
Concurrent Data Structures Made Easy

CALLISTA LE, Yale-NUS College, Singapore

KIRAN GOPINATHAN, National University of Singapore, Singapore

KOON WEN LEE, Ahrefs, Singapore

SETH GILBERT, National University of Singapore, Singapore

ILYA SERGEY, National University of Singapore, Singapore

Design of an efficient thread-safe concurrent data structure is a balancing act between its implementation

complexity and performance. Lock-based concurrent data structures, which are relatively easy to derive

from their sequential counterparts and to prove thread-safe, suffer from poor throughput under even light

multi-threaded workload. At the same time, lock-free concurrent structures allow for high throughput, but are

notoriously difficult to get right and require careful reasoning to formally establish their correctness.

In this work, we explore a solution to this conundrum based on a relatively old idea of batch parallelism—an

approach for designing high-throughput concurrent data structures via a simple insight: efficiently processing

a batch of a priori known operations in parallel is easier than optimising performance for a stream of arbitrary

asynchronous requests. Alas, batch-parallel structures have not seen wide practical adoption due to (8) the

inconvenience of having to structure multi-threaded programs to explicitly group operations and (88) the lack

of a systematic methodology to implement batch-parallel structures as simply as lock-based ones.

We present OBatcher—a Multicore OCaml library that streamlines the design, implementation, and usage

of batch-parallel structures. It solves the first challenge (how to use) by suggesting a new lightweight implicit

batching design that is built on top of generic asynchronous programming mechanisms. The second challenge

(how to implement) is addressed by identifying a family of strategies for converting common sequential

structures into efficient batch-parallel ones, and by providing functors that embody those strategies. We

showcase OBatcher with a diverse set of benchmarks. Our evaluation of all the implementations on large

asynchronous workloads shows that (a) they consistently outperform the corresponding coarse-grained

lock-based implementations and that (b) their throughput scales reasonably with the number of processors.

CCS Concepts: • Computing methodologies→ Concurrent algorithms.

Additional Key Words and Phrases: shared-memory concurrency, batch parallelism, Multicore OCaml

ACM Reference Format:

Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey. 2024. Concurrent Data Structures

Made Easy. Proc. ACM Program. Lang. 8, OOPSLA2, Article 335 (October 2024), 29 pages. https://doi.org/10.

1145/3689775

1 Introduction

Mutable concurrent data structures are a key component of multi-threaded programs that run
on common shared-memory machines. Efficient concurrent data structures, which allow for high
degree of parallelism, are difficult to design and even more difficult to prove correct.

Authors’ Contact Information: Callista Le, Yale-NUS College, Singapore, phongnguyen.le@u.yale-nus.edu.sg; Kiran

Gopinathan, National University of Singapore, Singapore, mail@kirancodes.me; Koon Wen Lee, Ahrefs, Singapore,

koonwen@gmail.com; Seth Gilbert, National University of Singapore, Singapore, seth.gilbert@comp.nus.edu.sg; Ilya Sergey,

National University of Singapore, Singapore, ilya@nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART335

https://doi.org/10.1145/3689775

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0009-6689-9542
HTTPS://ORCID.ORG/0000-0002-1877-9871
HTTPS://ORCID.ORG/0009-0008-0971-7530
HTTPS://ORCID.ORG/0000-0003-3298-7412
HTTPS://ORCID.ORG/0000-0003-4250-5392
https://doi.org/10.1145/3689775
https://doi.org/10.1145/3689775
https://orcid.org/0009-0009-6689-9542
https://orcid.org/0000-0002-1877-9871
https://orcid.org/0000-0002-1877-9871
https://orcid.org/0009-0008-0971-7530
https://orcid.org/0000-0003-3298-7412
https://orcid.org/0000-0003-4250-5392
https://doi.org/10.1145/3689775

335:2 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

Given a particular sequential data structure, converting it into a thread-safe concurrent counter-
part is usually done by following one of the two approaches. In the first approach, all operations
of the data structure are made synchronised, i.e., protected by a single lock that must be acquired
by a thread before invoking any of them and released afterwards. The main advantage of this ap-
proach, known as coarse-grained concurrency, is that it is easy to implement, making the migration
of sequential code to concurrent almost mechanical. The main downside is that it removes any
opportunity for parallelism within the data structure itself, effectively making all operations with it
mutually-exclusive, and, therefore, introducing sequential bottlenecks.
The second approach, dubbed fine-grained concurrency, requires one to carefully consider

possible interactions between multiple concurrent operations of a data structure that can overlap in
time, while being executed by different threads, introducing synchronisation sparingly to ensure the
correctness of the updates and query results. The reduced amount of synchronisation allowsmultiple
threads to execute the data structure’s operations in parallel, improving its throughput at the cost of
significantly increased conceptual complexity: fine-grained concurrent data structures are known
to be extremely difficult to design and implement correctly, requiring non-trivial expertise (Herlihy
and Shavit 2008), and their formal verification is still an active research field to date (Feldman et al.
2020; Meyer et al. 2022; Mulder et al. 2022; Sergey et al. 2015).

The technique of flat combining by Hendler et al. (2010) was an initial attempt to bridge the gap
between coarse and fine-grained concurrency. It presented a lock-sharing discipline for coarse-
grained data structures that amortised the cost of repeatedly locking and unlocking the structure
by instead promoting an arbitrary client to temporarily serve as a dedicated worker that would
lock the data structure once and sequentially handle several client requests in a batch. While
this strategy was effective at reducing lock contentention and thus the overheads of locking, flat
combining was not concerned with exploiting parallelism in the data structure itself, leaving the
entire construction still substantially worse than a dedicated fine-grained implementation.
Batch-parallel data structures have been proposed as an alternative design pattern that aims

to offer a trade-off between parallel performance and the implementation complexity. Batch-
parallel data structures differ from traditional concurrent data structures in that they process a
batch of operations collectively in parallel, instead of handling arbitrary asynchronously incoming
requests one by one. Within the batch, such structures exploit parallelism by dynamically spawning
asynchronous computations (Acar et al. 2020; Brodal et al. 1998; Dhulipala et al. 2020; Driscoll et al.
1988; Paige and Kruskal 1985). This design comes with multiple advantages:

(1) parallel processing of a batch can be optimised based on the properties of its operations;
(2) the structure can control the order in which the operations in a batch are processed;
(3) batch-parallel data structures can be systematically derived from their sequential versions and

incrementally retrofitted with more parallelism.

The main reason why batch-parallel data structures have not been taken up by practitioners is
because structuring programs to pass an explicit batch of operations is inconvenient and unfeasible
in common asynchronous contexts. Implicit batching by Agrawal et al. (2014) is a technique meant
to circumvent this problem by means of providing a custom scheduler to transparently batch
individual requests made by client threads before they are sent to a batch-parallel data structure.
The only existing prototype implementation of implicit batching has been done by its authors
in Cilk-5 (Frigo et al. 1998) by explicitly modifying its runtime scheduler’s internals—hardly a
lightweight solution that could be easily reproduced in most modern programming languages.
Furthermore, Agrawal et al.’s implementation of implicit batching does not allow to havemore than

one batch-parallel data structure per application, which renders it impractical for real-world tasks.
Given the state of the art, we phrase the motivation for this work as the following question:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:3

Can we implement efficient, easy-to-understand, and easy-to-use

concurrent data structures via batch parallelism?

In the rest of this paper, we answer this question affirmatively.

Key ideas. We observe that the technique of implicit batching can be implemented in a lightweight
way as a library by re-purposing techniques from flat combining in conjunction with common
concurrent programming primitives, namely async/await, which are available in many modern
mainstream programming languages, including Python, Rust, Kotlin, Swift, and, since recently,
OCaml. In particular, in OCaml 5 (a.k.a. Multicore OCaml), high-level libraries such as Eio and
Domainslib implement the primitives for asynchronous programming using the mechanism of
effect handlers (Sivaramakrishnan et al. 2021). It turns out that the support for asynchronous
programming, as provided by Domainslib, is sufficient to address the two shortcomings of Agrawal
et al.’s proposal and allows one to (1) implement implicit batch parallelism without modifying the
runtime scheduler, and (2) accommodate multiple batch-parallel concurrent data structures within
a single program, fairly distributing available computational resources between their operations.

Having attempted to implement batch-parallel versions of common sequential search structures,
such as AVL and van Emde Boas trees, we have noticed that many of them fall into one of the two
categories when it comes to orchestrating their internal parallelism. In particular, operations of
tree-like search structures, whose sub-structures (i.e., subtrees) are themselves valid instances of
that data structure, admit a principled parallelisation strategy based on the split-join idea by Blelloch
et al. (2016) and the concept of bulk updates (Akhremtsev and Sanders 2016; Sanders et al. 2019).
In contrast, for search structures that rely on prefixes or hashes to store keys and do not admit a
natural “splitting”, parallel execution of operations can be done by exploiting the “locality” of their
effect—a novel idea that we call expose-repair. We capture these observations, as well as a generic
structure for batch-parallelism, in an extensible higher-order OCaml library that features functors
for the batch parallelism strategies described above and makes it straightforward to implement
batch-parallel versions for many common sequential data structures.

Contributions. To summarise, in this work we make the following contributions.

• Our main practical contribution is OBatcher: a Multicore OCaml library that facilitates imple-
mentation of batch-parallel structures, while making their usage transparent to the clients (Sec. 3).
OBatcher is lightweight: it does not require any significant changes in the client code to use it,
and implementations in it can be used as drop-in replacements for their coarse-grained analogues.
As a framework, OBatcher allows one to develop new batch-parallel structures gradually by
elaborating the implementation of a function that processes a batch of operations—with the
default implementation simply doing so sequentially, with no parallelism whatsoever.

• Our main conceptual contribution is the observation that many search structures, whose con-
current versions are traditionally considered challenging to implement, fall into one of the two
categories, so-called “split-join” or “expose-repair”, that allow for simple and efficient batch
parallelism. We substantiate this observation by providing a family of OCaml functors built
on top of OBatcher that abstract away the details of those batching strategies, streamlining
implementation of concurrent versions of the respective sequential data structures (Sec. 4).

• We showcase OBatcher by implementing in it a wide range of concurrent search structures,
including AVL, Red-Black, and van Emde Boas trees, treaps, x-fast and y-fast tries, B-trees, skip
lists, and a concurrent version of a third-party Datalog solver. Our implementations outperform
their coarse-grained counterparts in nearly all scenarios under diverse workloads (Sec. 5).

Though we use OCaml as the primary language for our implementation and presentation due to
its convenient mechanisms for composition via functors and for concurrency via Domainslib’s

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:4 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

1 module Counter = struct

2 type t = int ref

3 let init () = ref 0

4 let incr c =

5 c := !c + 1

6 let get c = !c

7

8 end

(a) A sequential counter

1 module CoarseCounter = struct

2 type t = int ref * Mutex.t

3 let init () = ref 0, Mutex.make ()

4 let incr (c, l) = Mutex.with_lock l

5 (fun () -> c := !c + 1)

6 let get (c, l) = Mutex.with_lock l

7 (fun () -> !c)

8 end

(b) A coarse-grained counter

Fig. 1. A sequential and a coarse-grained lock-based counter.

primitives, the core ideas of this work generalise beyond a single language and can be easily repli-
cated in any modern language that supports async/await-style concurrency with multi-producer,
multi-consumer channels and task pools, as well as means for code reuse via mechanisms such as
type classes or traits. We substantiate this claim with a Rust implementation of the core framework.

2 Overview

We start by building an intuition for OBatcher with a help of a simple concurrent application in
OCaml that keeps track of the number of visiting users in a multi-core web-server.

To begin, consider a request handler that outputs the total number of seen visitors of the server:

let c = Counter.init ()

let handle_request = fun _ ->

Counter.incr c;

printf "you are the %d'th visitor!" (Counter.get c)

In this program, each time a request is received, the handler calls out to a Counter module, first
incrementing the count c of seen visitors, and then retrieving the current value to print out a
welcome message. While this handler could easily be ported from a vanilla OCaml codebase to a
multi-core one, the same cannot be said for the underlying Counter module that it relies upon.

2.1 A Straw-Man Solution: Coarse-Grained Locking

Classically, OCaml programs have had the benefit of assuming a single-threaded execution, so a
vanilla implementation of Counter could simply be a wrapper around a reference (cf. Fig. 1a).

In the multi-core setting, these operations would not be atomic and introduce a data race in
the presence of concurrent calls to incr and get of the same counter instance. To avoid this, the
operations of Counter must be written such that they remain correct even in the presence of
concurrent executions, for example, by adopting so-called coarse-grained locking (Fig. 1b). This
would make all manipulations with the counter mutually-exclusive, so any concurrent calls to them
from different threads would take place sequentially, removing any opportunity for parallelism.

