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Abstract. This paper presents the main ideas behind deductive synthe-
sis of heap-manipulating program and outlines present challenges faced
by this approach as well as future opportunities for its applications.

1 Introduction

Just like a journey of a thousand miles begins with a single step, an imple-
mentation of a working operating system, cryptographic library, or a compiler
begins with writing a single function. This is not quite so for verified software,
whose development starts with three “steps”: a function specification (or, spec),
followed by its implementation, and then by a proof that the implementation
satisfies the spec. Although recent years have seen an explosion of increasingly
diverse and sophisticated verified systems [14, 20, 26, 31, 41, 48, 71, 73, 96], their
cost remains high, owing to the effort required to write formal specifications and
proofs in addition to writing the code.

The good news is that in many cases the aforementioned three steps can be
replaced by just one of them: writing the spec. The rest can be delegated to
deductive program synthesis [52]—an emerging approach to automated software
development, which takes as input a specifications, and searches for a corre-
sponding program together with its proof.

Past approaches to deductive synthesis typically avoided low-level programs
with pointers [43,69,83], which are notoriously difficult to reason about, making
these approaches inapplicable to automating the development of verified systems
code. The few techniques that did handle the heap [47,72] had significant limita-
tions in terms of expressiveness and/or efficiency. Our prior work on the SuSLik
synthesizer [70], has introduced an alternative approach to synthesis of pointer-
manipulating programs, whose key enabling component is the use of Separation
Logic (SL) [66, 75] as the specification formalism. Due to its proof scalability,
Separation Logic enabled modular verification of low-level imperative code and
has been implemented in a large number of automated and interactive program
verifiers [4,7,18,37,57,62,64,68]. The main novelty of SuSLik was an observation
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that the structure of SL specifications can be used to efficiently guide the search
for a program and its proof. Since then, our follow-up work has explored auto-
matic discovery of recursive auxiliary functions [34], generating independently
checkable proof certificates for synthesized programs [93], and giving the user
more control over the synthesis using concise mutability annotations [19].

As an appetizer for SL-powered deductive program synthesis consider the
problem of flattening a binary tree data structure into a doubly-linked list. As-
sume also that the programmer would prefer to perform this transformation
in-place, without allocating new memory, which they conjecture is possible be-
cause the nodes of the two data structures have the same size (both are records
with a payload and two pointers). With SuSLik, the programmer can describe
this transformation using the following Hoare-style SL specification:

{tree(x, S)} flatten (loc x) {dll(x, y, S)} (1)

Here the precondition asserts that initially x points to the root of a tree, whose
contents are captured by a set S. The postcondition asserts that after the exe-
cution of flatten, the same location x is a head of a doubly-linked list, with the
same elements S as the initial tree (y denotes the existentially quantified back-
pointer of the list). The definitions of the two predicates, tree and dll, which
constrain the symbolic heaps in the pre- and postcondition are standard for
SL [75] and will be shown in Sec. 2.

1 flatten(loc x) {
2 if (x == 0) {
3 } else {
4 let l = *(x + 1);
5 let r = *(x + 2);
6 flatten(l);
7 flatten(r);
8 helper (r, l, x);
9 }

10 }
11

12 helper(loc r, loc l,
13 loc x) {
14 if (l == 0) {
15 if (r == 0) {
16 } else {
17 *(r + 2) = x;
18 *(x + 1) = r;
19 }
20 } else {
21 let v = *l;
22 let w = *(l + 1);
23 *(l + 2) = r;
24 helper(r, w, l);
25 *(l + 2) = x;
26 }
27 }

Fig. 1: Flattening a tree into a DLL.

