : NonDetTM a —» M «a
for any monad M equipped with a partial monad algebra instance (Sec. 5), such that the seman-
tics of this obtained computation in M « will refine the semantics of the original computation in
NonDetT M « (i.e., will produce one of the possible outcomes captured by NonDetT M «).

The execution semantics for the first two constructors of NonDetT follow those of ITrees [102]:
NonDetT.pure can be executed into pure operator from the underlying monad M, and NonDetT.vis
can be executed using bind. To “execute” a non-deterministic choice operator, we must assume
additional structure on the type 7 and predicate p. To do so, we adopt the ideas on executing
Hilbert’s choice operator in Dafny [59], parametrising NonDetT.run by a witness of a (possibly
partial) function that picks an element from 7 satisfying a predicate p. We represent such witness
as the inductive type Extract outlined in Fig. 8a. This definition recurses over the NonDetT.vis
constructor, and for each NonDetT.pick constructor requires an instance of a Findable type class,
provided by Loom. The most essential component of this type class is find : Option 7. Intuitively,
if find returns a value x, then p should hold for x. Formally, this is captured by the type class field

find_spec : Vx : 7, find 7 p = some x = p x (21)

Our implementation can infer an instance of this type class at each call to pickSuchThat, pro-
vided that 7 is finite and p is a decidable predicate. In this case, find enumerates all elements of
7 until it finds one which satisfies p. Assuming an instance of Findable, we can define a function
NonDetT.run depicted at Fig. 8b. This function recurses over NonDetT.vis constructor, calling find
for each NonDetT.pick constructor to pick an element from z satisfying p. If that call returns value
x, then we call NonDetT.run recursively via cont, otherwise we return a divergence value L.

We have proven the following soundness theorem for the outlined execution semantics in Lean:

THEOREM 6.1 (SOUNDNESS OF NONDETT.RUN). If M has a partial monad algebra instance, then
for any ¢ : NonDetT M a, ex : Extract ¢, and suitable pre-/post-conditions, the following holds:

{pre} c {post} = {pre} NonDetT.run c ex {post}

If a monad M does not come with a partial monad algebra instance, then for NonDetT.run to be
sound, we also need to ensure that each reachable call to a non-deterministic choice is realisable:
if a program point where it makes a non-deterministic choice with a predicate p is reachable, this
predicate should hold for some value. To formalise the intuition behind “reachability” in a monadic
computation, Loom provides a method to derive a weakest liberal precondition calculus from the
specific class of monad algebras; its details can be found in our Lean code.

7 Combining Runtime and Deductive Verification of Distributed Protocols

We used Loom to redefine and enhance the semantic foundations of the recently released Veil
verifier [83], producing its new version Veil 2.0. Veil is an open-source multi-modal verification

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:20 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

def VeilM (m : Mode) (p o a : Type) := NonDetT (ReaderT p (StateT o (ExceptT ExId DivM))) «
def VeilM.succeedsWhenIgnoring (ex : Set ExId) (act : VeilM m p o a) (pre : p » o > Prop) :=
[IgnoreEx ex|triple pre act (A _ => T)]
def VeilM.meetsSpecificationIfSuccessful act pre post := [DemonSucc|triple pre act post]
def VeilM.toTwoState act : p > ¢ > ¢ > Prop :=
A ro so s1 => [AngelFail|triple (Ars=>r =rg As=sp) act (A _rs=r=ryAs=s7)]

Fig. 9. The Veil monad and definitions used for verification and model checking

framework embedded into Lean, which supports both automated and interactive verification of
transition systems, with a focus on verifying distributed protocols. It features a simple imperative
language, inspired by lvy’s RML [78], for users to specify initial states and protocol transitions,
and a declarative language for describing safety properties and (finite) system traces, respectively.

The typical verification workflow in Veil is to first (i) specify the transition system and state
its safety properties, then (ii) use Veil’s SMT-based symbolic bounded model checking (BMC) to
ensure the specification is not vacuous (i.e., it admits non-trivial execution traces) and that the
desired safety properties are not trivially violated (up to some small execution depth), and finally,
once some initial trust in the correctness of the specification is thus built, to (iii) iteratively discover
an inductive invariant that is a sufficient condition for the desired safety properties.

The Veil 2.0 benchmark suite contains 17 specifications of 15 different distributed protocols (two
protocols are verified both in a decidable fragment, and separately, in general first-order logic).

7.1 Angelic Non-Determinism and the Semantics Zoo in Veil

Non-determinism features prominently in Veil specifications, particularly to abstract away imple-
mentation details or avoid formulations that would push the specification outside the decidable
fragment. For instance, when specifying a consensus protocol, rather than encoding the length of
areplica’s log as a first-order function in Veil, it is preferable (to maintain decidability) to encode it
as a relation with a coherence assumption, i.e., a partial function. The value can then be retrieved
using the pickSuchThat operator, as described in Sec. 6.1, without introducing quantifier alterna-
tion in the specification. This is an instance of non-deterministic choice. Another use-case, for
angelic non-determinism, is symbolic bounded model checking, and in particular, checking that
traces of particular shapes are admitted by the specification, e.g., “is there a way to pick transition
parameters such that transition A happens, followed by any two transitions, then followed by B?”.

One of the major limitations in the original implementation of Veil was its approach towards
such angelic non-determinism. Before we ported Veil to use Loom-provided semantics, its imper-
ative actions were monadic programs elaborated in a hard-coded weakest-precondition monad
with demonic choice and treated exceptions as failures (for all choices which satisfy the assump-
tions made about them, the transition terminates without an exception being thrown, and the
post-condition holds).® This treatment is appropriate for verification, e.g., for proving the safety of
protocols, but is awkward for the kind of symbolic model checking described above. Specifically,
the problem is that this kind of model checking relies on angelic choice and exception as failure
semantics: a transition can occur if there is a way to choose its parameters such that all assump-
tions made about them hold and no exception is thrown. However, only angelic and exception as
success semantics could be derived from Veil’s original semantics (by negating the postcondition,
and then negating the obtained weakest precondition). As such, Veil’s symbolic execution was, as
initially implemented, sound only for actions which never threw exceptions.

®Non-termination was not a concern in the original Veil, as it did not feature loops.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:21

To address this limitation, as well as other shortcomings of Veil,” we completely overhauled
its semantics using Loom. Veil actions now elaborate into programs in the VeilM monad, whose
definition in terms of Loom monad transformers is shown in Fig. 9. Concretely, a Veil 2.0 action
is a monadic computation that has read-only access to the immutable background theory of its
specification (ReaderT p), can read and write to the mutable state (StateT o), can raise exceptions
and diverge (ExceptT ExId DivM), can perform non-deterministic choices (NonDetT), and returns a
value of type . The same definition can now be interpreted with different semantics. The most
general of these semantics is IgnoreEx, which uses demonic choice and is parametrised by a set of
exception IDs which result in success (i.e, the set of permitted exceptions, which are “ignored”).
If this set ex is A _ => T, then this corresponds to demonic choice and exception as success se-
mantics (DemonSucc), which we use to check that Veil 2.0 actions preserve invariants. Setting ex to
A _ => 1 leads to DemonFail semantics, ie., Veil’s original semantics. More interestingly, if we set
ex to 1 e => = e and check IgnoreEx for all exception IDs, we also obtain DemonFail semantics,
but with the model returned by the SMT solver containing the ID of an exception which can be
thrown. To obtain all assertions which can be violated in an action, it suffices to run this check in
a loop, excluding previously seen exception IDs.