Using coarse-grained locking serves as a general mechanism for migrating existing OCaml code
to multi-core, but it leaves an unsatisfying conclusion: we must explicitly rule out any concurrent
operations on the underlying data structure. Conversely, constructing an efficient concurrent thread-
safe implementation requires careful analysis of how these operations interact, and likely requires
entirely redesigning the original structure to introduce fine-grained (i.e., internal) synchronisation.
Of course, for this pedagogical example, it would be simple to rewrite it to use an atomic variable,
but this can not be said of most data structures that might need be ported to a concurrent setting.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:5

Is it possible to find a middle ground between these two extremes, and allow developers to utilise
parallelism without having to fully give up on their sequential implementations? With OBatcher,
we answer this question in the affirmative, using the idea of operation batching to bridge the gap.

2.2 A Batched Interface for Counter

How can we exploit parallelism in the implementation of Counter? Unfortunately our current
interface where operations are processed individually does not leave much room for optimisation,
so let us now consider a different architecture, inspired by Hendler et al.’s flat combiner.

Suppose our interface to Counter instead took in batches of operations to be executed in parallel:

type op = Get of int -> unit | Incr of unit -> unit

val run_batch: t -> op array -> unit

Here, each reified operation op includes a callback to allow the return value to be communicated to
the caller. To avoid excessive type parameterisations, all callbacks in op have a return type unit,
with the intuition that they are effectful functions—as is the case, e.g., with our counting server.

The signatures above describe a new batched interface for the data structure, which now admits
a parallel implementation as presented in Fig. 2. This new implementation uses the helper function
parallel_reduce to perform a map-reduce style parallel computation. Internally, parallel_reduce
partitions the operation array into chunks, which are then each mapped to integer deltas in parallel
and then summed together to produce the total delta to be applied to the counter. As each submitted
operation is processed, the mapping function also invokes callback kont with an appropriate return
value, informing the client of the corresponding operation’s completion.

let run_batch counter batch =

let vl : int = !counter in

let delta = parallel_reduce

(function

| Get kont -> kont vl; 0

| Incr kont -> kont (); 1

) (+) batch in

counter := !counter + delta

Fig. 2. Batch executor

The careful reader may be wondering about the correctness
of this implementation of run_batch. In particular, observe that
operations may sometimes produce seemingly stale values as
their results, such as the value vl passed to Get’s callback.
Fortunately, this behaviour is correct, as it is justified from
the perspective of linearisability (Herlihy and Wing 1990)—a
commonly adopted correctness criterion for concurrent data
structures. In short, such “stale” effects of the Get operations
from a batch in the presence of concurrent interference cor-
respond to a collection of concurrent calls to the get method,
which happen to take effect right before any increment operations taking place at the same time.1

Overall, this new implementation provides increased throughput as compared to the coarse-
grained wrapper, but comes at the cost of placing more restrictions on the caller, making it chal-
lenging to integrate into existing code. Firstly, in contrast to our previous direct-style interface
where requests are processed immediately, this new batched API expects a collection of requests
to be submitted all at once, using callbacks to return their results. Furthermore, from a practical
standpoint, the kont callbacks should not be continuations of the client’s code, as that would return
control from the batcher and the thread would be busy computing the client’s logic rather than
processing other operations in the batch. As it turns out, it is possible to elegantly solve these two
problems using the interface provided by Multicore OCaml and Domainslib.

2.3 Implicit Batching via Asynchronous Programming

Let us solve the two shortcomings of the explicitly-batched counter implementation described in
Sec. 2.2: (1) the need to explicitly provide a collection of operations and the continuation and (2) the
blocking invocation of the user’s continuation kont within the code run_batch in Fig. 2.

1Or, in the concurrent programming jargon, these calls get linearised before any concurrent increments.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:6 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

1 let incr t (* counter & channel *) : unit =

2 let promise: unit promise,

3 resolve: unit -> unit =

4 Task.promise () in

5 Chan.send t.chan (Incr resolve);

6 if (* no currently running batch *) then

7 let batch : op array =

8 Chan.collect_all t.chan in

9 run_batch t.data pool batch;

10 await promise

Fig. 3. Batched increment with a promise

The core design of OBatcher’s construction
is presented in Fig. 3. When a client calls an
operation on the batched data structure in a
direct style (e.g., incrementing the counter via
incr), OBatcher first uses Domainslib to allo-
cate a promise–a concurrent cell primitive that
can be used to store a result asynchronously–
using Task.promise (lines 2-4); this call returns
the promise itself and a function that can be called
to resolve its value at a later point. The code then
enqueues an Incr object on a channel associated
to this instance, t.chan, passing in the resolution function as an argument. OBatcher then checks
whether a batch is currently running, and if not promotes the current client to immediately execute
the batch of accummulated operations for the data structure (lines 6-9). Finally, OBatcher com-
pletes the direct-style interface using the control inversion provided by Domainslib mechanisms to
suspend the current client task, via the await operation (line 10). Intuitively, by awaiting on this
newly allocated promise, the continuation of the incr operation caller is effectively suspended until
the resolve function passed to Incr is called. This indirection through the promise object means
that implementation of Domainslib task scheduling will not invoke the continuation directly where
it is called (as is done, e.g., in Fig. 2) but will instead reschedule its resumption as a separate task in
a shared thread pool, thefore, avoiding the blocking issue with the run_batch implementation.

2.4 Pu�ing It All Together

Let us now return back to our original example, and see how we can instantiate OBatcher to use
an explicitly-batched Counter with our web server’s request handler.

OBatcher provides the module signature shown in Fig. 4a to describe explicitly-batched struc-
tures. This signature is a generalisation of the explicitly-batched interface to Counter seen previously.
It uses the type 'a op to represent operations returning results of type 'a, with wr_op being used to
tie each operation with a callback to be called on completion. Requests to the data structure are
then sent through run_batch, which takes in batches of operations as before and executes them.
A notable change to the original interface is the additional pool parameter to run_batch, which is
now provided so that the implementation can also schedule tasks to be run on the thread pool.

module type Batched = sig

type t

type 'a op

type wr_op =

Mk : ('a op * ('a -> unit)) -> wr_op

val init: unit -> t

val run_batch:

t -> pool -> wr_op array -> unit

end

(a) An explicitly-batched interface

module BatchedCounter : Batched = struct

type t = int ref

type 'a op = Get: int op

| Incr: unit op

type wr_op =

Mk : ('a op * ('a -> unit)) -> wr_op

let init () = ref 0

let run_batch counter pool batch =

(* use parallel sum *)

end

(b) An example instantiation

Fig. 4. OBatcher’s interface for explicitly-batched data structures and an instantiation

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:7

module Make : functor (S : Batched) -> sig

type t

type 'a op = 'a S.op

val init : pool -> t

val apply : t -> 'a op -> 'a

end

Fig. 5. A functor for direct-style structure

Given a module S implementing the explicitly-
batched signature Batched, OBatcher provides a
functor Make that can construct a direct-style API to
the data structure (Fig. 5). Clients of the data struc-
ture can then use the apply operation to send oper-
ations to it, and the direct-style interface means
that client code can be written as if the results
are returned immediately. Internally, when apply is
called, OBatcher suspends the client code via await, and uses channels to implicitly batch requests
to pass to the run_batch function, as hinted in Sec. 2.3 and will be detailed in Sec. 3.1.2.

module Counter = OBatcher.Make(BatchedCounter)

let pool = (* new thread pool *)

let c = Counter.init pool

let handle_request = fun _ ->

Counter.apply c Incr;

printf "you are the %d'th visitor!"

(Counter.apply c Get)

Fig. 6. Using a direct-style batched counter

Fig. 4b presents the straightforward instantia-
tion of OBatcher’s signature for our explicitly-
batched implementation of Counter. Applying
OBatcher’s Make functor to this module then
returns a direct-style API, which we can inte-
grate back into our original request handler with
minimal changes (Fig. 6). This new implementa-
tion, while providing the same API as the initial
version, is able to scale more gracefully with the
number of concurrent requests, making it a more
apropos choice for a web-server.

In this way, OBatcher strikes a balance between a heavy-handed coarse-grained locking around
existing sequential code and fully concurrent thread-safe re-implementations. For more com-
plex data structures, users can use OBatcher to gradually improve the performance of code by
incrementally exploiting more and more high-level properties of the functions it exposes.

let handle_request = fun req ->

if not (Set.apply seen_users

(Insert (ip_addr req))) then

Counter.apply c Incr;

printf "you are the %d'th visitor!"

(Counter.apply c Get)

Fig. 7. Counting unique visitors

For example, suppose we wanted to extend our end-
point to only record unique visitors using a set as shown
in Fig. 7. An explicitly-batched implementation of a con-
current set could initially be written as a wrapper over a
vanilla Set, using the fact that membership queries are
pure to first handle all such queries in a batch in parallel,
and then sequentially process all remaining requests.
From here, further improvements could be made by a
more careful analysis of the data structure, and implementing tailored batch-parallel operations.

3 Implementing OBatcher

In this section, we describe the technical details of OBatcher’s implementation in Multicore OCaml
using asynchronous programming primitives. Then, observing that the design of the embedding is
only dependent on async/await functions, we demonstrate how the framework can be ported to
other languages by walking through and comparing to a Rust implementation as an example.

3.1 OBatcher in Multicore OCaml

The core of the OBatcher framework is the Make functor from Fig. 5, which is provided to the
user to create their own instances of concurrent data structures with a familiar direct-style API,
from explicitly-batched implementations that follow the Batched signature—as we saw with the
Counter example in Sec. 2.4. Internally, this functor, when instantiated, produces the following three
components for each explicitly batch-parallel data structure: (1) an extended type definition with a
container for assembling incoming asynchronous operations into batches, (2) a direct-style function

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:8 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

apply that acts as the main interface for clients, and (3) a try_launch function that encodes the logic
of how batches are collected and forwarded to the underlying implementation via asynchronous
programming. Below, we zoom in on the implementations of each one of the components (1)–(3).

type t = {

data: (* underlying data type *)

container: Container.t;

is_running: bool Atomic.t

pool: Task.pool

last_time: float }

3.1.1 Extended Data Type. The Make functor from Fig. 5 ex-
tends the input data structure’s representation data with
additional components: a container to collect the incoming
requests for operations, an atomic Boolean value is_running

to indicate whether a batch is being processed, a reference
to the available thread pool to submit the tasks for parallel
execution, and the time of the last batch execution. This construction, where each instance of
the data structure is given a separate container to batch requests, is fundamentally what allows
OBatcher to have multiple batched data structures in the same system, adressing one of the main
shortcomings of the original design of implicit batching by Agrawal et al. (2014), discussed in Sec. 1.
Any thread-safe channel with queue and dequeue functionality can be used as a container for the
batched operations, andDomainslib does provide such a channel implementation. However, we note
that we do not need the elements inside to be ordered, nor do we ever need to dequeue anything less
than all elements. Hence, we implement a simple variation of a thread-safe lock-free stack (Treiber
1986) to use as container that strips away all but two operations: push, which appends atomically
to a list, and pop_all, which can be implemented with a simple atomic exchange operation.

let apply s op =

let pr, set = Task.promise () in

let req = Mk (op, set) in

Container.send s.container req;

try_launch s;

Task.await s.pool pr

3.1.2 Direct-Style Interface. The second component of the
functor’s construction is the function apply, which is ex-
posed as the main entry point for concurrent client inter-
actions with the data structure. This function takes as its
arguments an instance s (of the extended type t) of the
data structure and the operation’s metadata op. Internally,
the apply function is implemented following the intuition presented in Sec. 2.3 adapted for the
conventions of Domainslib. The function first allocates an empty promise to capture the result
of the operation and acquires its resolution function; it then adds the operation metadata and the
resolution to the container. Next, the function calls try_launch, potentially running the batch itself,
after which the function finally awaits on the initial promise. We elaborate on try_launch below.

let rec try_launch s =

if has_no_requests t.container then () else

let time = current_sys_time () in

if not_enough_requests s.container &&

time -. s.last_run < wait_threshold

then Task.async s.pool (fun () -> try_launch s)

else if Atomic.cas t.running false true

then begin

let batch =

Container.get_all s.container in

s.last_run <- time;

run_batch s.data s.pool batch;

Atomic.set s.running false;

Task.async s.pool (fun () -> try_launch s)

end

Fig. 8. The try_launch function

3.1.3 Launch Function. The final component
of the functor is a helper function to capture
the logic of client tasks being temporarily pro-
moted to workers and handling batches of
requests. We described a simplified represen-
tation of this logic earlier in Sec. 2.3, and we
now present a more detailed, thread-safe im-
plementation that ensures a minimum batch
size for better performance. Client tasks can
be promoted to workers whenever they ob-
serve that there are enough pending requests
and that no other worker is currently running.
To avoid a situation where a small number
of pending requests are never run, we also
set a maximum duration that a batched data
structure can remain idle after the last batch run. Should the minimum amount of pending requests

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:9

not be met and not enough time has passed since the last run, we do not simply exit or spin, but
instead we schedule another task to try launching the batch again later. This ensures that we will
not be deadlocked by a small number of operations not being serviced and that the current thread
will not waste spin cycles waiting either. Note that this design decision is optimised primarily
for a highly-concurrent worflkow where batches will accumulate quickly i.e. a web server; in a
sequential setting, this particular encoding enforces that each operation will take at least as long as
the timeout, and a user might instead consider an implementation such as one to be presented in
the next subsection without minimum batch sizes. We also schedule another try_launch task at the
end of each batch run, to avoid another deadlock situation where other clients submit requests
after the existing worker has started running a batch.