Given the spec (1), SuSLik takes less
than 20 seconds to generate the program
in Fig. 1, written in a core C-like lan-
guage, as well as a formal proof that the
program satisfies the spec. Several things
are noteworthy about this program. First,
the code indeed does not perform any allo-
cation, and instead accomplishes its goal
by switching pointers (in lines 17, 18, 23,
and 25); this makes it economical in terms
of memory usage as only a low-level pro-
gram can be: similar code written in a
functional language like OCaml would in-
evitably rely on garbage collection. Sec-
ond, the main function flatten relies on
an auxiliary recursive function helper,
which the programmer did not anticipate;
in fact the need for this auxiliary—and
its specification—is discovered by SuS-
Lik completely automatically. All the pro-
grammer has to do to obtain a provably
correct implementation of flatten is to
write the spec (1) and define the two
SL predicates it uses, which are, however,
reusable across different programs.
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At this point, a critical reader might be wondering whether this technology
is mature enough to move past hand-crafted benchmarks and assist them in de-
veloping the next CompCert [48] or CertiKOS [31]. For one, the program in
Fig. 1 does not seem optimal: a closer look reveals that the role of helper is to
concatenate the lists obtained by flattening the two subtrees, resulting in the
overall O(n2) complexity wrt. the size of the original tree.1 Apart from perfor-
mance of synthesized programs, the reader might have the following concerns:

– What is the class of programs this approach is fundamentally capable of syn-
thesizing? How picky is it to the exact shape of input specifications?

– Is the proof search predictably fast across a wide range of problems?
– Will the synthesized code be concise and easy to understand?
– Finally, what are the “killer apps” for this technology and in which domains

can we hope for its adoption for practical need?

The goal of this manuscript is precisely to illustrate the remaining challenges
in SL-based synthesis of heap-manipulating programs and outline some future
research directions towards addressing these challenges. In the remainder of this
paper we provide the necessary background and a survey of the results to date
(Sec. 2); we then zoom in on the promising techniques for improving proof search
(Sec. 3); in Sec. 4 we discuss the completeness of synthesis, outlining the work
that needs to be done in order to formally characterize the class of programs
that can and cannot be generated; in Sec. 5 we talk about possible extensions
to the synthesis procedure for improving the quality of synthesized programs;
finally, in Sec. 6 we discuss possible applications of SL-based synthesis, such as
program repair, data migration, and concurrent programming.

2 State of the Art

2.1 Specifications

SuSLik takes as input a Hoare-style specification, i.e. a pair of a pre- and a
post-condition. Consider, for example, a specification for a function swap,2 which
swaps the values of two pointers:

{x 7→ a ∗ y 7→ b} swap(loc x, loc y) {x 7→ b ∗ y 7→ a} (2)

The precondition x 7→ a ∗ y 7→ b states that the relevant part of the heap contains
two memory locations, x and y, which store values a and b, respectively. We also
know that and x 6= y, because the semantics of separating conjunction (∗) require
that the two heaps it connects be disjoint. The postcondition x 7→ b ∗ y 7→ a de-
mands that after executing the function, the values stored in x and y be swapped.

1 In Sec. 4 we show what it takes to derive an alternative, linear-time solution.
2 Our language has no return statement, hence all functions have return type void,

which is omitted from the spec; return values are emulated by writing to the heap.
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This specification also implicitly guarantees that swap always terminates and ex-
ecutes without memory errors (e.g., null-pointer dereferencing). Note that x and
y also appear as parameters to swap, and hence are program variables, i.e., can
be mentioned in the synthesized program; the payloads a and b, on the other
hand, are logical variables, implicitly universally quantified, and must not appear
in the program. In the rest of this paper, we distinguish program variables from
logical variables by using monotype font for the former.

In general, in a specification {P} f(...) {Q}, assertions P, Q both have
the form φ;P , where the spatial part P describes the shape of the heap, while
the pure part φ is a plain first-order formula that states the relations between
variables (in (2) the pure part in both pre- and postcondition is trivially true,
and hence omitted). For the spatial part, SuSLik employs the standard symbolic
heap fragment of Separation Logic [66, 75]. Informally, a symbolic heap is a
set of atomic formulas called heaplets joined with separating conjunction (∗).
The simplest kind of heaplet is a points-to assertion x 7→ e, describing a single
memory location with address x and payload e. An empty symbolic heap is
represented with emp.