Veil 2.0 checks for each action both that (a) it does not throw any exceptions (assuming the invari-
ant holds in the pre-state) and that (b) if it does not throw any exceptions, it preserves the invariant.
If the (a) check fails, the failing assertion is highlighted to the user in the IDE. Using Loom’s meta-
theory, (a) and (b) together can be shown to imply the DemonFail semantics. Finally, the AngelFail
semantics used to represent two-state transitions for symbolic model checking can also be derived
from IgnoreEx via the double-negation trick used in the original Veil, but this time with respect
to DemonSucc semantics. To summarise, Veil 2.0 actions can seamlessly be interpreted under any
desired semantics, whilst running weakest precondition generation only once (for IgnoreEx), and
deriving the VCs in other semantics by simple rewrites enabled by Loom’s meta-theory.

Finally, as explained in Sec. 6.2, Veil 2.0 also has runtime execution semantics, including for
actions with non-determinism. In the next section, we show how this proved useful.

7.2 Case Study: NOPaxos and Runtime Testing

To demonstrate how Veil 2.0 benefits from the enhancements enabled by Loom, as a new case study,
we present a simplified version of NOPaxos consensus protocol [66]. NOPaxos, short for Network-
Ordered Paxos, is a distributed protocol for state-machine replication, designed to operate in data-
centres where the network provides an ordered unreliable multicast (OUM) primitive implemented
by software-defined switches. The goal of the protocol is to coordinate multiple replicas to agree
on a dynamically growing log of values, where each value is a client-issued request. The OUM
tags every client request with a unique sequence number, and as such, the replicas only need to
coordinate on whether to include or not include a particular request in their log (the channel is
unreliable, so requests may not reach all replicas), but not on the order in which to include them.
The leader, a distinguished replica, directs the coordination as the protocol executes. The original
NOPaxos includes two subprotocols: view change and synchronisation. Our simplified model of
the protocol omits these components, so we consider only the case with a fixed leader.

To specify a system in Veil, one begins by defining its type parameters and the global protocol
state. Fig. 10a shows selected type and state declarations for NOPaxos in Veil: replica and value
are the types of replicas and values, respectively, and seq_t is a type that abstracts natural num-
bers, retaining only the assumption that they encode a total order. The protocol state is divided

7E.g., the immutability of the background theory was enforced using a syntactic check. Now it is enforced in the type.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:22 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

type replica procedure log_append (r : replica) (v : value) = {
type value let len :| r_log_len r len
type seq_t let next_len <« succ len
instantiate seq : TotalOrderWithZero seq_t r_log r next_len v := true
immutable individual leader : replica r_log_len r I := decide (I = next_len)
relation r_log_len : replica » seq_t = Bool return next_len
relation r_log : replica » seq_t = value = Bool 3}
(a) Type and state declarations of NOPaxos (b) One subprocedure of NOPaxos

Fig. 10. Extracts from the formalisation of NOPaxos in Veil

into immutable and mutable components, which represent background assumptions and evolv-
ing state, respectively. Given the fixed-leader assumption, the leader is declared as an immutable
individual, where individual corresponds to a constant in first-order logic. The log maintained
by each replica is mutable. For the sake of decidability, we avoid modeling it as a concrete se-
quence and instead use two relational abstractions: r_log_len r i asserts that replica r’s log has
length i, while r_log r i v states that the i value in r’s log is v. Fig. 10b shows a subprocedure
in NOPaxos that appends a value v to replica r’s log. It first retrieves the current log length len of r
using pickSuchThat, then calls another subprocedure succ (definition omitted) to obtain next_len,
the successor of 1en. The procedure then sets the 1en' entry of r’s log to v and updates the length.
We ported NOPaxos to Veil based on an existing specification in Ivy [104] and followed the
methodology described in Sec. 7. The existing specification already had an inductive invariant,
which we ported over, with it verifying successfully. Moreover, we verified with symbolic model
checking (now proven sound) that the protocol is not vacuous, i.e., that it admits executions in
which values are committed to the log. As a final experiment, we implemented a randomised sim-
ulation framework for Veil protocols as a monadic program and verified its soundness in Loom
itself, proving that it produces only traces that are admitted by the specification. By inspect-
ing the execution traces produced by the simulator, we noticed that one NOPaxos transition
(handle_gap_commit_reply, which the leader runs after it does not receive a client request, decides
to include a no-op in the log, and confirms this with the replicas) appeared to never be taken. And
indeed, inspecting the relevant action’s code, we confirmed that one of its require statements was
always false. We fixed this action along with the affected invariant clauses and several related
actions, and ultimately certified the safety property of the corrected specification of NOPaxos.
We could have, in principle, caught this error with symbolic model checking. In practice, we
did not because of its slowness—using the SMT solver as a glorified execution engine is inefficient.
Now that Loom provides us with concrete execution semantics, Veil users can do much better.

8 Combining Automated and Interactive Proofs in a Dafny-Style Verifier

As another case study for Loom, we have implemented Velvet: an embedding of a Dafny-style
verifier [58] into Lean. Velvet allows one to verify stateful, possibly non-terminating programs
with non-deterministic choices, manipulating arrays and algebraic data types. In addition to the
deductive verifier, we have implemented support for QuickCheck-style property-based testing [19]
for Velvet programs, so that one can test a program’s specification before proving it.

The main advantage of Velvet over Dafny is that the former allows to combine automated and
interactive proofs within the same verifier. Using Velvet, we have verified 10 case studies: in-place
insertion sort, linear and binary search for square and cube roots calculations, and multiple com-
putations on sparse matrices. While doing so, we have discovered two distinct ways in which
Dafny-style intrinsic verification can benefit from Lean’s proof mode. First we show how one can
combine automated proofs of different semantic properties such as partial functional correctness
and termination in Velvet to obtain a stronger specification Sec. 8.1. Second, we show how Velvet

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers

1 method insertionSort (mut a: arrInt) return (u: Unit)
2 require 1 < size a

3 lensures V i j, i < j < size a » aNew[i] < aNew[j]]
4 [ensures toMultiset a = toMultiset aNew| do

XX:23

¥ case «size ao — n»

: Type
: TArray Z arrInt

: arrint
: sizea=1
:arrint
: size a_l = size a
1 1 =< size a_1
TV (ij i N), i<j-j<1-a_llil s a_1[j]
: toMultiset a_1 = toMultiset a

5 let a9 := a

6 let mut n :=1

7 while n # size a

8 invariant n < size a

9 [invariant V i j, i <3j <n > ali] < alj]]
10 [invariant toMultiset a = toMultiset ag]

11 decreasing size ay - n] do

-1 = size a_1
12 let mut mind :=n . arrInt
13 while mind # 0@ TN
14 : size a_2 = size a
15 invariant Vi j, i <j < n A j # mind » a[i] < a[j]] : mind = 1
16 invariant toMultiset a = toMultiset ay PV (ijiN),i<j~>j=1--j=nmind -
17 decreasing mind| do a_2[i] = a_2[j]
18 if almind] < almind - 1] then : toMultiset a_2 = toMultiset a
19 swap a (mind - 1) mind : —-mind = @
20 mind := mind - 1 size a - 1 < sizea -1
21 n:=n+1

22 prove_correct insertionSort by loom_solve

Fig. 11. Velvet code and proof of insertion sort Fig. 12. Lean InfoView for a failed proof goal

can be used to combine automated and interactive proof modes to reason about programs featuring
non SMT-friendly mathematical specifications as well as loops with complex invariants Sec. 8.2.