3.2 Beyond OCaml: OBatcher in Rust

Though the narrative so far has only considered an OCaml implementation of OBatcher, the
reader may have noticed that the core of this embedding does not require any language-specific
features and only depends on a select few asynchronous programming primitives. Indeed, this
captures one of the strengths of the framework: it is lightweight and can easily be generalised
to other languages. In the rest of this section, we substantiate this claim by presenting a Rust
implementation of the OBatcher framework and discuss any significant changes that were needed.

3.2.1 Explicitly Batched Interface. Recall that the main client interface to OBatcher in the OCaml
implementation is its signature to describe explicitly-batched data-structures. While Rust does not
support functors, we can recreate the essence of this design using its trait mechanism.

trait BOp { type Res; }

struct WrOp<Op : BOp>(Op,

Box<dyn FnOnce(Op::Res) -> ()>);

pub trait Batched {

type Op : BOp;

fn init() -> Self;

async fn run_batch(&mut self,

ops: Vec<WrOp<Self::Op>>)

-> ();

}

Fig. 9. Explicitly-batched interface

Fig. 9 presents the embedding of OBatcher’s explicitly-
batched interface into Rust. The core of this encoding is cap-
tured in the Batched trait, which is almost verbatim ported
from the OCaml implementation. In order to implement
this trait for a given data-structure, the user is required to
supply three components: (1) a type, Op, to describe the op-
erations supported by the data structure, (2) a function init

to create empty instances of the structure and finally (3) an
asynchronous function run_batch which executes a batch of
operations on the structure and may exploit parallelism to
optimise performance. Note that as Rust’s type system has
no support for GADTs, we adopt a more convoluted repre-
sentation of operations and their return values in this new
encoding. In particular, operations are constrained through
a trait BOp with an associated type Res that captures the return type of all operations. This is a
less precise encoding than before, as now the Res type must capture the all possible return types
of all operations, so clients must perform additional case analysis to retrieve a usable result. For
example, to encode operations for the Counter from Sec. 2, we can define an enumeration type for
operations, enum CounterOp { Get, Incr }, and instantiate the BOp trait with optional integer as
the result type: impl BOp for CounterOp { type Res = Option<i32> }.

3.2.2 Extended Data Type. The next main component of the OBatcher implementation is the
extended data type definition that stores the additional metadata required to implement batching.

The snippet on the right presents how this extended data-type definition can be encoded in Rust.
The translation here from OCaml again is fairly mechanical. We define a new struct BatcherInner,
parameterised by an explicitly batched datatype B. This struct maintains 4 pieces of state: (1) an

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:10 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

instance of the data structure, (2) a channel to receive operations on, (3) a channel to send operations
on, and (4) a boolean to track whether any batch is currently running.

struct BatcherInner<B : Batched> {

data: Mutex,

recv: Mutex<Receiver<WrOp<B::Op>>>,

send: Sender<WrOp<B::Op>>,

is_running: AtomicBool

}

pub struct Batcher<B: Batched>(

Arc<BatcherInner>);

Finally, we wrap this inner data structure behind an
atomic reference-counted cell Arc to produce the final
batched structure Batcher. The most significant differ-
ence from the OCaml encoding arises from Rust’s more
precise tracking of references and mutation, which re-
quires us to be more explicit about when references can
copied (via Arc) and what data is protected by locks (via
Mutex). Note that for simplicity we use separate locks for
the structure and channel; one could wrap both behind
one lock to improve performance.

async fn apply(&self,

op : B::Op) -> B::Op::Res {

let (promise, set) = Promise::new();

let wr_op = WrOp(op, Box::new(set));

self.0.send.send(wr_op).unwrap();

let s = self.clone();

tokio::spawn(async move {

s.try_launch().await });

promise.await }

3.2.3 Direct-Style Interface. Having constructed
this extended data type, we can now again recre-
ate a direct-style interface to our explicitly-batched
data structures by exploiting the async/await prim-
itives provided by the language to perform control
inversion and reuse the same generic pattern as used
in our OCaml implementation. The code to do this
is presented in the snippet on the right.
This implementation is largely a verbatim translation of the OCaml code (cf. Sec. 3.1.2). In this

case, the main changes that had to be made were to account for slight discrepancies between
the respective languages in their treatment of asynchronous tasks and memory management. In
particular, asynchronous tasks in Rust are lazy, and will only be evaluated when forced. As such,
in this implementation, when a client attempts to run a batch of requests, it spawns a task (using
tokio::spawn) which then eagerly runs try_launch (to be discussed in the next section) by awaiting
on it. In conjunction to this, Rust’s lack of a garbage collector now means that the code must be
explicit about when and where references are shared, and in this case, an explicit clone of the
reference to the batched data-structure is constructed and moved into the spawned task to use.

fn try_launch(&self) -> BoxFuture<'static, ()> {

let s = self.clone();

async {

if let Ok(_) = s.0.is_running

.compare_exchange(false, true) {

let mut recv = s.0.recv.lock().await;

let mut ops = vec![];

if recv.recv_many(&mut ops).await > 0 {

let mut data = s.0.data.lock().await;

data.run_batch(ops).await;

}

drop(recv);

s.0.is_running.store(false);

tokio::spawn(async move {

s.try_launch().await });

}

}.boxed() }

Fig. 10. The try_launch function

3.2.4 Launch Function. The final component
required to complete this re-implementation
of OBatcher in Rust is an encoding of the
try_launch operation which will implement
the logic of conditionally promoting clients to
workers and collecting and handling batches
of requests. Fig. 10 presents the corresponding
Rust implementation of the try_launch func-
tion. The core logic of this function is once
again the same as in the OCaml; for simplic-
ity, this implementation omits any minimum
requirements on batch sizes and thus the asso-
ciated timeout mechanism they would require
for liveness, but incorporating these would be
fairly trivial. The main differences in the im-
plementation arise due to subtleties of Rust’s
treatment of asynchronous tasks. In particular,
Rust internally compiles asynchronous code into finite state machines to optimise their execution.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:11

As such, the compiler will reject an attempt to directly call try_launch recursively as this induces
infinite states in the state machine, and so we must introduce a level of indirection and explicitly
allocate the future on the heap by boxing it.

Putting all together, as we have seen from this reimplementation in Rust, the core of OBatcher’s
design is largely agnostic to the choice of language, and the implementation can be fairly easily
ported to any language with suitable asynchronous programming primitives. Generally speaking,
we can expect that small changes may be needed to account for slight discrepancies in the specific
semantics of asynchronous operations between languages, but otherwise, OBatcher provides a
general mechanism for introducing implicit batching into new languages in a lightweight fashion.

4 Engineering Batch-Parallel Implementations

As demonstrated in Sec. 2, OBatcher reduces the challenge of implementing a concurrent data
structure to implementing an explicitly batch-parallel one, which takes a collection of operations
and executes them in a way that maximises parallelism. We argue that this design simplifies the
task of engineering thread-safe concurrency, relieving the developer from the need to reason about
concurrent interference, atomicity, and invariants, as long as they can argue that the subsets of
operations from the batch provided to run_batch are safe to run in parallel—which only requires
understanding sequential behaviour of those operations. The actual concurrent implementation
is obtained by instantiating the explicitly-batched interface Batched from Fig. 4a with the type of
the data structure t and its operations op, constructor init, and, most importantly, the function
run_batch for the parallel batch execution; the rest is handled by the Make functor from Fig. 5.

One can easily obtain a trivially correct batch-parallel implementation from the sequential one
by making run_batch execute all given operations sequentially, without any parallelism whatsoever.
Such an ad-hoc solution (i.e., the one that implements run_batch explicitly) can be later refined into a
“more parallel” one, e.g., by separating all pure operations, to run them in parallel, from the effectful
ones, executed sequentially. This highlights one of the main advantages of our methodology:
batch-parallel versions can be systemically derived from the original sequential data structure.

One of this work’s key observations is that, for certain classes of sequential search structures, it
is possible to identify implementation strategies that further streamline the development of their
efficient batch-parallel counterparts. This section aims to showcase two such strategies, embodied
by OCaml functors: so-called split-join (Sec. 4.1) and expose-repair (Sec. 4.2). In Sec. 4.3 we present
several ad-hoc batch-parallel implementations that do not immediately fall under any of the above
two categories. We note that the case studies we describe here are limited to search data structures
that implement maps and ordered sets (with the exception of Sec. 4.3.2). We do not claim that our
implementations are optimal in the theoretical sense, and leave such proofs for the future work.

4.1 Split-Join Batching Strategy

The first batch parallelism strategy we explore is based on the idea of splitting/joining by Blelloch
et al. (2016). It is effective for various kinds of search structures represented as balanced binary

trees, such as AVL trees, red-black trees, and treaps, that allow one to divide them into multiple
non-connected trees that are themselves valid instances of that tree type. We can then perform
insertion/deletion operations on each of these sub-divided trees independently and in parallel,
before joining them together again to get the final tree after all operations have been performed. This
idea has been previously explored in the works by Akhremtsev and Sanders (2016) and by Sanders
et al. (2019), termed “bulk updates” or “bulk operations”, albeit not with the goal to derive efficient
concurrent data structures, but as an optimisation for performing a large number of simultaneous
updates on trees. The novelty of this part of our work is, thus, in providing a convenient abstraction
to obtain efficient concurrent counterparts for arbitrary search structures that fit this profile.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:12 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

10

Inserting elements [10, 6, 11, 1, 18, 8]:Inserting elements separately:

[6, 1, 8] [11, 10, 18]

8 18

11

1

66

81

11

1810

Fig. 11. Le�: inserting elements into 2 empty separate trees. Right: inserting the same elements into a single

empty tree (right). Joining the 2 trees on the le� yields the single tree shown on the right, and spli�ing the

tree on the right at element 11 yields the trees on the le�.

The crux of the approach is in splitting a tree instance in a way that the combining the resulting
sub-components after the parallel updates can be done with better than $ (=) complexity. In the
case of binary search trees, a better complexity could be achieved if we had to join trees pair-wise
where the maximum key element in the first tree, if any, is strictly less than the minimum key
element in the second tree, so the range of keys of these trees do not overlap with each other.
This would allow us not to explore those trees in full when joining, as hinted by the example
in Fig. 11, where most of the subtree structure remains unchanged. To achieve that, we adopt the
idea from the work of Blelloch et al. (2016), who were themselves elaborating on the work of Adams
(1993) on implementing elegant yet efficient functional sets. They proved that split and join for
balanced binary trees, such as red-black trees, AVL trees, and treaps, can have a worst-case time
complexity of $ (log=). In this scheme, joining two balanced binary trees consists of connecting
them, comparing their balancing factor (i.e., height for AVL trees, black height for red-black trees,
and priority for treaps), and rebalancing them, if needed, by disconnecting root nodes from child
nodes and applying rotations. Splitting applies a similar rebalancing strategy. Both these functions
are called recursively only once per level, hence their logarithmic complexity.

4.1.1 A Functor for Split-Join Batching. To provide a convenient abstract interface for split/join
batch parallelism, we define two modules signatures, Sequential (Fig. 12a) and Prebatch (Fig. 12b),
that outline the required data types and functions to be provided by the user.

Sequential must contain the key type kt and the tree type 'a t, as well as an implementation of
the constructor init for creating a new data structure instance, search, insert, and delete. Note
that operations that update the data structure should be done in-place, hence the final return type of
‘unit‘. We also do not require 'a t to be the type of the “node”; it is often more convenient to make
it a wrapper over a root node of a different type that recursively contains child nodes of that node
type. The users are expected to implement Sequential by defining all basic sequential operations
that can be used to interface with the data structure. Should there be no need for batching, one can
simply invoke the functions here to use the data structure sequentially.