To capture linked data structures, such as lists and trees, SuSLik specifica-
tions use inductive heap predicates, which are standard in Separation Logic. For
instance, the tree predicate used in (1) is inductively defined as follows:

tree(x, S) , x = 0⇒ {S = ∅; emp}
| x 6= 0⇒ {S = {v} ∪ Sl ∪ Sr;

[x, 3] ∗ x 7→ v ∗ 〈x, 1〉 7→ l ∗ 〈x, 2〉 7→ r ∗ tree(l, Sl) ∗ tree(r, Sr)}
(3)

The predicate is parametrized by the root pointer x and the set of tree elements
S. This definition consists of two guarded clauses: the first one describes the
empty tree (and applies when the root pointer is null), and the second one
describes a non-empty tree. In the second clause, a tree node is represented
by a three-element record starting at address x. Records are represented using
a generalized form of the points-to assertion with an offset : for example, the
heaplet 〈x, 1〉 7→ l describes a memory location at the address x+ 1. The block
assertion [x, 3] is an artifact of C-style memory management: it represents a
memory block of three elements at address x that has been dynamically allocated
by malloc (and hence can be de-allocated by free). The first field of the record
stores the payload v, while the other two store the addresses l and r of the left
and right subtrees, respectively. The two disjoint heaps tree(l, Sl) and tree(r, Sr)
store the two subtrees. The pure part of the second clause indicates that the
payload of the whole tree consists of v and the subtree payloads, Sl and Sr.

2.2 The Basics of Deductive Synthesis

The formal underpinning of SuSLik is a deductive inference system called Syn-
thetic Separation Logic (SSL). Given a pre-/postcondition pair P, Q, deductive
synthesis proceeds by constructing a derivation of the SSL synthesis judgment,
denoted {P}{{Q} | c, for some program c. In this derivation, c is the out-
put program, constructed while searching for the proof of the synthesis goal
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Emp
` φ⇒ ψ

{φ; emp}{{ψ; emp} | skip

Frame
{φ;P}{{ψ;Q} | c

{φ;P ∗R}{{ψ;Q ∗R} | c

Read
y is fresh a /∈ PV

[y/a]{φ; 〈x, ι〉 7→ a ∗ P}{ [y/a]{Q} | c
{φ; 〈x, ι〉 7→ a ∗ P}{{Q} | let y = ∗(x + ι); c

Write
Vars(e) ⊆ PV e 6= e′

{φ; 〈x, ι〉 7→ e ∗ P}{{ψ; 〈x, ι〉 7→ e ∗Q} | c{
φ; 〈x, ι〉 7→ e′ ∗ P

}
{{ψ; 〈x, ι〉 7→ e ∗Q}

∣∣ ∗(x + ι) = e; c

Fig. 2: Selected SSL rules (simplified).

Read

Read

Write

Write

Frame

Emp
{emp}{{emp} | skip{

x 7→ b1 ∗ y 7→ a1
}
{
{
x 7→ b1 ∗ y 7→ a1

} ∣∣∣ skip
{x 7→ b1 ∗ y 7→ b1}{

{
x 7→ b1 ∗ y 7→ a1

} ∣∣∣ ∗y = a1

{x 7→ a1 ∗ y 7→ b1}{
{
x 7→ b1 ∗ y 7→ a1

} ∣∣∣ *x = b1;

*y = a1{
x 7→ a1 ∗ y 7→ b

}
{{x 7→ b ∗ y 7→ a1}

∣∣∣ let b1 = *y;

*x = b1;

*y = a1

{
x 7→ a ∗ y 7→ b

}
{{x 7→ b ∗ y 7→ a}

∣∣ let a1 = *x;

let b1 = *y;

*x = b1;

*y = a1

Fig. 3: Derivation of swap.

{P} { {Q}. Intuitively, the output program c should satisfy the Hoare triple
{P} c {Q}. The derivation is constructed by applying inference rules, a subset of
which is presented in Fig. 2, and every inference rule “emits” a program fragment
corresponding to this deduction.

Fig. 3 shows an SSL derivation for swap, using inference rules of Fig. 2.
The derivation, read bottom-up, starts with the pre/post pair from (2) as the
synthesis goal; each rule application simplifies the goal until both the pre- and the
post-heap are empty, and might also prepend a statement (highlighted in grey)
to the output program. In the initial goal, the Read rule can be applied to the
heaplet x 7→ a to read the logical variable a from location x into a fresh program
variable a1; the second application of Read similarly reads from the location y.
At this point, the Write rule is applicable to the post-heaplet x 7→ b1 because
its right-hand side only mentions program variables and can be directly written
into the location x; note that this rule equalizes the corresponding heaplets in
the pre- and post-condition. After two applications of Write, the pre- and the
post-heap become equal and can be simply cancelled out by the Frame rule,
leaving emp on either side of the goal; the terminal rule Emp then concludes the
derivation. Although very simple, this example demonstrates the secret behind
SuSLik’s efficiency: the shape of the specification restricts the set of applicable
rules and thereby guides program synthesis.