8.1 Proving Partial and Total Correctness of Insertion Sort

To account for diverging and non-deterministic computations, the Velvet computational monad is
defined as VelvetM = NondetT DivM. State mutability is modelled by piggy-backing on Lean’s
let mut syntax, which is a part of Lean’s support for do-notation [97]. Unlike vanilla Lean, Velvet
also allows to modify local mutable variables by passing them to function calls.

Fig. 11 shows an implementation, specification, and a proof of insertion sort in Velvet. Mutable
method parameters passed by references are marked as mut. This is needed because Velvet operates
only with Lean types and, hence, does not distinguish between mutable and pure data structures,
such as arrays and sequences in Dafny. Velvet only allows to pass distinct identifiers for mutable
parameters to a method’s call, similarly to Dafny’s requires a != b annotations, to avoid problem-
atic aliasing. In Fig. 11, the parameter a is ascribed the abstract type arrint, rather than Lean native
type of integer arrays. This because Velvet sends its VCs to SMT via Lean-Auto [84], which cur-
rently does not support Lean arrays natively, so we provide the required properties via the arrInt
“interface”. Velvet makes this subtle difference transparent for the user, by providing all the rele-
vant array notations for arrInt, as well as the proof that Lean arrays satisfy all its properties, so
that the user can pass regular Lean arrays anywhere arrInt is expected.

Before attempting any verification, Velvet allows one to subject a method to property-based test-
ing. For this, it provides the derive_tester_for command, which takes the name of a method and
produces a property-based tester based on its specification. Provided a generator for the method’s
input values that satisfy the require predicate (which should be decidable),? the synthesised tester
will pass them to the method and will run it natively, checking that the postcondition holds. If, e.g.,
we change the postcondition at the line 3 of Fig. 11toV i j, i < j < size a » aNew[i] < aNew[j],
we will get a counterexample such as [9, -7, 9, -3], containing repeating values in the array.

To aid intrinsic verification, the Velvet implementation of insertion sort features specifications
of loop termination measures at the lines 11 and 17. To state and prove a correctness theorem

8For now, we do not implement any clever strategies for efficient constrained input generation for a given precondition.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:24 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

w.r.t. to given pre-/postconditions for a method, Velvet provides the prove_correct command (line
22), which takes a method’s name and generates the corresponding VCs derived from requires
and ensures annotations, as well as loop invariants and termination measures (cf. Sec. 5). The
loom_solve commands first generates one Lean proof goal per VC, and then runs a customisable
automation tactic to discharge each goal. If automation fails on at least one goal, the respective
annotation gets highlighted in the editor, and the residual proof obligation is left to the user to
prove. For instance, imagine the user forgot to add n := n + 1 at line 20, so that the measure
stated at line 11 does not decrease, and, consequently, an error message with the goal obligation
depicted at Fig. 12 will be emitted to prove interactively. While in this case the goal is not provable,
often, the residual obligations might be valid but out of reach for the available automation. In this
case, nothing prevents the user from attempting to prove them manually using Lean proof mode.

Unlike existing intrinsic verifiers [55, 58, 76], which bundle all proof obligations into a single
task, Velvet makes it possible to decouple proofs of partial and total correctness. This can be done
by defining two identical version of a program, one without termination-related annotations (high-
lighted in red in Fig. 11), and another without functional correctness-specific ones (highlighted in
yellow). The proof of the former constitutes partial correctness, and the latter proves termination.
We can then use the following theorem provided by Velvet to prove the program’s total correctness:

lemma partial_total_split {a} : V (c1 cy : VelvetM a) (P : Prop) (Q : a« = Prop),
eraseEq c; cp > triplePartial P ¢c; Q » tripleTotal P ¢ (A _, True) = tripleTotal P ¢c; Q

8.2 Multiple Verification Modes for Sparse Data Computations

To exercise Velvet’s automated/interactive proof capabilities, we implemented several programs
that perform multiplications of sparse matrices and vectors. Such computations are known to be
challenging to verify mechanically [7, 27, 48]. To the best of our knowledge, only two approaches
offer computer-aided techniques to verify computations with multiple sparse structures [35, 52].

Fig. 13 shows a Velvet signature of SpMSpV method. It takes

. method SpMSpV (spm: SpM) (spv: SpV)

a compressed sparse matrix (most of whose elements are ze- return (out: arrval)
ros) and a sparse vector, and returns the dot-product of de- ensures size out = size spm

. 5 . . ensures V i < spm.size, out[i] =
compressed inputs’ counterparts. A classical sequential SPpMSPY 5 5 ¢ spv.size, spvlil # spm[il[5]
algorithm is implemented in the “two-finger merge” style [50],
iterating over each compressed row of the matrix and multi- Fig. 13. SpMSpV method signature
plying it by the input sparse vector. To model the natural par-
allelism in SpMSpV, in our implementation, instead of iterating over each row of the matrix sequen-
tially, we use a simple non-deterministic scheduler to randomly interleave those iterations, follow-
ing a conventional way to encode concurrency in Dafny [60]. To verify it, we follow a so-called
two-layered paradigm [6], distilling the part of the proof amendable to SMT solvers from math-
ematical reasoning involving complex properties of }.. Interestingly, this approach has already
been studied previously in Rocq, although without automation in mind [48].

First, we come up with SpMSpV_pure: a recursive functional analogue of SpMSpV that does all the
computations sequentially. SpMSpV_pure can be used in the specification, so that we can verify in
Velvet that SpMSpV returns the same result as SpMSpV_pure via SMT, by treating SpMSpV_pure as
an uninterpreted function with natural definitional equalities. By doing so, we reduce reasoning
about effectful SpMSpVv with loops and mutation to reasoning about pure recursive SpMSpV_pure.

Next, we prove that the result of SpMSpV_pure is equal to the big summation from Fig. 13 using
Lean tactics and facts from the mathlib library [72]. Both in our study and in the prior work [48],
the second layer of the proof extensively relied on algebraic properties of > and constituted about
300-400 LOC. However, in our case, the first layer of the proof required no manual reasoning at all.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:25

9 Related Work

Our work connects several lines of research, most notably: (1) foundational reasoning about effect-
ful computations and (2) interaction between different verification modes in program proofs.

Dijkstra Monads. Dijkstra monads [4, 70, 96] are an established theoretical framework to soundly
relate executable semantics of effectful computations to their verification condition generators,
and our results are inspired and enabled by the prior work on them. In particular, Ahman et al.
proposed a general specification meta-language called DM to define computational monads, so
that for a monad M, a monad transformer T, such that T Id = M, can be derived automatically, and
the corresponding specification monad W is defined by applying T to the continuation-passing
style (CPS) monad: T CPS [4]. To reason about monadic computations in Ahman et al.’s approach,
for each specification monad W, the user has to define a specification of the monadic computa-
tion as an element of W, so verification boils down to proving that the specification spec : W of a
monadic computation m : M refines its weakest precondition ‘W% m. A practical drawback of this
approach is that such refinement statements produce VCs that often involve quantification over
all postconditions. This aspect is undesirable for specifying computations with state containing
functions and relations, which is the case, e.g., in our implementation of Veil (Sec. 7). Following
Ahman et al.’s recipe for it would produce statements with higher-order quantification, not suit-
able for SMT solvers. In contrast, our work derives generators for Hoare-style VCs for arbitrary
specification languages using the definition (8), resulting in more automation-friendly formulas.