Prebatch is built on top of the Sequential module signature, and describes additional functions
that the split-join functor will need to construct the batch-parallel version of the data structure:

• The function compare exposes the comparison function for the key type. For example, if we were
using Int as the key type, we can simply define it like so: let compare = Int.compare.

• set_root swaps out the current root of the data structure. This is needed for updating the data
structure in-place after joining its sub-components.

• size_factor returns the number that over-approximates the size of the current data structure.
For instance, this can be the height of a tree. We will describe its use shortly.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:13

1 module type Sequential = sig

2 type kt

3 type 'a t

4 val init : unit -> 'a t

5 val search : kt -> 'a t -> 'a option

6 val insert : kt -> 'a -> 'a t -> unit

7 val delete : kt -> 'a t -> unit

8 end

(a) The Sequential module signature

1 module type Prebatch = sig

2 module S : Sequential

3 val compare : S.kt -> S.kt -> int

4 val set_root : 'a S.t -> 'a S.t -> unit

5 val size_factor : 'a S.t -> int

6 val split : 'a S.t -> S.kt -> 'a S.t * 'a S.t

7 val join : 'a S.t -> 'a S.t -> 'a S.t

8 end

(b) The Prebatch module signature

Fig. 12. Sequential and Prebatch module signatures the for split-join functor.

• split: given a tree and a pivot value k, returns two trees with non-overlapping key ranges where
the maximum key of the first tree is strictly less than k, and the minimum key of the second tree
is equal or greater than k.

• join: provided two trees with non-overlapping key ranges and in ascending order based on those
ranges, returns a single valid tree formed by joining the two input trees.

1 let run_batch t pool ops_array =

2 let searches = ref [] in

3 let inserts = ref [] in

4 (* omitting deletions *)

5 Array.iter (fun elt -> match elt with

6 | Mk (Insert (key, vl), kont) ->

7 (* safe to notify the client immediately *)

8 kont (); inserts := (key,vl) :: !inserts

9 | Mk (Search key, kont) ->

10 searches := (key, kont) :: !searches

11) ops_array;

12

13 par_search pool t (Array.of_list !searches);

14 par_insert pool t (Array.of_list !inserts)

Fig. 13. Split-join parallel batching

For each data structure that allows for ef-
ficient implementation of the split and join
operations, the user need only implement
these two modules and their functions. Once
done, OBatcher’s split-join functor can take
over and define an explicitly-batched module,
much like the onewe have seen in Sec. 2.4. Let
us examine its run_batch function defined in
Fig. 13. For any given batch of operations, we
start by separating different types of opera-
tions. We currently limit our implementation
to search and insert operations, but it should
be a fairly mechanical process to extend the
functor to accommodate other effectful op-
erations as well, following the handling of
either batched searches or inserts as a template. After separation, we execute all searches, then all
insertions. Even if we had interleaving search and insert requests in our initial batch, executing
the operations this way is still correct from the perspective of linearisability, as we have discussed
previously with the Counter example in Sec. 2.2. There is no particular pre-processing needed for
batch parallel searches as those do not modify the data structure, and we simply use Domainslib’s
higher-order parallel_for function to dispatch the search operations in parallel.
Parallel execution of inserts is a bit more subtle; it relies on the various Prebatch functions

defined earlier. We begin by checking whether (a) the present size of the data structure warrants
splitting by invoking size_factor and whether (b) the number of insert operations is sufficiently
high. We set some threshold for these two, with the intuition that smaller data structure sizes and
smaller numbers of operations are not worth the extra overhead of splitting, parallelising, and
rejoining, in which case we will simply perform the operations sequentially (we omit this part from
our presentation). Otherwise, we perform the parallel insert procedure as shown Fig. 14. We select
a number of random pivots based on the size of the batch and the sequential threshold (lines 2-7),
and use them to split the tree (line 8) and partition the insert batch into ordered sub-batches

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:14 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

1 let par_insert ~pool s inserts =

2 let n =

3 Array.length inserts / seq_threshold + 1 in

4 (* assume that inserts are randomly ordered *)

5 let pivots =

6 Array.init n (fun i -> fst inserts.(i)) in

7 sort pivots;

8 let s_arr = split_multiple s pivots in

9 let sub_ranges =

10 partition pivots inserts in

11 parallel_for pool

12 ~start:0

13 ~finish:(Array.length sub_ranges)

14 ~body:(fun i ->

15 let range = sub_ranges.(i)

16 for j = fst range to snd range do

17 let k, v = inserts.(j) in

18 S.insert s_arr.(i) k v

19 done);

20 set_root t (join_multiple s_arr)

Fig. 14. Batch-parallel insertion in the split-join functor.

(lines 9-10). We then use Domainslib’s parallel_for to perform each sub-batch of operations on its
respective subtree in parallel (lines 16-19). Finally, we rejoin the split trees together (line 20). Our
implementation takes advantage of some other opportunities for parallelisation, namely, sorting
the random pivots via a classic implementation of parallel merge sort, and partitioning the insertion
operations with a parallel partition procedure inspired by the one used in the QuickSort algorithm.

4.1.2 Case Study: Red-Black Tree. As a concrete example of the split-join strategy for batch
parallelism and its respective functor in action, let us take a look at the red-black (RB) tree (Bayer
1972), a classic self-balancing binary search tree data structure. In addition to searching and insertion
of elements, its typical implementations support efficient deletion, minimum, and maximum—all of
them enjoying logarithmic worst-case time complexity.

116

10

1881

Fig. 15. Example of a red-black tree

Sequential red-black tree overview. A red-black tree is
an approximately balanced binary search tree, meaning
that it is not perfectly balanced, but instead guarantees
that no root-to-leaf path is more than twice as long as
any other root-to-leaf path. This is achieved by assigning
each node a colour, which can be either red or black,
and ensuring that the following invariants are upheld:
(1) every leaf (not containing any key) is black, (2) if a
node is red, both its immediate children must be black,
and (3) each path from a given node to any leaf must have the same black height, i.e., the same
number of black nodes. Some presentations also add an extra condition: the root node must be
black. We will omit this rule for our implementation, as it is not essential for the desired time
complexity, and we must allow a red root for the split and join functions later on. Aside from this
omission, our implementation follows the red-black tree algorithms as described in the standard
textbook by Cormen et al. (2009). Fig. 15 shows the balanced binary tree that we’ve previously
seen in Fig. 11, but as a red-black tree, with some of its nodes are coloured in red, so that the tree
invariants stated above are respected.

Following the Sequential signature from Fig. 12a, whose effectful functions (e.g., insert) modify
the data structure in-place, we implement a wrapper type 'a t around the root node of the red-black
tree. Searching a red-black tree follows the same procedure as for an unbalanced binary search
tree. Inserting a node involves recursively traversing the tree like the search operation and adding
a new node at the leaf level, after which, the tree might be repaired by recolouring and rotating as
needed (we refer the reader to Chapter 13 of the textbook by Cormen et al. (2009) for the details).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:15

Batch-parallel red-black tree overview. The logic of a batch-parallel red-black tree follows the
general split-join strategy from Sec. 4.1.1, requiring one to implement the set_root, size_factor,
split, and join functions to obtain a fully functional batch-parallel version of the data structure.

The set_root function is straightforward: we simply replace the root node in the red-black tree
wrapper type. For the sake of other functions, we augment our sequential implementation with
an additional piece of information stored in each node: the black height, i.e., the number of black
nodes on the paths from that node to each leaf (Blelloch et al. 2016). This will serve as the basis
for the size_factor function: we can use the black height as an estimate of the size of the tree.
This addition also enables implementations of split and join operations. For these functions, we
faithfully recreate the algorithms as described in pseudocode by Blelloch et al., where rebalancing
and recolouring occur depending on the black height difference between the input trees. Storing
black heights avoids the additional$ (log=) cost of counting the number of black nodes every time
we need this information, hence keeping split and join to $ (log=) time complexity as well.

4.1.3 Other Split-Join Data Structures. As shown, balanced binary search trees are especially well-
suited for the split-join batch-parallel paradigm, subject to their own split and join functions. The
work by Blelloch et al. (2016) also provides blueprints of these functions for other types of search
structures: AVL trees (Adelson-Velsky and Landis 1962) and treaps (Seidel and Aragon 1996).

Like an RB tree, an AVL tree balances itself through rotations. It does not have any colour code,
and instead preserves the invariant that at any given node in the tree, its left and right sub-trees
have a height difference of at most one. A treap, meanwhile, is a probabilistically balanced tree
where each node is randomly assigned a priority number, and we rotate the tree after each update
to ensure that the priority number of each node is higher than the prioriy numbers of its child
nodes, essentially, recreating a max heap based on the random priority number.

We implemented their batch-parallel versions just like with the RB tree by defining their split
and join functions as described by Blelloch et al. (2016). To implement the size_factor function, we
simply use the tree height already stored in AVL tree nodes, and augment the treap nodes with stored
tree heights as well. Our accompanying code provides the respective working implementations.

4.2 Expose-Repair Batching Strategy

The split-join strategy discussed in Sec. 4.1 is beneficial for the search structures that admit sublinear-
time changes in their shape without breaking their invariants, such as rebalancing. For instance, we
rely on being able to move nodes around in binary search trees to split and rejoin them. Not every
search structure lends itself well to being batch-parallelised this way, meaning that they cannot be
split into sub-structures of the same shape, or that joining them would induce a prohibitively large
overhead undoing the performace improvement gained from parallelism.
This is the case for search structures, such as bitwise tries, that use string/binary prefixes or

hashes to store key values: in those structures the position of an element in the data structure is
its key. Therefore, “physically” splitting such a structure tree will inevitably require one to deal
with complex re-indexing logic. On the flipside, we can argue that such a search structure is even
better suited to a batch-parallel implementation since each update should only affect its predictable,
localised area that is the same regardless of what other keys populate the data structure.
Making such “position-based” search structures batch-parallel might not be as straightforward

as it seems. Advanced examples like the van Emde Boas tree (1975), the x-fast trie, and the y-fast
trie (Willard 1983), which we will showcase for this section, contain additional metadata, pointers,
or even entire secondary sub-structures to achieve the promised sub-logarithmic time complexity of
their operations in a sequential case. Those sub-structures must be accounted for, restored, and/or
updated both before and after running a batch.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:16 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

1 module type Sequential = sig

2 type kt

3 type t

4 val init : int -> t

5 val mem : t -> kt -> bool

6 val insert : t -> kt -> unit

7 val delete : t -> kt -> unit

8 val predecessor : t -> kt -> kt option

9 val successor : t -> kt -> kt option

10 end

(a) The Sequential module signature

1 module type Prebatch = sig

2 module S : Sequential

3 type dt

4 val compare : S.kt -> S.kt -> int

5 val expose :

6 S.t -> S.kt array -> S.kt array * dt

7 val repair : S.t -> dt -> unit

8 val insert_range :

9 S.t -> S.kt array -> dt -> int * int -> unit

10 end

(b) The Prebatch module signature (simplified)

Fig. 16. Sequential and Prebatch module signatures for the expose-repair functor.

In this section, we present a novel strategy for batch parallelism, dubbed expose-repair, which
is aimed to address such search structures. It centres around first “exposing”, or preparing the
structure before each batch of operations, so as to make sure parallel operations in each its localised
area do not affect each other. Then, we “repair” the result after processing the batch of operations,
to re-establish the metadata or sub-structures covering the entire data structure.

4.2.1 Expose-Repair Functor Overview. Similarly to the split-join functor from Sec. 4.1, for expose-
repair we define two modules signatures, Sequential and Prebatch that need to be instantiated by
the user. For simplicity, we phrase the Sequential interface as a set rather than as a key/value, i.e., it
only stores the keys of the type kt, following the presentation from the standard textbook (Cormen
et al. 2009, Chapter 20). The key/value map-like functionality can be easily restored by associating
the “satellite data” with the keys. As the result of this design, the Sequential signature shown in
Fig. 16a offers the mem function instead of search. The signature also features the predecessor and
successor functions, as one of the main selling points of the fast search structures, such as van
Emde Boas tree, the x-fast and the y-fast tries, which all offer the $ (log logD) time complexity for
these operations (where D is the largest integer key that can be stored in the structure). Just like in
the case of split-join strategy, the pure query operations like mem, predecessor, and successor can be
dispatched in parallel in a separate stage of the batch processing, without any special preparation.