2.3 Synthesis with Recursion and Auxiliary Functions

We now return to our introductory example—flattening a binary tree into a
doubly-linked list—whose specification (1) we repeat here for convenience:

{tree(x, S)} flatten(loc x) {dll(x, y, S)}
The definition of the tree predicate has been shown above (3); the predicate
dll(x, y, S) describes a doubly-linked list rooted at x with back-pointer y and
payload set S:

dll(x, y, S) , x = 0⇒ {S = ∅; emp}
| x 6= 0⇒ {S = {v} ∪ S′;

[x, 3] ∗ x 7→ v ∗ 〈x, 1〉 7→ n ∗ 〈x, 2〉 7→ y ∗ dll(n, x, S′)}
(4)

Note that in the spec (1) both the set S and the back-pointer y are logical
variables, but S is implicitly universally quantified (a so-called ghost variable),
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flatten (loc x) {
if (x == 0) {
} else {

let l = *(x + 1); // tree(l, Sl)
let r = *(x + 2); // tree(r, Sr)
flatten(l); // dll(l, yl, Sl)
flatten(r); // dll(r, yr, Sr)
· · ?? · · // { dll(x, y, {v} ∪ Sl ∪ Sr)

}
}

x

l r

l r

flatten flatten

???

x

Fig. 4: Intermediate synthesis state when deriving flatten.

because it occurs in the precondition, while y is existentially quantified (a so-
called existential variable), because it only occurs in the postcondition. The
reader might be wondering why use an existential here instead of a null pointer:
as we show below, such weakening is required to obtain the solution in Fig. 1;
we discuss the alternative spec and corresponding solution in Sec. 4.

At a high level, the synthesis of flatten proceeds by eagerly making recursive
calls on the left and the right sub-trees, l and r, as illustrated in Fig. 4, which
leads to the following synthesis goal:

{[x, 3] ∗ x 7→ v ∗ 〈x, 1〉 7→ l ∗ 〈x, 2〉 7→ r ∗ dll(l, yl, Sl) ∗ dll(r, yr, Sr)}
{ {dll(x, y, {v} ∪ Sl ∪ Sr)} (5)

Now the synthesizer must concatenate the two doubly-linked lists, rooted at l

and r, together with the parent node x into a single list. Since the spec gives us
no access to the last element of either of the two lists, this concatenation requires
introducing a recursive auxiliary function to traverse one of the lists to the end.
We now demonstrate how SuSLik synthesizes recursive calls and discovers the
auxiliary using a single mechanism we call cyclic program synthesis [34], inspired
by cyclic proofs in Separation Logic [11,76]. The main idea behind cyclic proofs is
that, in addition to reaching a terminal rule like Emp, a sub-goal can be “closed
off” by forming a cycle to an identical companion goal earlier in the derivation;
in SSL these cycles give rise to recursive calls.

Fig. 5 depicts a cyclic derivation of flatten. For now let us ignore the appli-
cations of the Proc rule, which do not modify the synthesis goal; their purpose
will become clear shortly. Given the initial goal (1), SuSLik first applies the
Open rule, which unfolds the definition of tree in the precondition and emits a
conditional with one branch per clause of the predicate. The first branch (x = 0)
is trivially solved by skip, since a null pointer is both an empty tree and an
empty list. The second branch is shown in Fig. 5: its precondition contains two
predicate instances tree(l, Sl) and tree(r, Sr) for the two sub-trees of x.

Now SuSLik detects that either of those instances can be unified with the
precondition tree(x, S) of the top-level goal, so it fires the Call rule, which uses
cyclic reasoning to synthesize recursive calls. More specifically, Call has two
premises: the first one synthesizes a recursive call and the second one the rest
of the program after the call. The spec of the first premise must be identical to
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{
tree(l, Sl)

}
{
{
dll(l, yl, Sl)

} ∣∣ flatten(l) .
.
.
.