Maillard et al. generalise DM to account for a larger class of monads [70]. They also propose a
systematic way of deriving Hoare triples: for a monad transformer T, they note that if T is applied
to the pre-/postcondition monad PrePost = Prop X (&« — Prop), then the resulting specification
monad T PrePost allows one to derive Hoare-style statements. Unfortunately, the definition of the
PrePost monad comes with a subtle issue. To wit, consider its definition of bind given below:

bind®ePost p £ £ ((pre A Va, post a = pre’a), Ab. 3a, post a A post’ ab)

where p = (pre, post) and f = Aa. (pre’ a, post’ a). This definition introduces an existential quan-
tifier for every sequential composition in a program. An ad-hoc version of such VC encoding has
been studied before and shown to be ill-suited for SMT, unlike the one obtained via W® [57].

Both approaches [4, 70] have been implemented in the F* dependently-typed language and veri-
fier [95]. Unlike Lean, F* does not allow one to manipulate program semantics as first-class citizens,
which means that it cannot be used as a prover to formalise the meta-theory of the respective VC
generators, as we did for Loom in Lean. The implementation of Dijkstra monads in F* is, therefore,
not foundational (Maillard et al.’s results are mechanised in Rocq but are separate from their F*
implementation). Pragmatically, it also means that one cannot state in F* our theorem from Sec. 8.1
that disentangles a proof of a program’s partial correctness from its termination proof.

Interaction Trees. Vistrup et al. proposed the Program Logics a la Carte (PLC) framework to incre-
mentally derive Separation Logics [85] for programs with algebraic effects [99] by defining their
semantics in terms of interaction trees (ITrees) [102]. While this approach has been shown to be
very expressive, it is not geared towards providing an executable semantics and proof automation.
To execute programs whose semantics is defined via ITrees, one has to provide a custom step-by-
step termination-ensuring interpreter, eliminating one effect in the tree at a time. Our approach
works directly with Lean monads, and allows one to verify and run Lean code using its native
executable semantics. In particular, this made it posible to have a verified a randomised simulator
for distributed protocols directly in Loom (Sec. 7.2). Such simulator is implemented using Lean’s
standard Gen monad [56]. As we can run it using native Lean compiler, the obtained checker is
very fast, enabling randomised testing of complex distributed protocols, such as NOPaxos. Finally,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

XX:26 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

VCs generated by Loom are designed to be SMT-friendly, while PLC produces VCs in the form
of specific Separation Logic formulas with many higher-order constructions. Making such VCs
amenable to SMT is non-trivial even for simpler versions of Separation Logic [28, 61, 81].

Unifying verification and symbolic execution. The theoretical foundations of Loom accommo-
date multiple styles of symbolic reasoning about programs: in addition to Hoare-style correctness
proofs, it also allows for reasoning about reachability in the style of Incorrectness Logic [77]
(cf- Sec. 6.1). In this capacity, our work complements existing efforts on unifying correctness
and incorrectness proofs in the presence of different computational effects, such as Outcome
Logic (OL) [107, 108] and Hyper Hoare Logic (HHL) [21]. Unlike Loom, none of these logics have
been implemented in a form of a foundational program verifier. Similar in spirit to our proofs for a
symbolic execution semantics and Veil’s testing framework, Correnson and Steinhofel developed
a formally verified symbolic bug finder for a toy WHILE-style language in Rocq [20]. Unlike our
work, that effort does not consider combinations of effects or deductive verification.

Combining automated and interactive foundational proofs. RefinedC [90] and RefinedRust [33]
are mostly automated foundational verifiers for C and Rust, respectively, based on the Iris program
logic [46] and embedded into Rocq. Unlike Loom, they do not provide generic abstractions to de-
fine arbitrary effectful semantics and are not optimised for off-the-shelf SMT automation, relying
on domain-specific tactics instead. Daenerys [94] is another recent Iris-based verification frame-
work that enhances it with Viper-style SMT-based automation [76] by unifying the semantics of
Iris with that of implicit dynamic frames [93]. While Daenerys allows for combining automated
and interactive verification in Rocq using Iris Proof Mode [53], it does not provide immediately
executable semantics and does not support lightweight validation by symbolic execution. It is also
unclear whether Daenerys is suitable for embedding domain-specific verifiers, such as Veil.

Multi-modal verifiers. K [87] is a framework for defining programming language semantics
and deriving formal analysis tools, based on matching logic [88]. It is expressive and has been
used to model the semantics of production languages, including Java [11], ECMAScript 5.1 [79],
C11 [29, 39], EVM [41], and Go [105]. The K framework provides tools for concrete and sym-
bolic execution, model checking, and deductive verification. Unlike Loom, K is not foundational
and has no interactive proof mode. However, matching logic has been formalised in Rocq (with a
proof mode not connected to K) [9] and Metamath [18], with its concrete execution and deductive
verification backends producing Metamath-checkable certificates for a significant, but incomplete
subset of K features [18, 69]. By contrast, Loom is fully machine-checkable by construction.

Veil is heavily inspired by Ivy [73, 78], a multi-modal verification tool for distributed algorithms.
Ivy supports deductive verification backed by SMT solvers, symbolic model checking, and manual
proofs using tactics. It also supports extraction of C++ code for execution. Unlike Veil, Ivy is not
foundational and does not come with soundness guarantees. Moreover, its support for manual
proofs is not interactive, i.e., the user does not get to see a representation of the symbolic context.

10 Conclusion

We have presented Loom—a framework for automatically generating foundational verifiers for ex-
ecutable effectful programs, shallowly embedded into Lean. The machinery of Loom is enabled by
a novel theory of monad transformer algebras, which we introduced in this work and instantiated
for a variety of composable computational effects. With the help of two non-toy verifiers built on
top of Loom, Veil (Sec. 7) and Velvet (Sec. 8), we have implemented, tested, and verified correctness
of more than 25 case studies, combining SMT-powered automation with interactive Lean proofs.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

Foundational Multi-Modal Program Verifiers XX:27

We believe, our contributions open several avenues for future work. On a theoretical side, we
will explore applications of monad transformer algebras to interaction trees [92] and, with the
support for coinduction coming to Lean soon, extend Loom for concurrency [32]. On a practical
side, we will extend our implementations of Veil and Velvet to further explore interactions between
lightweight validation methods and proofs, such as invariant inference [103] and proof repair [36].

Acknowledgments

We thank Shaowei Lin, Peter Miiller, and Alex Potanin for their feedback on drafts of this paper.
We also thank the anonymous POPL’26 reviewers for their constructive and insightful comments;
we are particularly grateful to Reviewer C for their detailed comments on the relation between
monad transformer algebras (Sec. 3.4) and the work by Maillard et al. [70]. This work was partially
supported by a Singapore Ministry of Education (MoE) Tier 3 grant “Automated Program Repair”
MOE-MOET32021-0001, by Stellar Development Foundation Academic Research Grant, and by Sui
Academic Research Award.