The signature for the Prebatch module is best explained in parallel with the implementation of a
parallel executor for the effectful operations in the respective expose-repair functor provided by
OBatcher, which makes use of the Prebatch components. As a characteristic example, consider
the implementation of parallel insertion via expose-repair strategy shown in Fig. 17. It starts by
checking if the number of insert operations in the batch exceeds the sequential threshold, and if
it is below, performs the operations sequentially (we omit this part from the listing for brevity);
otherwise, its continues with the the batch processing. To do so, it first obtains n sorted random
“tentative pivots” from the batch of operations, and transforms them into pivots we can use to
partition our batch of operations (lines 2-7). Unlike the split-join functor, which takes random
elements from the batch of operations as pivots on which to split the trees (Sec. 4.1.1), in the
case of position-based structures we would want pivots that can separate the data structure into
logical parts consistent with their inner layout and the recursive workings of their respective
sequential operations. For instance, in the case of the van Emde Boas tree, those pivots would be
multiples of the square root of the size of its universe (i.e., the set of all its possible keys), so that
we can divide up a cluster of trees without dissecting any tree in the middle (more details are
given in Sec. 4.2.2). Next, the implementation prepares the data structure for batch processing

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:17

1 let par_insert ~pool t inserts =

2 (* omitted: checking if the batch size is larger than seq_threshold *)

3 let n = Array.length inserts / seq_threshold + 1 in

4 (* assume that inserts are randomly ordered *)

5 let pivot_seeds = Array.init n (fun i -> fst inserts.(i)) in

6 sort pivot_seeds;

7 let pivots, dt = expose t pivot_seeds in

8 let sub_batch_ranges = partition pivots inserts in

9 parallel_for pool ~start:0 ~finish:(Array.length sub_batch_ranges)

10 ~body:(fun i -> insert_range t inserts dt sub_batch_ranges.(i));

11 repair t dt

Fig. 17. Batch-parallel insertion in the expose-repair functor.

where needed and partitions the batch of operations using the obtained pivots (lines 7-8). The
preparation can take the form of (but is not limited to) pre-initialising parts of the data structure,
or temporarily removing some pointers between nodes belonging of different sections of the data
structure. This process might both rely on and/or inform the creation of the pivots. The partitioning
(line 8) only depends on the values of the pivots and the arguments of the insert operations, hence
is not structure-specific. Next, the sub-batches of operations resulting from the partitioning are
run in parallel on the same pre-processed data structure (lines 9-10). It is done in the assumption
that expose has indeed returned the pivots in a way that split the range of the insertions in a way
so that operations in different sub-batches would not interfere with each other. Finally, the initial
data structure t is repaired by, e.g., removing unused pre-initialised parts, updating metadata, and
restoring auxiliary pointers between its sub-parts (line 11).
The code in Fig. 17 relies on the following components of the Prebatch functor from Fig. 16b:

• An abstract type dt, which is specific for each particular search structure and is used to store
supplementary information for batching, if needed (cf. Sec. 4.2.2 for a concrete example).

• The function expose takes as its input the data structure itself and an array of “tentative pivots”.
Having those, it (a) prepares the data structure in-place for batch processing and (b) returns
an array of the pivot values used to partition our batch of operations. We combine these two
procedures, as they can be very much intertwined with one another.

• The function repair repairs the data structure after all updates have finished.
• Finally, insert_range performs a sequence of insertions into the exposed data structure sequen-
tially. It takes as input the data structure, a reference to the whole batch of insertions with
the range of the sub-batch (to avoid reallocating a new array for each sub-batch), and extra
information in the form of dt. Note that insert_range takes the whole data structure as input,
since inserting a specific range of values should keep the effects localised and therefore should
not affect any other instance of insert_range running in parallel.

Conceptually, the correctness of an expose-repair strategy is simpler than split-join for trees.
Broadly speaking, one can argue for the correctness of an implementation from the following
assumptions about the operations: 1) first, expose should preserve the elements in the structure
and should only logically split the structure into disjoint “chunks” via pivots, 2) second, for a given
range, the insert_range function should not affect “chunks” outside of it, and finally 3) repair
should not lose elements and restores any data structure invariants. We illustrate this in more detail
in our argument for the correctness of the van Emde Boas Tree in the next section. Supporting
parallel deletions using the expose-repair strategy would require implementation of a function
with a signature similar to insert_range, which we have omitted for the sake of brevity.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:18 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

4.2.2 Case Study: Van Emde Boas Tree. The van Emde Boas tree (vEB tree for short) represents
a priority queue and was conceived as a way to resolve bottlenecks in in query operations (e.g.,
membership, predecessor, successor) for ordered, random access sets (van Emde Boas 1975). When
implemented as binary trees, such as RB tree, these operations have $ (log=) time complexity.
The vEB tree instead allows for membership, predecessor, and successor queries to be done in
$ (log logD) time, where D is the universe size, or the number of all possible key values the vEB tree
might store. This logarithmic speedup over balanced binary trees is achieved at the cost of space
efficiency, with the vEB tree occupying $ (D) space regardless of how many elements its contains.

4

2

1

1

u

min

max

u min max0 1

cluster summary

2

⊥

⊥

u

min

max

2

0

0

u

min

max

Fig. 18. A vEB tree containing {0, 1}.

Sequential van Emde Boas tree overview. A vEB tree is struc-
tured recursively, with each node containing (1) the universe
size D at that node, (2) the minimum value of the tree at that
node, (3) the maximum value of the tree at that node, (4) an
array cluster of

√
D vEB tree nodes, each of which contains

a tree of universe size
√
D so that a vEB tree of an index 8

would contain keys in the range [8
√
D, (8 +1)

√
D−1], and (5) a

summary vEB tree of size
√
D storing the indices of vEB trees

in the cluster array that are non-empty, i.e., have at least one element.
Consider the example vEB tree in Fig. 18. It has the universe size of 4, so its possible key values

range from 0 to 3. In this case, it only contains the keys 0 and 1: 0 is stored in the minimum field of
the root node and is thus is not present in the vEB nodes below (the minimum field of a vEB node
is not just metadata, but always contains the key itself). The maximum field of the root vEB node
shows 1, but this is not the key value itself, but is just metadata. Looking down, the left child node,
corresponding to the index 0 of the root cluster, itself has no cluster, and both its minimum and the
maximum fields store 1. It is a base case vEB node, whose universe size is 2, and whose maximum
field can contain the key itself. The vEB node at the root cluster index 1 is empty, as shown with
both its minimum and maximum being ⊥. Finally, the root features an additional summary vEB
node, which just contains 0, meaning that only the vEB child node at the position 0 of the root
cluster is non-empty. Though it may seem odd in this example to “summarise” a cluster of size 2,
for larger clusters it allows one to find the first non-empty cluster in $ (log logD) time, enabling
fast predecessor and successor queries. We omit detailed descriptions of sequential vEB operations,
and refer the reader to Chapter 20 of Cormen et al. (2009) or to our accompanying implementation.

Batch-parallel van Emde Boas tree overview. The vEB tree lends itself naturally to batch processing.
We note that since there are

√
D trees available in the cluster at the root level, for any reasonable

choice of universe size, there will be a sufficient number of vEB trees even at the first level, that we
need not look further below for parallelising our batched operations on the vEB tree.

let expose t arr =

let size_cluster =

lower_sqrt t.uni_size in

let pivots =

Array.init

(Array.length arr)

(fun i ->

high t arr.(i) * size_cluster)

(dedup pivots, ())

Fig. 19. The vEB tree expose function

The code of the expose function for vEB tree is shown
in Fig. 19. We will not need any supplementary informa-
tion, so the type dt is just unit. We do however need to
identify how to create appropriate pivots from random
keys in our batch of insert/delete operations in order to
split the vEB tree into logical chunks. For this, we simply
transform each pivot key into the minimum possible key
for its target sub-vEB tree in the root-level cluster array,
which is done using a standard helper function high taken
from Cormen et al. (2009) (Chapter 20). This ensures that
keys in different sub-batches are never inserted in the
same vEB tree, nor in the same cluster sub-array. At the end, we deduplicate the final list of pivots, as

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:19

0

ε

01

1

010 100

10

101

<latexit sha1_base64="dIDJCFC9kg7eihmQj2BwKKODKQA=">AAACJ3icjVBNS8NAEN3Ur1q/oh69BIvgqSQi1ZMUvXisYD+giWWzmbRLN5uwuxFKyL/x4l/xIqiIHv0nbtsctPXgg4HHezPMzPMTRqWy7U+jtLS8srpWXq9sbG5t75i7e20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj64mfucehKQxv1XjBLwIDzgNKcFKS33zwk15AMIXmEDmJkPMVRxl+B/I87ss75tVu2ZPYS0SpyBVVKDZN1/cICZpBFwRhqXsOXaivAwLRQmDvOKmEhJMRngAPU05jkB62fTP3DrSSmCFsdDFlTVVf05kOJJyHPm6M8JqKOe9ifiX10tVeO5llCepAk5mi8KUWSq2JqFZARVAFBtrgomg+laLDLHOTOloKzoEZ/7lRdI+qTn1Wv3mtNq4LOIoowN0iI6Rg85QA12jJmohgh7QE3pFb8aj8Wy8Gx+z1pJRzOyjXzC+vgHyBafW</latexit>

(a) The x-fast trie

x-fast trie

…

<latexit sha1_base64="dIDJCFC9kg7eihmQj2BwKKODKQA=">AAACJ3icjVBNS8NAEN3Ur1q/oh69BIvgqSQi1ZMUvXisYD+giWWzmbRLN5uwuxFKyL/x4l/xIqiIHv0nbtsctPXgg4HHezPMzPMTRqWy7U+jtLS8srpWXq9sbG5t75i7e20Zp4JAi8QsFl0fS2CUQ0tRxaCbCMCRz6Djj64mfucehKQxv1XjBLwIDzgNKcFKS33zwk15AMIXmEDmJkPMVRxl+B/I87ss75tVu2ZPYS0SpyBVVKDZN1/cICZpBFwRhqXsOXaivAwLRQmDvOKmEhJMRngAPU05jkB62fTP3DrSSmCFsdDFlTVVf05kOJJyHPm6M8JqKOe9ifiX10tVeO5llCepAk5mi8KUWSq2JqFZARVAFBtrgomg+laLDLHOTOloKzoEZ/7lRdI+qTn1Wv3mtNq4LOIoowN0iI6Rg85QA12jJmohgh7QE3pFb8aj8Wy8Gx+z1pJRzOyjXzC+vgHyBafW</latexit>

| {z }

red-black trees

(b) The y-fast trie

Fig. 20. X-fast trie and Y-fast tries. For the x-fast trie in Fig. 20a, solid double arrows indicate pointers from

each leaf to the previous and the next leaf, while dashed single arrows indicate descendant pointers.

two different keys going to the same vEB tree will yield the same pivot. For each key k to be inserted
in the sub-batch of operations defined by the input range, insert_range invokes the sequential
insertion procedure, but does not update the summary node, the minimum, or the maximum at the
root level. This last update is exactly what is done by the respective repair function.
With respect to the correctness of this implementation, we find that it follows the conditions

stated at the end of Sec. 4.2.1 and thus yields a correct vEB at the end of batched operations:

(1) The implementation of expose for the vEB tree does not modify the data structure at all, but
merely returns the ranges for non-overlapping cluster sub-arrays.

(2) Since we made pivots such that keys in different sub-batches cannot be inserted in the same vEB
tree or even the same cluster sub-array, each insert_range call cannot affect anything other
than its own “chunk” of the vEB tree.

(3) The repair function restores metadata at the root node by updating the minimum, maximum,
and summary tree. This is the only we need to update at the end, as each cluster node vEB tree
is already valid at the end of parallel insertion.

4.2.3 Other Expose-Repair Data Structures. In addition to vEB, we have instantiated the expose-
repair for two more position-based search structures: the x-fast and y-fast trie by Willard (1983).
Both these structures were designed to preserve the query time complexity of the vEB while only
using $ (= logD) and $ (=) space respectively, where = is the number of elements in the trie.
In an x-fast trie (Fig. 20a), all full unsigned integer keys are stored at the same leaf level, with

there being as many intermediate layers as there are bits representing these integers. Each leaf node
points to its successor and/or predecessor leaf node. Each internal node with no left child contains
a pointer to the smallest leaf in its right subtree, similarly, each internals node with no right child
contains a pointer pointer to the largest leaf in its left subtre; in both cases those are referred to as
descendant pointers. Typically, at each layer an x-trie has a hash table to accelerate queries. As a
proof of concept, our implementation uses arrays, which worsens the worst-case x-fast trie’s space
complexity, but allows for a relatively simple expose-repair implementation: we expose the sub-trie
by removing pointers and adding intermediate nodes up until the layer determined by the number
of pivots, and partition our operations among the nodes at that layer.