References

[1] Smbat Abian and Arthur B. Brown. 1961. A Theorem on Partially Ordered Sets, With Applications to Fixed Point
Theorems. Canadian Journal of Mathematics 13 (1961), 78-82. https://doi.org/10.4153/CJM-1961-007-5

[2] Jiri Adamek, Stefan Milius, Nathan J. Bowler, and Paul Blain Levy. 2012. Coproducts of Monads on Set. In LICS. IEEE
Computer Society, 45-54. https://doi.org/10.1109/LICS.2012.16

[3] Reynald Affeldt, Jacques Garrigue, David Nowak, and Takafumi Saikawa. 2021. A trustful monad for axiomatic
reasoning with probability and nondeterminism. Journal of Functional Programming 31 (2021), e17. https://doi.org/
10.1017/50956796821000137

[4] Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martinez, Gordon D. Plotkin, Jonathan Protzenko, Aseem Ras-
togi, and Nikhil Swamy. 2017. Dijkstra Monads for Free. (2017), 515-529. https://doi.org/10.1145/3009837.3009878

[5] Andrew W. Appel. 2011. Verified Software Toolchain - (Invited Talk). In ESOP (LNCS, Vol. 6602). Springer, 1-17.
https://doi.org/10.1007/978-3-642-19718-5_1

[6] Andrew W. Appel. 2022. Coq’s Vibrant Ecosystem for Verification Engineering (Invited Talk). In CPP. ACM, 2-11.
https://doi.org/10.1145/3497775.3503951

[7] Gilad Arnold, Johannes Hoélzl, Ali Sinan Kéksal, Rastislav Bodik, and Mooly Sagiv. 2010. Specifying and verifying
sparse matrix codes. In ICFP. ACM, 249-260. https://doi.org/10.1145/1863543.1863581

[8] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mo-
hamed, Mudathir Mohamed, Aina Niemetz, Andres N6tzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying
Sheng, Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In TACAS (LNCS,
Vol. 13243). Springer, 415-442. https://doi.org/10.1007/978-3-030-99524-9_24

[9] Péter Bereczky, Xiaohong Chen, Daniel Horpacsi, Tamas Balint Mizsei, Lucas Pefia, and Jan Tusil. 2022. Mechanizing

Matching Logic in Coq. In Proceedings of the Sixth Working Formal Methods Symposium (FROM) (EPTCS, Vol. 369).

17-36. https://doi.org/10.4204/EPTCS.369.2

Yves Bertot and Vladimir Komendantsky. 2008. Fixed point semantics and partial recursion in Coq. In PPDP. ACM,

89-96. https://doi.org/10.1145/1389449.1389461

Denis Bogdanas and Grigore Rosu. 2015. K-Java: A Complete Semantics of Java. In POPL. ACM, 445-456. https:

//doi.org/10.1145/2676726.2676982

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-based Greybox Fuzzing as Markov

Chain. In CCS. ACM, 1032-1043. https://doi.org/10.1145/2976749.2978428

Karnbongkot Boonriong, Stefan Zetzsche, and Alastair F. Donaldson. 2025. Compiler Fuzzing in Continuous Inte-

gration: A Case Study on Dafny. In ICST. IEEE, 441-452. https://doi.org/10.1109/ICST62969.2025.10988954

Manfred Broy and Martin Wirsing. 1981. On the Algebraic Specification of Nondeterministic Programming Lan-

guages. In CAAP (LNCS, Vol. 112). Springer, 162-179. https://doi.org/10.1007/3-540-10828-9_61

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and Automatic Generation of High-

Coverage Tests for Complex Systems Programs. In OSDL USENIX Association, 209-224. http://www.usenix.org/

events/osdi08/tech/full_papers/cadar/cadar.pdf

Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing: three decades later. Commun. ACM

56, 2 (2013), 82-90. https://doi.org/10.1145/2408776.2408795

[10

=

(11

—

[12

—

(13

=

(14

flan)

(15

=

(16

—

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

https://doi.org/10.4153/CJM-1961-007-5
https://doi.org/10.1109/LICS.2012.16
https://doi.org/10.1017/S0956796821000137
https://doi.org/10.1017/S0956796821000137
https://doi.org/10.1145/3009837.3009878
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1145/3497775.3503951
https://doi.org/10.1145/1863543.1863581
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.4204/EPTCS.369.2
https://doi.org/10.1145/1389449.1389461
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1109/ICST62969.2025.10988954
https://doi.org/10.1007/3-540-10828-9_61
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/2408776.2408795

XX:28 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

[17] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using
Crash Hoare logic for certifying the FSCQ file system. In SOSP. ACM, 18-37. https://doi.org/10.1145/2815400.2815402

[18] Xiaohong Chen, Zhengyao Lin, Minh-Thai Trinh, and Grigore Rosu. 2021. Towards a Trustworthy Semantics-Based
Language Framework via Proof Generation. In CAV (LNCS, Vol. 12760). Springer, 477-499. https://doi.org/10.1007/
978-3-030-81688-9_23

[19] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In
ICFP. ACM, 268-279. https://doi.org/10.1145/351240.351266

[20] Arthur Correnson and Dominic Steinhéfel. 2023. Engineering a Formally Verified Automated Bug Finder. In ES-

EC/FSE. ACM, 1165-1176. https://doi.org/10.1145/3611643.3616290

Thibault Dardinier and Peter Miiller. 2024. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties. Proc. ACM

Program. Lang. 8, PLDI (2024), 1485-1509. https://doi.org/10.1145/3656437

[22] Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Miiller. 2025. Formal
Foundations for Translational Separation Logic Verifiers. Proc. ACM Program. Lang. 9, POPL (2025), 569-599. https:
//doi.org/10.1145/3704856

[23] Leonardo Mendonga de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In TACAS (LNCS, Vol. 4963).
Springer, 337-340. https://doi.org/10.1007/978-3-540-78800-3_24

[24] Leonardo Mendonga de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The
Lean Theorem Prover (System Description). In CADE (LNCS, Vol. 9195). Springer, 378-388. https://doi.org/10.1007/
978-3-319-21401-6_26

[25] Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM
18, 8 (1975), 453-457. https://doi.org/10.1145/360933.360975

[26] Mike Dodds. 2024. N things I learned trying to do formal methods in industry. Available at https://mikedodds.
github.io/files/talks/2024-10-09-n-things-I-learned.pdf.

[27] Tristan Dyer, Alper Altuntas, and John W. Baugh Jr. 2019. Bounded Verification of Sparse Matrix Computations. In
2019 IEEE/ACM 3rd International Workshop on Software Correctness for HPC Applications (Correctness). IEEE, 36—43.
https://doi.org/10.1109/Correctness49594.2019.00010

[28] Marco Eilers, Malte Schwerhoff, and Peter Miiller. 2024. Verification Algorithms for Automated Separation Logic

Verifiers. In CAV (LNCS, Vol. 14681). Springer, 362-386. https://doi.org/10.1007/978-3-031-65627-9_18

Chucky Ellison and Grigore Rosu. 2012. An executable formal semantics of C with applications. In POPL. ACM,

533-544. https://doi.org/10.1145/2103656.2103719

[30] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2019. Simple High-Level Code for
Cryptographic Arithmetic - With Proofs, Without Compromises. In IEEE Symposium on Security and Privacy. IEEE.
https://doi.org/10.1109/SP.2019.00005

[31] Robert W. Floyd. 1967. Assigning Meanings to Programs. Proceedings of Symposium on Applied Mathematics 19
(1967), 19-32.