To turn the x-fast trie into a y-fast trie (Fig. 20b), we replace the simple leaf nodes with a forest
of red-black trees. The size of each RB tree has an expected size of logD, and it is split as needed to
maintain that size. Implementing a batch-parallel version of the y-fast trie using the expose-repair
functor is not very complicated. For insertions, expose determines the ranges for the keys to be
inserted and RB trees that each parallel task should cover based on random pivots from the batch
of operations, dispatching those operations sequentially within insert_range. At the end, repair
checks the size of each resulting RB tree, splitting them where needed to respect the size bound.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:20 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

4.3 Case Studies with Ad-Hoc Batch Parallelism

We conclude this section by presenting two implementations of ad-hoc batch parallelism that do
not immediately follow either of the split-join or expose-repair strategies: a B-tree and a stateful
Datalog solver. We have additionally implemented a batch-parallel version of a skip list (Pugh 1990)
by adopting the design proposed by Agrawal et al. (2014), but omit its description for the sake of
space; a curious reader may find it in the extended version of this paper (Le et al. 2024a).

4.3.1 B-Tree. A B-tree is a widely-used tree data structure that can be used to implement an
efficient set or map interface (Bayer and McCreight 1972). The B-tree’s efficiency arises from the
fact that its operations are carefully structured to always maintain the balance of the tree and try
to preserve a good distribution of values across the tree, thereby ensuring a logarithmic lookup
time. Fig. 21 depicts the general structure of a B-tree. The nodes in a B-tree contain 2 components:
a sorted sequence of keys :1, . . . , := stored in the node, and a sequence of sub-trees 21, . . . 2=+1
corresponding to the node’s children; leaf nodes contain keys, but no children. The B-tree forms a
search tree in the fact that the keys in a node define intervals that bound the contents of children: a
child 28 will only contain keys that lie in the range :8−1 ≤ E < :8 . Finally, to provide a consistent
performance, the B-tree enforces the constraint that for any node, all of its sub-trees must all have
the same height (i.e., the tree is balanced), and that every interior node will have a number of keys
between C − 1 and 2C − 1, where C , the branching factor, is a global parameter of the tree, ensuring
that values are evenly distributed.

k1 knk2 …

c2 c3 cn+…

…

…

…

…

…

…

…

c1

Fig. 21. Structure of a B-tree

Adding new values to a B-tree requires care to
preserve the its invariants. The high-level intuition
for an insert is to recursively traverse down the
tree to find the leaf into which to insert the value—
but what if the leaf is already at full capacity (i.e., it
contains 2C −1 keys)? To solve this, insertion relies
on the splitting operation: when a particular node
in the data structure has reached full capacity, we
can gain additional capacity while preserving the
structure’s invariants by splitting the node into two and adding a new key and child to the node’s
parent. While splitting requires modifying the parent, we can prevent this from bubbling up the
entire B-tree by maintaining an invariant that the node being visited during the recursive traversal
has at least one free space, thus, preemptively splitting a sub-tree before descending down the tree.
In this way, even if inserting a value into a node requires splitting, we can be guaranteed that no
further splits higher up in the tree would be required to restore the B-tree’s intrinsic invariants.

A batch-parallel B-tree. Implementing a batch-parallel search in B-tree is straightforward: when
processing a batch of searches, first dispatch the values that occur at the current node, partition
the remaining values by the children, and recurse on each sub-tree in parallel. At a high level, the
same divide-and-conquer strategy should be applicable to B-tree inserts: when inserting a batch of
values into a B-tree, we can partition the values by sub-trees and recurse on each child in parallel.
The problem with this strategy is in ensuring that the nodes of the B-tree never become over-full
during the inserts, as this causes them to split, possibly causing a cascade of splits to “bubble up”,
making them interfere with other parallel operations.
Inserting = elements into a given node can require splitting up to = children in the worst case,

i.e., when each of the elements falls into a different child, each of which itself needs splitting. If we
only look at the contents of a single node, then the maximum capacity of any node will be at most
C : this follows from the fact that the B-tree requires that every node has a number of keys between

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:21

C − 1 and 2C − 1, so starting from the minimum and encountering C splits would already cause the
node hit the maximum number of keys. As the size of an input batch is typically far larger than C , a
constant parameter of the tree, this overly-conservative bound would hamper the parallelism.

nkeys(=) = number of keys in the node =

child(=, 8) = 8
th child of the node =

free(=) = 2C − 1 − nkeys(=)

cap(=) =

free(=) = is a leaf

(1 +min8 cap(child(=, 8))) ×
free(=)

otherwise

Fig. 22. Capacity of a B-tree

The key insight in our design is in defining
a novel notion of capacity for a B-tree node
(cf. Fig. 22) that is more precise but still relatively
cheap to compute. For a leaf node, the capacity
is simply the number of elements that can be in-
serted before it hits max capacity. For an interior
node, notice that each time one of its children
splits, it increases the number of keys that the
node has by 1, until it reaches max-capacity at
which point an additional element could cause
the node to require splitting. As such, we can conservatively bound the capacity of a node by the
capacity of its children plus 1, that is, the minimum number of elements to cause a child to split,
multiplied by the free slots it has, the number of times it can allow its children to split. By using
the minimum here, we lose some precision in our bound, but this also means that the value of this
statistic can be computed without imposing significant overhead.
Using this new definition of capacity, we can construct a batch-parallel B-tree insert using the

divide-and-conquer strategy. In particular, after partitioning the batches by the children, if the size
of a batch exceeds the capacity for the sub-tree, then we preemptively split the sub-tree until the
desired capacity is reached. Once all the splits have been performed, we can then recursively insert
into the children in parallel, returning to the standard divide and conquer strategy.

let run_batch t pool ops =

let searches, inserts =

(* partition batch *) in

sort pool searches;

sort pool inserts;

par_search t pool searches;

par_insert t pool inserts

Putting it all together, we incorporate both these search and
insert implementations to instantiate the explicitly batched in-
terface of OBatcher and construct an efficient batch-parallel
B-tree (right). We first partition the input batch, splitting out
the searches and inserts to be handled separately. These parti-
tions are then pre-sorted using an off-the-shelf parallel merge-
sort implementation. Finally, we execute the requested batch
by first dispatching the searches using our batch-parallel search implementation, and then subse-
quently dispatching the inserts using the corresponding batch-parallel insert one.

module Datalog : sig

type db

type term

val insert: db -> term -> unit

val query: db -> term -> term list

end

4.3.2 Datalog Solver. As our final case study, we demon-
strate the generality of OBatcher by investigating its
use for constructing a thread-safe and efficient wrapper
over a popular OCaml Datalog library (Cruanes 2024)
with minimal additional implementation effort. The main
interface to the library is through a type db encoding
Datalog databases is presented on the right. Here, each database db represents a collection of facts
known to be true, where each fact is a relation applied to zero or more symbols, e.g., edge("a","b")
might encode knowledge that an edge exists between nodes "a" and "b" in some graph. Users can
extend a database using the insert operation, submitting new facts or adding deductive rules that
describe how to deduce new facts from existing ones. Once a database has been constructed, datalog
allows users to query the set of facts in the database. By submitting terms query, i.e., edge("a","b")
or connected("x",y), the database will return a list of all facts that match the query, answering
questions such as is there an edge between "a" and "b"? or what nodes are connected to "x"? The
datalog library was not written with a multicore environment in mind. It makes pervasive use of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:22 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

mutation and shared state that would be challenging to port to a fine-grained implementation. In
contrast, implementing a batched interface to the library is comparatively simple: when handling
a batch of requests, we first dispatch all queries in parallel, and then evaluate each of the inserts
sequentially. We use this simple idea to instantiate OBatcher’s interface with the datalog library.

5 Evaluation

The main intended use for concurrent search structures is to allow concurrent tasks to exchange
data without introducing communication bottlenecks. Since such structures form the majority
of our case studies, in Sec. 5.1 we provide an extensive evaluation of their throughput trends. In
Sec. 5.2, we evaluate the performance of the concurrent Datalog solver. The goal of our experiments
is not to claim the maximum performance, which still requires carefully crafted concurrency;
instead, we aim to show that our approach provides reasonable performance with less work.

All the reported benchmark results were obtained by running the experiments on an AWS EC2
c7i.12xlarge server instance equipped x86 Intel® Xeon® Scalable (Sapphire Rapids) processor
with 24 physical cores and 96 GB of memory, running Ubuntu 22.02 with OCaml 5.1.1.

5.1 Benchmarking the Concurrent Search Structures

We evaluate the throughput for all eight search structures from Sec. 4 (RB tree, AVL tree, treap,
van Emde Boas tree, x-fast and y-fast tries, B-tree, and skip list) on the same set of benchmarks.
For each benchmark, we fix the number of initial elements in the data structure at 2,000,000 and
the workload size to be 1,000,000 operations. We experiment with four different workload setups:
inserts only, searches only, 50%/50% and 90%/10% search/insert split. Each operation of the workload
is submitted to Domainslib’s thread pool as a separate concurrent task. Each data point takes the
average of five runs, performed after five warm-up runs. We compare the performance of our batch
parallel implementations with their respective coarse-grained and sequential implementations,
varying the number of domains – thin wrappers over system-level threads provided by the OCaml
runtime. Fig. 23 shows our results, allowing us to draw several observations detailed below.

General performance trends. First, we observe that in nearly every benchmark, our batch-parallel
generated search structures outperform their coarse-grained counterparts by a significant margin
starting from two domains, with the gap widening as we increase the number of domains. The gap
is particularly evident for insertion-heavy benchmarks, where we see the batched implementations
match or even outperform the sequential ones when more domains are available. Fully sequential
executions typically outperform the batch-parallel ones for searches, even for higher domains and
by a significant margin. This is likely due to the efficiency of searches (even when done sequentially),
combined with the comparatively large overheads for creating/managing parallel tasks.
Second, we observe that in nearly all cases, in the case of a single domain, a batch-parallel

implementation shows a lower throughput than the coarse-grained one. This is because with a
single domain, the batch-processing routine is launched for every submitted operation after the
waiting period between batches in the try_launch function (Fig. 8), due to not meeting the minimum
batch size—as there are no other threads contributing operations. Therefore, we conclude that,
without further optimisation, batch-parallelism only pays off in strictly multi-threaded scenarios.

Third, we observe that our x-fast and y-fast tries are in general less performant than our binary
trees (AVL and RB), despite their superior asymptotic time complexity, even when considering only
the sequential implementations. We conjecture that this is due to their much heavier memory use
than that of the binary trees, since each key requires multiple nodes to represent, and so adding
nodes would take more time putting additional stress on OCaml’s concurrent memory allocator.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:23

0 5 10 15

0

0.4

0.8

1.2

R
ed
-b
la
ck

tr
ee

Inserts only

0 5 10 15

0

0.4

0.8

1.2

Searches only

0 5 10 15

0

0.4

0.8

1.2

Searches/Inserts (50/50)

0 5 10 15

0

0.4

0.8

1.2

Searches/Inserts (90/10)

0 5 10 15

0

0.4

0.8

1.2

A
V
L
tr
ee

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

T
re
ap

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

v
E
B
tr
ee

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

X
-f
as
t
tr
ie

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

Y
-f
as
t
tr
ie

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

B
-t
re
e

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

Sk
ip

li
st

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

0 5 10 15

0

0.4

0.8

1.2

Sequential Batched Coarse-grained Fine-grained (skip list only)

Fig. 23. Throughput comparison for concurrent search structures from Sec. 4. The x-axes represent the

numbers of involved domains/cores, and y-axes show throughput in millions of operations per second.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:24 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

Finally, we note that almost all the batch-parallel data structures show reasonable speed-ups: the
throughput increases with the number of domains, up through approximately 8 domains. From that
point onwards, throughput grows more slowly with the number of domains. This slowing growth
at larger numbers of domains presumably stems from the increased synchronisation overhead.

Concurrent searching in an x-fast trie. The x-fast trie search-only and 90/10 search-insert split
benchmarks are the only scenarios in our suite, where our batched implementation struggles to
even match the coarse-grained implementation. This is the only data structure where search time
is $ (1). Indeed, the sequential benchmark throughput for searching in an x-fast trie is orders
of magnitude higher than of the other data structures, exhibiting around 22 · 106 op/sec in the
search-only benchmark, and around 2.8 · 106 op/sec for the 90/10 search-insert split benchmark.
We can surmise that this is a rare case where the underlying operation is so fast that, for a small
number of threads, the lock contention imposes a smaller overall overhead than starting a batch.