[32] Simon Foster, Chung-Kil Hur, and Jim Woodcock. 2025. Unifying Model Execution and Deductive Verification with
Interaction Trees in Isabelle/HOL. ACM Trans. Softw. Eng. Methodol. 34, 4 (2025). https://doi.org/10.1145/3702981

[33] Lennard Géher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer. 2024. RefinedRust: A Type System
for High-Assurance Verification of Rust Programs. Proc. ACM Program. Lang. 8, PLDI (2024), 1115-1139. https:
//doi.org/10.1145/3656422

[34] Martin Giese and Wolfgang Ahrendt. 1999. Hilbert’s epsilon-Terms in Automated Theorem Proving. In TABLEAUX
(LNCS, Vol. 1617). Springer, 171-185. https://doi.org/10.1007/3-540-48754-9_17

[35] Vladimir Gladshtein, Qiyuan Zhao, Willow Ahrens, Saman P. Amarasinghe, and Ilya Sergey. 2024. Mechanised
Hypersafety Proofs about Structured Data. Proc. ACM Program. Lang. 8, PLDI (2024), 647-670. https://doi.org/10.
1145/3656403

[36] Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey. 2023. Mostly Automated Proof Repair for Verified Libraries.
Proc. ACM Program. Lang. 7, PLDI (2023), 25-49. https://doi.org/10.1145/3591221

[37] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sj6berg, and David Costanzo.
2016. CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels. In OSDI. USENIX Associ-
ation, 653-669. https://www.usenix.org/conference/osdil6/technical-sessions/presentation/gu

[38] Armaél Guéneau, Johannes Hostert, Simon Spies, Michael Sammler, Lars Birkedal, and Derek Dreyer. 2023. Meloco-

ton: A Program Logic for Verified Interoperability Between OCaml and C. Proc. ACM Program. Lang. 7, OOPSLA2

(2023), 716-744. https://doi.org/10.1145/3622823

Chris Hathhorn, Chucky Ellison, and Grigore Rosu. 2015. Defining the undefinedness of C. In PLDI. ACM, 336-345.

https://doi.org/10.1145/2737924.2737979

[40] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath T. V. Setty,
and Brian Zill. 2015. IronFleet: proving practical distributed systems correct. In SOSP. ACM, 1-17. https://doi.org/

[21

—

[29

—

(39

—

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1007/978-3-030-81688-9_23
https://doi.org/10.1007/978-3-030-81688-9_23
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3611643.3616290
https://doi.org/10.1145/3656437
https://doi.org/10.1145/3704856
https://doi.org/10.1145/3704856
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/360933.360975
https://mikedodds.github.io/files/talks/2024-10-09-n-things-I-learned.pdf
https://mikedodds.github.io/files/talks/2024-10-09-n-things-I-learned.pdf
https://doi.org/10.1109/Correctness49594.2019.00010
https://doi.org/10.1007/978-3-031-65627-9_18
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1145/3702981
https://doi.org/10.1145/3656422
https://doi.org/10.1145/3656422
https://doi.org/10.1007/3-540-48754-9_17
https://doi.org/10.1145/3656403
https://doi.org/10.1145/3656403
https://doi.org/10.1145/3591221
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/3622823
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428

Foundational Multi-Modal Program Verifiers XX:29

[41

[42
[43
[44
[45

(46

—

]
]

=

]

—

—
S
3

=

(48

[49
(50

(51

(52

[53
[54

[55

[56
[57
[58
[59
[60
[61
[62
[63

(64

(65

[}

—_ = =

—

=

]
]

]
]

=

]
]

[

]

=

10.1145/2815400.2815428

Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip Daian, Dwight Guth, Brandon M.
Moore, Daejun Park, Yi Zhang, Andrei Stefanescu, and Grigore Rosu. 2018. KEVM: A Complete Formal Semantics
of the Ethereum Virtual Machine. In CSF. IEEE Computer Society, 204-217. https://doi.org/10.1109/CSF.2018.00022
Ralf Hinze. 2000. Deriving backtracking monad transformers. In ICFP. ACM, 186-197. https://doi.org/10.1145/
351240.351258

Son Ho and Clément Pit-Claudel. 2024. Incremental Proof Development in Dafny with Module-Based Induction. In
Proceedings of the First Workshop on Dafny.

Son Ho and Jonathan Protzenko. 2022. Aeneas: Rust verification by functional translation. Proc. ACM Program. Lang.
6, ICFP (2022), 711-741. https://doi.org/10.1145/3547647

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576-580.
https://doi.org/10.1145/363235.363259

The Iris Project. 2024. The Iris 4.3 Reference. https://iris-project.org/ Online; last accessed 8 July 2025.

Shin-ya Katsumata. 2014. Parametric effect monads and semantics of effect systems. In POPL. ACM, 633-646. https:
//doi.org/10.1145/2535838.2535846

Ariel E. Kellison, Andrew W. Appel, Mohit Tekriwal, and David Bindel. 2023. LAProof: A Library of Formal Proofs of
Accuracy and Correctness for Linear Algebra Programs. In ARITH. IEEE, 36-43. https://doi.org/10.1109/ARITH58626.
2023.00021

Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. 2005. Backtracking, interleaving, and termi-
nating monad transformers: (functional pearl). In ICFP. ACM, 192-203. https://doi.org/10.1145/1086365.1086390
Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman P. Amarasinghe. 2017. The tensor algebra
compiler. Proc. ACM Program. Lang. 1, OOPSLA (2017), 77:1-77:29. https://doi.org/10.1145/3133901

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4:
formal verification of an OS kernel. In SOSP. ACM, 207-220. https://doi.org/10.1145/1629575.1629596

Scott Kovach, Praneeth Kolichala, Tiancheng Gu, and Fredrik Kjolstad. 2023. Indexed Streams: A Formal Intermediate
Representation for Fused Contraction Programs. Proc. ACM Program. Lang. 7, PLDI, Article 154 (2023). https:
//doi.org/10.1145/3591268

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs in Higher-Order Concurrent Separation
Logic. In POPL. ACM, 205-217. https://doi.org/10.1145/3009837.3009855

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implementation
of ML. In POPL. ACM, 179-192. https://doi.org/10.1145/2535838.2535841

Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chanhee Cho, Hayley LeBlanc, Pranav Srinivasan,
Reto Achermann, Tej Chajed, Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Oded Padon, and Bryan Parno. 2024.
Verus: A Practical Foundation for Systems Verification. In SOSP. ACM, 438-454. https://doi.org/10.1145/3694715.
3695952

leanprover-community. 2025. Plausible: A property testing framework for Lean 4. https://github.com/leanprover-
community/plausible. Last accessed on 9 July 2025.

K. Rustan M. Leino. 2005. Efficient weakest preconditions. Inf. Process. Lett. 93, 6 (2005), 281-288. https://doi.org/
10.1016/J.1PL.2004.10.015

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In LPAR (LNCS,
Vol. 6355). Springer, 348-370. https://doi.org/10.1007/978-3-642-17511-4_20

K. Rustan M. Leino. 2015. Compiling Hilbert’s epsilon operator. In LPAR (EPiC Series in Computing, Vol. 35). EasyChair,
106-118. https://doi.org/10.29007/RKXM

K. Rustan M. Leino. 2018. Modeling Concurrency in Dafny. In Engineering Trustworthy Software Systems, Jonathan P.
Bowen, Zhiming Liu, and Zili Zhang (Eds.). Springer International Publishing, Cham, 115-142.