Comparison with a fine-grained skip list. We have also compared our batched skip list implemen-
tation to the fine-grained lazy skip list by Herlihy et al. (2007), which we have ported from Java
to OCaml. Sadly, Fig. 23 clearly indicates the growing performance gap between the fine-grained
and the batch-parallel implementation. However, instead of simply admitting the crushing defeat
by the giants of the multiprocessor programming, we are going to make a few observations that
should encourage the reader to not dismiss batching as a methodology for implementing concurrent
structures. While both implementations measure comparable amount of code—200 LOC for the
fine-grained skip list and 300 LOC for the batch-parallel one—the fine-grained implementation is
significantly more intricate in its design. Specifically, Herlihy et al.’s skip list makes use of Atomic
references and introduces locks associated with each node so that the nodes can be physically
removed in a “lazy” fashion—the pattern known to be difficult to reason about formally when
proving linearisability (Vafeiadis 2008). In contrast, the batch-parallel implementation does not
feature any synchronisation primitives whatsoever, relying exclusively on parallel_for. It should
also be noted that the batch-parallel implementation can also benefit from various sequential
optimizations. In the context of skip lists, preprocessing steps, such as sorting inserts or removing
k-smallest elements are analytically more efficient than their iterative counterparts (Hendler et al.
2010). More generally, deduplication of requests could also stand to improve throughput. Our
current implementation only uses pre-sorting as an optimisation but could be improved further.

5.2 Benchmarking the Concurrent Datalog Solver

0 5 10 15
0

5

10

15

20
·104

T
h
ro
u
g
h
p
u
t
(o
p
s/
se
c)

(90/10) Queries/Inserts

Batched Coarse-grained Batched (Sequential)

Fig. 24. Datalog solver throughput.

For our experiment with the datalog library, we imple-
ment a typical graph-connectedness constraint system
on top of the Datalog database, using a graph of 200
nodes, with 30,000 initial edges, and submit requests
that either add new edges or query about the connect-
edness of two nodes in the graph. All implementations
are evaluated on a workload of 50,000 concurrent re-
quests, using a standard 90%/10% split between queries
and inserts, varying the number of domains/cores and
taking the average of 10 runs for each configuration.
Fig. 24 presents the results of this evaluation. As can be seen, our construction is efficient and
scales gracefully as the number of domains increases, while the corresponding coarse-grained
wrapper’s performance gradually degrades as more domains are added, suffering from increasing
lock contention. Our plot also includes the throughput of a naïve batch-parallel implementation of
a datalog wrapper, which simply executes all operations, queries and inserts alike, in a sequence.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:25

Interestingly, its throughput still outperforms the coarse-grained version, showing the benefits of
the amortised cost of locking provided by the batched interface yet it is unable to exploit parallelism.

6 Related Work

Flat combining and delegation-based locking. The technique of flat combining itself draws from
long-running line of research into delegation-based locking. These works all investigate minimising
lock contention by delegating concurrent requests to be executed under a dedicated worker.

Oyama et al. (2000) were the first to introduce this strategy, and considered using a simple LIFO
queue to keep track of additional requests that may have accumulated while a client was in a critical
section. Hendler et al. (2010) developed the flat combiner by extending this design and pre-allocating
empty entries in the task queue for each thread thereby minimising contention between clients
when appending tasks. To avoid situations where the queue is mostly empty, the flat combiner
design also incorporates strategies for periodically compacting the queue and only keeping entries
from threads that have recently submitted tasks. Subsequent works have built on this design
and investigated optimising the configurations for factors such as cache locality (Fatourou and
Kallimanis 2011; Roghanchi et al. 2017), and specialised multicore hardware (Lozi et al. 2016). Most
recently, Gupta et al. (2023) developed a technique to transparently incorporate delegation-based
locking into existing systems by constructing a dynamic lock that manipulates the call stack at
runtime to suspend the client and send arbitrary critical section code to be executed by a dedicated
worker, allowing delegation to be introduced into a system without significant source-level changes.

Delegation-based locking research has primarily focused on mitigating lock contention and, as
such, prior work has not considered exploiting parallelism within the worker itself as in OBatcher.
The insight in this work is that these techniques from delegation-based locking can be combined
with async/await primitives to support implicit-batching in a lightweight fashion.

Batch parallelism and data parallelism. Data parallelism has long been a common approach
for implementing parallel computations, and often it is implemented in a “batched” manner. For
example, if you have a function that needs to be applied to a large number of data records, it is
quite natural to divide the records into batches to apply the function in parallel.

Batch-parallel data structures do indeed bear a resemblance to data-parallel collections available
as libraries, e.g., in Haskell (Peyton Jones et al. 2008) and Scala (Prokopec et al. 2011). The main
difference between data parallelism and batch parallelism is, perhaps, subtle. The former approach
focuses on optimising the execution of one aggregate-style bulk operation (e.g., map, reduce, filter,
etc.) at a time by exploiting possibilities for parallelism allowed by the structure itself. From the
perspective of the user a call to a data-parallel map is the same as a call to a sequential map, which
just works faster. Importantly, neither of those calls assume concurrent interference from other calls
made to the same collection. Finally, for data parallelism, it is typically easy for the programmer to
construct explicit batches, as the parallelism to exploit has a simple structure.

By contrast, batch parallelism solves the problem of running multiple concurrent operations to a
data structure in the most efficient way, while being aware of possible interference between them.
Batch parallelism operates on structured data, extracting parallelism from whatever operations
happen to arrive, on the fly. Moreover, the benefit of implicit batch parallelism is that it can handle
situations where the batch structure is not, a priori, clear or easy to determine. That said, for each
particular such operation in its batch, a batch-parallel implementation can make use of data-parallel
techniques, even though we did not exercise this possibility in the scope of this work.

Other batch-parallel data structures. Over the last several years, researchers have developed a
variety of batch-parallel data structures that focus on the problem of how to process a batch of data
structure updates in parallel without being concerned how the batches are being constructed in the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

335:26 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

first place. The existence of these types of batch-parallel data structures provides good motivation
for the creation of a generic implicit batching library like the one provided by OBatcher.
As of today, batch-parallel structures and algorithms are an active research area. Tseng et al.

(2019) developed dynamic trees that could support batch update operations, and then used them to
maintain Euler tours. Acar et al. (2020) also explored the problem of maintaining dynamic trees
subject to batches of updates, handling a broader class of queries. Tseng et al. (2022) have developed
algorithms for maintaining a minimum spanning forest, which they used for graph clustering.
Wang et al. (2021) developed a batch-parallel data structure for solving the closest pair problem.

There has also been significant work on batch-parallel graph algorithms in the Massively Parallel
Computation (MPC) model. For example, Italiano et al. (2019) show how to process batch updates
to graphs, while supporting connectivity queries and while maintaining a minimum spanning
tree or a matching. Gilbert and Li (2020) generalise this for the :-server model, a different model
of parallel computation. Dhulipala et al. (2020) provide yet more general results for maintaining
dynamic graphs subject to batch updates in the MPC model.

Batcher. The design of OBatcher is inspired by Agrawal et al.’s Batcher (2014)—a scheduler
implemented as a part ofmodified Cilk-5 runtime thats allows tomake batching implicit in away that
is transparent to the user. Rather than being a lightweight solution based on provided programming
language mechanisms, Batcher fundamentally is an extension of a standard randomised work-
stealing scheduler that allows operations to a data structure to implicitly form a batch before being
sent for processing in an asynchronous setting. For context, it is important to note that the main
contribution of Agrawal et al.’s work is primarily on a theoretical side: their aim is to provide a
scheduler with a provable complexity bound on an execution time of a program that manipulates
a batch-parallel data structure, in terms of its work (the total number of operations the program
must execute) and span (the length of the longest non-parallelisable sequence of operations). The
statement of such a performance theorem, if possible, would be further complicated in the case of
multiple concurrently used batch-parallel data structures, hence Batcher only supports one such
structure. In contrast, OBatcher supports multiple data structures by design, but comes with no
formal guarantees regarding its performance.

Concurrent search structures. In this work, we have implemented a variety of concurrent search
structures. For some of these data structures, such as B-trees, Red-Black trees and AVL trees, there
is a long history of concurrent implementations (Bayer and Schkolnick 1977; Ellis 1980), as well
as more recent work, particularly on B-trees and related structures (Braginsky and Petrank 2012;
Srivastava and Brown 2022). Most relevant to this paper is the work by Blelloch et al. (2016, 2022);
Blelloch and Reid-Miller (1998), who showed how splitting and joining trees yielded very efficient
parallel solutions—our implementation of the split-join paradigm followed this approach.
Search structures with sub-logarithmic time, such as the van Emde Boas tree, x-fast tries, and

y-fast tries, have been much more challenging to implement in concurrent settings, and there exist
relatively few such parallel/concurrent implementations. Of note, the only concurrent implementa-
tion (to our knowledge) of an x-fast (or y-fast) trie is the SkipTrie by Oshman and Shavit (2013). The
first parallel version of the van Emde Boas tree (to the best of our knowledge) was just published
by Gu et al. (2023). More recently, Khalaji et al. (2024) developed a very impressive concurrent van
Emde Boas tree implementation relying on Intel’s Hardware Transactional Memory instructions.
A related sub-logarithmic data structure was developed by Brown et al. (2020), providing a very
efficient concurrent implementation of an Interpolation Tree, not considered in this paper.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

Concurrent Data Structures Made Easy 335:27

7 Conclusion

In this work, we have brought batch-parallelism to Multicore OCaml by introducing OBatcher, a
library providing a lightweight embedding of implicit batching and a toolkit for constructing batch-
parallel structures. The key observation behind our library is that the inversion of control provided
by simple async/await asynchronous programming primitives is entirely sufficient to transform
explicitly-batched interfaces into an implicitly-batched ones; we have demonstrated that as such
OBatcher can easily be ported to other modern programming languages, such as Rust. Beyond this
embedding, OBatcher investigates a methodology for gradually incorporating batch-parallelism
into an existing codebases and structures, presenting, amongst which, two general patterns for
decomposing the parallelisation of common search-structures, and instantiating these for widely-
used structures such as X-fast and Y-fast tries, and van Emde Boas trees. Our experimental results
show the resulting concurrent data-structures constructed using the OBatcher framework far
outperform their coarse-grained counterparts and scale more gracefully as parallelism increases.

Inspired by this technique, in the future, we are planning to explore the possibilities it presents
for automatically synthesising efficient parallel data structures that are correct by construction.

Acknowledgments

We are grateful to Arthur Wendling who hinted the initial design of OBatcher in Multicore OCaml.
We thank Matthew Flatt and George Pîrlea for their feedback on earlier drafts of this paper. We also
thank the anonymous reviewers of ICFP’23 and OOPSLA’24 for their constructive and insightful
comments. This work was partially supported by a Singapore Ministry of Education (MoE) Tier 3
grant “Automated Program Repair” MOE-MOET32021-0001.

Data Availability

The software artefact accompanying this paper is available online (Le et al. 2024b). The artefact
contains the source code of OBatcher (in OCaml and Rust), implementations of all data structures
described in Sec. 4, and build scripts for reproducing the evaluation results from Sec. 5.

References

Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and Sam Westrick. 2020. Parallel Batch-Dynamic

Trees via Change Propagation. In ESA (LIPIcs, Vol. 173). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2:1–2:23.

https://doi.org/10.4230/LIPIcs.ESA.2020.2

Stephen Adams. 1993. Functional Pearls Efficient sets—a balancing act. Journal of Functional Programming 3, 4 (1993),

553–561. https://doi.org/10.1017/S0956796800000885

Georgy Adelson-Velsky and Evgenii Landis. 1962. An algorithm for the organization of information. Proc. of the USSR

Academy of Sciences 145 (1962), 263–266. In Russian, English translation by Myron J. Ricci in Soviet Doklady, 3:1259-1263,

1962.

Kunal Agrawal, Jeremy T. Fineman, Brendan Sheridan, Jim Sukha, and Robert Utterback. 2014. Provably Good Scheduling

for Parallel Programs that Use Data Structures through Implicit Batching. In PPoPP. ACM, 389–390. https://doi.org/10.