K. Rustan M. Leino and Peter Miiller. 2009. A Basis for Verifying Multi-threaded Programs. In ESOP (LNCS, Vol. 5502).
Springer, 378-393. https://doi.org/10.1007/978-3-642-00590-9_27

Xavier Leroy. 2006. Coinductive Big-Step Operational Semantics. In ESOP (LNCS, Vol. 3924). Springer, 54-68. https:
//doi.org/10.1007/11693024_5

Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming a compiler with a proof assistant.
In POPL. ACM, 42-54. https://doi.org/10.1145/1111037.1111042

Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume Hiet. 2021. Modular verification of programs
with effects and effects handlers. Formal Aspects Comput. 33, 1 (2021), 127-150. https://doi.org/10.1007/S00165-020-
00523-2

Pierre Letouzey. 2008. Extraction in Coq: An Overview. In 4th Conference on Computability in Europe (CiE) (LNCS,
Vol. 5028). Springer, 359-369. https://doi.org/10.1007/978-3-540-69407-6_39

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1145/351240.351258
https://doi.org/10.1145/351240.351258
https://doi.org/10.1145/3547647
https://doi.org/10.1145/363235.363259
https://iris-project.org/
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1109/ARITH58626.2023.00021
https://doi.org/10.1109/ARITH58626.2023.00021
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1145/3133901
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3591268
https://doi.org/10.1145/3591268
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/3694715.3695952
https://doi.org/10.1145/3694715.3695952
https://github.com/leanprover-community/plausible
https://github.com/leanprover-community/plausible
https://doi.org/10.1016/J.IPL.2004.10.015
https://doi.org/10.1016/J.IPL.2004.10.015
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.29007/RKXM
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/11693024_5
https://doi.org/10.1007/11693024_5
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1007/S00165-020-00523-2
https://doi.org/10.1007/S00165-020-00523-2
https://doi.org/10.1007/978-3-540-69407-6_39

XX:30 Vladimir Gladshtein, George Pirlea, Qiyuan Zhao, Vitaly Kurin, and Ilya Sergey

[66] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports. 2016. Just Say NO to Paxos
Overhead: Replacing Consensus with Network Ordering. In OSDI USENIX Association, 467-483. https://www.
usenix.org/conference/osdil6/technical-sessions/presentation/li

[67] Sheng Liang, Paul Hudak, and Mark P. Jones. 1995. Monad Transformers and Modular Interpreters. In POPL. ACM
Press, 333-343. https://doi.org/10.1145/199448.199528

[68] Jannis Limperg and Asta Halkjeer From. 2023. Aesop: White-Box Best-First Proof Search for Lean. In CPP. ACM,
253-266. https://doi.org/10.1145/3573105.3575671

[69] Zhengyao Lin, Xiaohong Chen, Minh-Thai Trinh, John Wang, and Grigore Rosu. 2023. Generating Proof Certificates
for a Language-Agnostic Deductive Program Verifier. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 56—84. https:
//doi.org/10.1145/3586029

[70] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martinez, Catalin Hritcu, Exequiel Rivas, and Eric Tanter. 2019.
Dijkstra monads for all. Proc. ACM Program. Lang. 3, ICFP (2019), 104:1-104:29. https://doi.org/10.1145/3341708

[71] Guido Martinez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel, Catalin Hritcu, Monal
Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina Ramananandro, Aseem
Rastogi, and Nikhil Swamy. 2019. Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms. In ESOP (LNCS,
Vol. 11423). Springer, 30-59. https://doi.org/10.1007/978-3-030-17184-1_2

[72] The mathlib Community. 2020. The Lean mathematical library. In CPP. ACM, 367-381. https://doi.org/10.1145/
3372885.3373824 https://github.com/leanprover-community/mathlib4.

[73] Kenneth L. McMillan and Oded Padon. 2020. Ivy: A Multi-modal Verification Tool for Distributed Algorithms. In
CAV (LNCS, Vol. 12225). Springer, 190-202. https://doi.org/10.1007/978-3-030-53291-8_12

[74] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. 2013. The TAMARIN Prover for the Symbolic
Analysis of Security Protocols. In CAV (LNCS, Vol. 8044). Springer, 696-701. https://doi.org/10.1007/978-3-642-39799-
8_48

[75] Abdalrhman Mohamed, Tomaz Mascarenhas, Harun Khan, Haniel Barbosa, Andrew Reynolds, Yicheng Qian, Cesare
Tinelli, and Clark Barrett. 2025. Lean-SMT: An SMT tactic for discharging proof goals in Lean. In CAV. To appear.

[76] Peter Miiller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-
Based Reasoning. In VMCAI (LNCS, Vol. 9583). Springer, 41-62. https://doi.org/10.1007/978-3-662-49122-5_2

[77] Peter W. O’'Hearn. 2020. Incorrectness logic. Proc. ACM Program. Lang. 4, POPL (2020), 10:1-10:32. https://doi.org/
10.1145/3371078

[78] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification
by interactive generalization. In PLDI. ACM, 614-630. https://doi.org/10.1145/2908080.2908118

[79] Daejun Park, Andrei Stefanescu, and Grigore Rosu. 2015. KJS: a complete formal semantics of JavaScript. In PLDL
ACM, 346-356. https://doi.org/10.1145/2737924.2737991

[80] Arthur Paulino, Damiano Testa, Edward Ayers, Evgenia Karunus, Henrik Bévinga, Jannis Limperg, Siddhartha
Gadgil, and Siddharth Bhat. 2024. Metaprogramming in Lean 4. Available at https://leanprover-community.github.
io/lean4-metaprogramming-book/.

[81] Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2013. Automating Separation Logic Using SMT. In CAV (LNCS,
Vol. 8044). Springer, 773-789. https://doi.org/10.1007/978-3-642-39799-8_54

[82] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina Polubelova, Karthikeyan Bharga-
van, Benjamin Beurdouche, Joonwon Choi, Antoine Delignat-Lavaud, Cédric Fournet, Natalia Kulatova, Tahina
Ramananandro, Aseem Rastogi, Nikhil Swamy, Christoph M. Wintersteiger, and Santiago Zanella-Béguelin. 2020.
EverCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider. In IEEE Symposium on Security and Privacy.
IEEE, 983-1002. https://doi.org/10.1109/SP40000.2020.00114

[83] George Pirlea, Vladimir Gladshtein, Elad Kinsbruner, Qiyuan Zhao, and Ilya Sergey. 2025. Veil: A Framework for
Automated and Interactive Verification of Transition Systems. In CAV. Springer. To appear.

[84] Yicheng Qian, Joshua Clune, Clark Barrett, and Jeremy Avigad. 2025. Lean-auto: An Interface between Lean 4 and
Automated Theorem Provers. In CAV. To appear.

[85] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. IEEE Computer
Society, 55-74. https://doi.org/10.1109/LICS.2002.1029817

[86] Rocq Development Team. 2025. The Rocq Prover. https://rocq-prover.org. Version 9.0.0, released March 12, 2025.