1145/2555243.2555284

Yaroslav Akhremtsev and Peter Sanders. 2016. Fast Parallel Operations on Search Trees. In 2016 IEEE 23rd International

Conference on High Performance Computing (HiPC). 291–300. https://doi.org/10.1109/HiPC.2016.042

Rudolf Bayer. 1972. Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms. Acta Informatica 1 (1972),

290–306. https://doi.org/10.1007/BF00289509

Rudolf Bayer and Edward M McCreight. 1972. Symmetric Binary B-trees: Data Structure and Maintenance Algorithms. In

Acta informatica, Vol. 1. Springer, 290–306. https://doi.org/10.1007/BF00289509

Rudolf Bayer and Mario Schkolnick. 1977. Concurrency of Operations on B-Trees. Acta Informatica 9 (1977), 1–21.

https://doi.org/10.1007/BF00263762

Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Just Join for Parallel Ordered Sets. In SPAA. ACM, 253–264.

https://doi.org/10.1145/2935764.2935768

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

https://doi.org/10.4230/LIPIcs.ESA.2020.2
https://doi.org/10.1017/S0956796800000885
https://doi.org/10.1145/2555243.2555284
https://doi.org/10.1145/2555243.2555284
https://doi.org/10.1109/HiPC.2016.042
https://doi.org/10.1007/BF00289509
https://doi.org/10.1007/BF00289509
https://doi.org/10.1007/BF00263762
https://doi.org/10.1145/2935764.2935768

335:28 Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey

Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. 2022. Joinable Parallel Balanced Binary Trees. ACM Trans. Parallel Comput.

9, 2 (2022), 7:1–7:41. https://doi.org/10.1145/3512769

Guy E. Blelloch and Margaret Reid-Miller. 1998. Fast Set Operations Using Treaps. In SPAA. ACM, 16–26. https://doi.org/10.

1145/277651.277660

Anastasia Braginsky and Erez Petrank. 2012. A lock-free B+tree. In SPAA. ACM, 58–67. https://doi.org/10.1145/2312005.

2312016

Gerth Stølting Brodal, Jesper Larsson Träff, and Christos D. Zaroliagis. 1998. A Parallel Priority Queue with Constant Time

Operations. J. Parallel Distributed Comput. 49, 1 (1998), 4–21. https://doi.org/10.1006/jpdc.1998.1425

Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. 2020. Non-blocking interpolation search trees with doubly-

logarithmic running time. In PPoPP. ACM, 276–291. https://doi.org/10.1145/3332466.3374542

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, 3rd Edition.

MIT Press.

Simon Cruanes. 2024. An in-memory Datalog implementation for OCaml. https://github.com/c-cube/datalog Accessed on 28

March 2024.

Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh Sawlani, and Xiaorui Sun. 2020. Parallel Batch-

Dynamic Graphs: Algorithms and Lower Bounds. In SODA. SIAM, 1300–1319. https://doi.org/10.1137/1.9781611975994.79

James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert Endre Tarjan. 1988. Relaxed Heaps: An Alternative

to Fibonacci Heaps with Applications to Parallel Computation. Commun. ACM 31, 11 (1988), 1343–1354. https:

//doi.org/10.1145/50087.50096

Carla Schlatter Ellis. 1980. Concurrent Search and Insertion in AVL Trees. IEEE Trans. Computers 29, 9 (1980), 811–817.

https://doi.org/10.1109/TC.1980.1675680

Panagiota Fatourou and Nikolaos D. Kallimanis. 2011. A highly-efficient wait-free universal construction. In SPAA. ACM,

325–334. https://doi.org/10.1145/1989493.1989549

Yotam M. Y. Feldman, Artem Khyzha, Constantin Enea, Adam Morrison, Aleksandar Nanevski, Noam Rinetzky, and Sharon

Shoham. 2020. Proving highly-concurrent traversals correct. Proc. ACM Program. Lang. 4, OOPSLA (2020), 128:1–128:29.

https://doi.org/10.1145/3428196

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Implementation of the Cilk-5 Multithreaded Language.

In PLDI. ACM, 212–223. https://doi.org/10.1145/277650.277725

Seth Gilbert and Lawrence Er Lu Li. 2020. How Fast Can You Update Your MST?. In SPAA. ACM, 531–533. https:

//doi.org/10.1145/3350755.3400240

Yan Gu, Ziyang Men, Zheqi Shen, Yihan Sun, and Zijin Wan. 2023. Parallel Longest Increasing Subsequence and van Emde

Boas Trees. In SPAA. ACM, 327–340. https://doi.org/10.1145/3558481.3591069

Vishal Gupta, Kumar Kartikeya Dwivedi, Yugesh Kothari, Yueyang Pan, Diyu Zhou, and Sanidhya Kashyap. 2023. Ship your

Critical Section, Not Your Data: Enabling Transparent Delegation with TCLOCKS. In OSDI. USENIX Association, 1–16.

https://www.usenix.org/conference/osdi23/presentation/gupta

Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat Combining and the Synchronization-Parallelism Tradeoff.

In SPAA. ACM, 355–364. https://doi.org/10.1145/1810479.1810540

Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2007. A Simple Optimistic Skiplist Algorithm. In SIROCCO

(LNCS, Vol. 4474). Springer, 124–138. https://doi.org/10.1007/978-3-540-72951-8_11

Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming. Morgan Kaufmann.

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM Trans.

Program. Lang. Syst. 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972

Giuseppe F. Italiano, Silvio Lattanzi, Vahab S. Mirrokni, and Nikos Parotsidis. 2019. Dynamic Algorithms for the Massively

Parallel Computation Model. In SPAA. ACM, 49–58. https://doi.org/10.1145/3323165.3323202

Mohammad Khalaji, Trevor Brown, Khuzaima Daudjee, and Vitaly Aksenov. 2024. Practical Hardware Transactional vEB

Trees. In PPoPP. ACM, 215–228. https://doi.org/10.1145/3627535.3638504

Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey. 2024a. Concurrent Data Structures Made Easy

(Extended Version). CoRR abs/2408.13779 (2024). https://doi.org/10.48550/arXiv.2408.13779

Callista Le, Kiran Gopinathan, Koon Wen Lee, Seth Gilbert, and Ilya Sergey. 2024b. OBatcher: Implementation, Data

Structures, and Experiments (OOPSLA’24 Artefact). https://doi.org/10.5281/zenodo.12604575

Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles Muller. 2016. Fast and Portable Locking for Multicore

Architectures. ACM Trans. Comput. Syst. 33, 4 (2016), 13:1–13:62. https://dl.acm.org/citation.cfm?id=2845079

Roland Meyer, Thomas Wies, and Sebastian Wolff. 2022. A concurrent program logic with a future and history. Proc. ACM

Program. Lang. 6, OOPSLA2 (2022), 1378–1407. https://doi.org/10.1145/3563337

Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: automated verification of fine-grained concurrent

programs in Iris. In PLDI. ACM, 809–824. https://doi.org/10.1145/3519939.3523432

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

https://doi.org/10.1145/3512769
https://doi.org/10.1145/277651.277660
https://doi.org/10.1145/277651.277660
https://doi.org/10.1145/2312005.2312016
https://doi.org/10.1145/2312005.2312016
https://doi.org/10.1006/jpdc.1998.1425
https://doi.org/10.1145/3332466.3374542
https://github.com/c-cube/datalog
https://doi.org/10.1137/1.9781611975994.79
https://doi.org/10.1145/50087.50096
https://doi.org/10.1145/50087.50096
https://doi.org/10.1109/TC.1980.1675680
https://doi.org/10.1145/1989493.1989549
https://doi.org/10.1145/3428196
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/3350755.3400240
https://doi.org/10.1145/3350755.3400240
https://doi.org/10.1145/3558481.3591069
https://www.usenix.org/conference/osdi23/presentation/gupta
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1007/978-3-540-72951-8_11
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3323165.3323202
https://doi.org/10.1145/3627535.3638504
https://doi.org/10.48550/arXiv.2408.13779
https://doi.org/10.5281/zenodo.12604575
https://dl.acm.org/citation.cfm?id=2845079
https://doi.org/10.1145/3563337
https://doi.org/10.1145/3519939.3523432

Concurrent Data Structures Made Easy 335:29

Rotem Oshman and Nir Shavit. 2013. The SkipTrie: low-depth concurrent search without rebalancing. In PODC, Panagiota

Fatourou and Gadi Taubenfeld (Eds.). ACM, 23–32. https://doi.org/10.1145/2484239.2484270

Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. 2000. Executing Parallel Programswith Synchronization Bottlenecks

Efficiently. In International Workshop on Parallel and Distributed Computing for Symbolic and Irregular Applications (PDSIA

’99). World Scientific, 182–204.

Richard C. Paige and Clyde P. Kruskal. 1985. Parallel Algorithms for Shortest Path Problems. In ICPP. IEEE Computer

Society Press, 14–20.

Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T. Chakravarty. 2008. Harnessing the Multicores:

Nested Data Parallelism in Haskell. In FSTTCS (LIPIcs, Vol. 2). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 383–414.

https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1769

Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, and Martin Odersky. 2011. A Generic Parallel Collection Framework. In

Euro-Par (LNCS, Vol. 6853). Springer, 136–147. https://doi.org/10.1007/978-3-642-23397-5_14

William Pugh. 1990. Skip Lists: A Probabilistic Alternative to Balanced Trees. Commun. ACM 33, 6 (1990), 668–676.

https://doi.org/10.1145/78973.78977

Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. 2017. ffwd: delegation is (much) faster than you think. In SOSP.

ACM, 342–358. https://doi.org/10.1145/3132747.3132771

Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Dementiev. 2019. Sorted Sequences. Springer International

Publishing, Cham, 233–258. https://doi.org/10.1007/978-3-030-25209-0_7

Raimund Seidel and Cecilia R. Aragon. 1996. Randomized Search Trees. Algorithmica 16, 4/5 (1996), 464–497. https:

//doi.org/10.1007/BF01940876

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mechanized Verification of Fine-Grained Concurrent

Programs. In PLDI. ACM, 77–87. https://doi.org/10.1145/2737924.2737964

K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting

effect handlers onto OCaml. In PLDI. ACM, 206–221. https://doi.org/10.1145/3453483.3454039

Anubhav Srivastava and Trevor Brown. 2022. Elimination (a, b)-trees with fast, durable updates. In PPoPP. ACM, 416–430.

https://doi.org/10.1145/3503221.3508441

R. Kent Treiber. 1986. Systems programming: coping with parallelism. Technical Report RJ 5118. IBM Almaden Research

Center.

Thomas Tseng, Laxman Dhulipala, and Guy Blelloch. 2019. Batch-Parallel Euler Tour Trees. In Proceedings of the Twenty-First

Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, 92–106. https://doi.org/10.1137/1.9781611975499.8

Tom Tseng, Laxman Dhulipala, and Julian Shun. 2022. Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency

of Dynamic Agglomerative Graph Clustering. In SPAA. ACM, 233–245. https://doi.org/10.1145/3490148.3538584

Viktor Vafeiadis. 2008. Modular fine-grained concurrency verification. Ph. D. Dissertation. University of Cambridge.

Peter van Emde Boas. 1975. Preserving Order in a Forest in less than Logarithmic Time. In FOCS. IEEE Computer Society,

75–84. https://doi.org/10.1109/SFCS.1975.26

Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. 2021. A Parallel Batch-Dynamic Data Structure for the Closest Pair

Problem. In 37th International Symposium on Computational Geometry (SoCG 2021) (LIPIcs, Vol. 189). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 60:1–60:16. https://doi.org/10.4230/LIPIcs.SoCG.2021.60

Dan E. Willard. 1983. Log-logarithmic worst-case range queries are possible in space O(N). Inform. Process. Lett. 17, 2 (1983),

81–84. https://doi.org/10.1016/0020-0190(83)90075-3

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 335. Publication date: October 2024.

https://doi.org/10.1145/2484239.2484270
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1769
https://doi.org/10.1007/978-3-642-23397-5_14
https://doi.org/10.1145/78973.78977
https://doi.org/10.1145/3132747.3132771
https://doi.org/10.1007/978-3-030-25209-0_7
https://doi.org/10.1007/BF01940876
https://doi.org/10.1007/BF01940876
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3503221.3508441
https://doi.org/10.1137/1.9781611975499.8
https://doi.org/10.1145/3490148.3538584
https://doi.org/10.1109/SFCS.1975.26
https://doi.org/10.4230/LIPIcs.SoCG.2021.60
https://doi.org/10.1016/0020-0190(83)90075-3

	Abstract
	1 Introduction
	2 Overview
	2.1 A Straw-Man Solution: Coarse-Grained Locking
	2.2 A Batched Interface for Counter
	2.3 Implicit Batching via Asynchronous Programming
	2.4 Putting It All Together

	3 Implementing OBatcher
	3.1 OBatcher in Multicore OCaml
	3.2 Beyond OCaml: OBatcher in Rust

	4 Engineering Batch-Parallel Implementations
	4.1 Split-Join Batching Strategy
	4.2 Expose-Repair Batching Strategy
	4.3 Case Studies with Ad-Hoc Batch Parallelism

	5 Evaluation
	5.1 Benchmarking the Concurrent Search Structures
	5.2 Benchmarking the Concurrent Datalog Solver

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