[87] Grigore Rosu. 2017. K: A Semantic Framework for Programming Languages and Formal Analysis Tools. In Depend-
able Software Systems Engineering. NATO Science for Peace and Security Series - D: Information and Communication
Security, Vol. 50. IOS Press, 186-206. https://doi.org/10.3233/978-1-61499-810-5-186

[88] Grigore Rosu. 2017. Matching Logic. Log. Methods Comput. Sci. 13, 4 (2017). https://doi.org/10.23638/LMCS-13(4:
28)2017

[89] Grigore Rosu and Traian-Florin Serbanuta. 2010. An overview of the K semantic framework. J. Log. Algebraic
Methods Program. 79, 6 (2010), 397-434. https://doi.org/10.1016/].JLAP.2010.03.012

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1145/3586029
https://doi.org/10.1145/3586029
https://doi.org/10.1145/3341708
https://doi.org/10.1007/978-3-030-17184-1_2
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://github.com/leanprover-community/mathlib4
https://doi.org/10.1007/978-3-030-53291-8_12
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2737924.2737991
https://leanprover-community.github.io/lean4-metaprogramming-book/
https://leanprover-community.github.io/lean4-metaprogramming-book/
https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1109/LICS.2002.1029817
https://rocq-prover.org
https://doi.org/10.3233/978-1-61499-810-5-186
https://doi.org/10.23638/LMCS-13(4:28)2017
https://doi.org/10.23638/LMCS-13(4:28)2017
https://doi.org/10.1016/J.JLAP.2010.03.012

Foundational Multi-Modal Program Verifiers XX:31

[90]

[91

—

[92

—

(93]
[94]

[95]

[96]

[97

—

(98]

[99

—

[100]

[101]

[102]

[103]

[104]
[105]
[106]

[107]

[108]

[109]

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021.
RefinedC: automating the foundational verification of C code with refined ownership types. In PLDI. ACM, 158-174.
https://doi.org/10.1145/3453483.3454036

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mechanized Verification of Fine-Grained Concurrent
Programs. In PLDI. ACM, 77-87. https://doi.org/10.1145/2737924.2737964

Lucas Silver and Steve Zdancewic. 2021. Dijkstra monads forever: termination-sensitive specifications for interaction
trees. Proc. ACM Program. Lang. 5, POPL (2021), 1-28. https://doi.org/10.1145/3434307

Jan Smans, Bart Jacobs, and Frank Piessens. 2009. Implicit Dynamic Frames: Combining Dynamic Frames and Sepa-
ration Logic. In ECOOP (LNCS, Vol. 5653). Springer, 148-172. https://doi.org/10.1007/978-3-642-03013-0_8

Simon Spies, Niklas Miick, Haoyi Zeng, Michael Sammler, Andrea Lattuada, Peter Miiller, and Derek Dreyer. 2025.
Destabilizing Iris. Proc. ACM Program. Lang. 9, PLDI (2025). https://doi.org/10.1145/3729284

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011. Secure
distributed programming with value-dependent types. In ICFP. ACM, 266-278. https://doi.org/10.1145/2034773.
2034811

Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. 2013. Verifying Higher-Order
Programs with the Dijkstra Monad. In PLDL. ACM, 387-398. https://doi.org/10.1145/2491956.2491978

Sebastian Ullrich and Leonardo de Moura. 2022. *do’ unchained: embracing local imperativity in a purely functional
language (functional pearl). Proc. ACM Program. Lang. 6, ICFP (2022), 512-539. https://doi.org/10.1145/3547640
Niki Vazou. 2016. Liquid Haskell: Haskell as a Theorem Prover. Ph.D. Dissertation. University of California, San
Diego, USA. http://www.escholarship.org/uc/item/8dm057ws

Max Vistrup, Michael Sammler, and Ralf Jung. 2025. Program Logics a la Carte. Proc. ACM Program. Lang. 9, POPL
(2025), 300-331. https://doi.org/10.1145/3704847

James R. Wilcox, Yotam M. Y. Feldman, Oded Padon, and Sharon Shoham. 2024. mypyvy: A Research Platform for
Verification of Transition Systems in First-Order Logic. In CAV (LNCS, Vol. 14682). Springer, 71-85. https://doi.org/
10.1007/978-3-031-65630-9_4

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas E. Ander-
son. 2015. Verdi: a framework for implementing and formally verifying distributed systems. In PLDI. ACM, 357-368.
https://doi.org/10.1145/2737924.2737958

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.
2020. Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL
(2020), 51:1-51:32. https://doi.org/10.1145/3371119

Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. 2022. DuoAl: Fast, Automated Inference of Inductive
Invariants for Verifying Distributed Protocols. In OSDI USENIX Association, 485-501. https://www.usenix.org/
conference/osdi22/presentation/yao

Mark Yuen. 2022. Verifying Distributed Protocols: from Executable to Decidable. Capstone Thesis. Yale-NUS College,
Singapore. Accompanying code available at https://github.com/markyuen/tlaplus-to-ivy/.

Can Zhao, Qin Liu, Zonghua Hu, Ze Yu, Dejun Wang, and Bo Meng. 2023. K-Go: An executable formal semantics of
Go language in K framework. IET Blockchain 3, 2 (2023), 61-73. https://doi.org/10.1049/BLC2.12024

Qiyuan Zhao, George Pirlea, Karolina Grzeszkiewicz, Seth Gilbert, and Ilya Sergey. 2024. Compositional Verification
of Composite Byzantine Protocols. In CCS. ACM, 34-48. https://doi.org/10.1145/3658644.3690355

Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation for Correctness
and Incorrectness Reasoning. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 522-550. https://doi.org/10.1145/
3586045

Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024. Outcome Separation Logic: Local Reasoning for
Correctness and Incorrectness with Computational Effects. Proc. ACM Program. Lang. 8, OOPSLA1 (2024), 276-304.
https://doi.org/10.1145/3649821

Maaike Zwart and Dan Marsden. 2022. No-Go Theorems for Distributive Laws. Logical Methods in Computer Science
Volume 18, Issue 1 (Jan. 2022). https://doi.org/10.46298/lmcs-18(1:13)2022

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article XX. Publication date: January 2026.

https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/3434307
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1145/3729284
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1145/2491956.2491978
https://doi.org/10.1145/3547640
http://www.escholarship.org/uc/item/8dm057ws
https://doi.org/10.1145/3704847
https://doi.org/10.1007/978-3-031-65630-9_4
https://doi.org/10.1007/978-3-031-65630-9_4
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/3371119
https://www.usenix.org/conference/osdi22/presentation/yao
https://www.usenix.org/conference/osdi22/presentation/yao
https://github.com/markyuen/tlaplus-to-ivy/
https://doi.org/10.1049/BLC2.12024
https://doi.org/10.1145/3658644.3690355
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3649821
https://doi.org/10.46298/lmcs-18(1:13)2022

	Abstract
	1 Introduction
	2 Overview
	2.1 Embedding Stateful Computations into Lean
	2.2 Specifying Stateful Computations with Loom
	2.3 Adding Non-Terminating Loops
	2.4 Proving Total Correctness
	2.5 Reasoning about Programs with Exceptions
	2.6 Modelling Non-Determinism in Program Semantics
	2.7 Symbolic Execution with Angelic Non-Determinism
	2.8 Putting It All Together

	3 Deriving Verifiers via Monad Transformer Algebras
	3.1 Background on Dijkstra Monads
	3.2 Specification Monads and Hoare Triples
	3.3 Monad Algebras
	3.4 Monad Transformer Algebras

	4 Encoding and Automating Loom Meta-Theory with Lean Type Classes
	5 Monad Algebra for Divergence
	5.1 Divergent Computations in Lean
	5.2 Reasoning about Partial and Total Correctness with Loops

	6 Specifying and Executing Non-Deterministic Computations
	6.1 Monad Transformer Algebra for Non-Determinism
	6.2 Executing Non-Deterministic Computations

	7 Combining Runtime and Deductive Verification of Distributed Protocols
	7.1 Angelic Non-Determinism and the Semantics Zoo in Veil
	7.2 Case Study: NOPaxos and Runtime Testing

	8 Combining Automated and Interactive Proofs in a Dafny-Style Verifier
	8.1 Proving Partial and Total Correctness of Insertion Sort
	8.2 Multiple Verification Modes for Sparse Data Computations

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