{
tree(r, Sr)

}
{
{
dll(r, yr, Sr)

} ∣∣ flatten(r) .
.
.
.

{
l 7→ . . . ∗ dll(w, yw, Sw) ∗ dll(r, yr, Sr)

}
{
{
dll(l, yl, S

′)
} ∣∣ helper(r, w, l) .

.

.

.
(Read), (Write)

(Call){
x 7→ . . . ∗ 〈l, 1〉 7→ w ∗ dll(w, yw, Sw) ∗ dll(r, yr, Sr)

}
{
{
dll(x, y, S)

} ∣∣ helper(r, w, l); . . .
··· (Read), (Open), (Write){

x 7→ . . . ∗ dll(l, yl, Sl) ∗ dll(r, yr, Sr)
}
{
{
dll(x, y, S)

} ∣∣ if (l = 0) {. . .} else {. . .}
(Proc){

x 7→ . . . ∗ dll(l, yl, Sl) ∗ dll(r, yr, Sr)
}
{
{
dll(x, y, S)

} ∣∣ helper(r, l, x)

(Call){
. . . ∗ dll(l, yl, Sl) ∗ tree(r, Sr)

}
{
{
dll(x, y, S)

} ∣∣ flatten(r); helper(r, l, x)

(Call){
· · · ∗ tree(l, Sl) ∗ tree(r, Sr)

}
{
{
dll(x, y, S)

} ∣∣ flatten(l); flatten(r); . . .
··· (Open), (Read){

tree(x, S)
}
{
{
dll(x, y, S)

} ∣∣ if (x = 0) { } else {. . .}
(Proc){

tree(x, S)
}
{
{
dll(x, y, S)

} ∣∣ flatten(x)

(1)

(2)

(3)

(a)

(b)

Fig. 5: Derivation of flatten and its recursive auxiliary helper.

some earlier goal, so that it can be closed off by forming a cycle; in our example,
the back-link (1) connects the first premise back to the top-level goal. Once a
companion goal is identified, SuSLik inserts an application of Proc right above
it: its purpose is to delineate procedure boundaries, or, in other words, give a
name to the piece of code that the Call rule is trying to call. To ensure that
recursion is terminating, we must prove that tree(l, Sl) in the precondition of
the Call’s premise is strictly smaller than tree(x, S) in the precondition of the
companion (see [34] for more details about our termination checking mechanism).

After the second application of Call (to tree(r, Sr)), SuSLik arrives at the
goal (5), with two lists in the precondition (marked (a) in Fig. 5). Ignoring
again the application of Proc, which will be inserted later, SuSLik proceeds
by unfolding the list dll(l, yl, Sl) via Open, eventually arriving at the goal (b):
this goal again has two lists in the precondition but one of them is now smaller
(it is the tail of dll(l, yl, Sl)). At this point Call detects that (a sub-heap of)
goal (b) can be unified,3 with goal (a) thus forming the cycle (3), which this time
links to an internal goal in the derivation instead of the top-level goal. As before
SuSLik inserts an application of the Proc rule just above the companion goal
(a), thereby abducing an auxiliary procedure with a fresh name.

2.4 Implementation and Empirical Results

The most up-to-date implementation of SuSLik is publicly available at:

https://github.com/TyGuS/suslik

3 This is where we rely on the existential back-pointer in (1): if we replace yl with 0,
then dll(l, 0, Sl) and dll(w, yw, Sw) would not unify.

https://github.com/TyGuS/suslik
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Data Structure Id Description Proc Stmt Code/Spec Time TimeSC TimeNB

Integers
1 swap two 1 4 1.0x 0.2 1.2 0.2
2 min of two1 1 3 1.1x 0.8 3.0 1.1

Singly Linked List

3 length2 1 6 1.4x 0.4 0.5 0.6
4 max2 1 11 1.9x 3.0 7.0 4.7
5 min2 1 11 1.9x 2.9 6.7 4.1
6 singleton1 1 4 0.9x 0.2 0.2 0.2
7 deallocate 1 4 5.5x 0.2 0.2 0.2
8 initialize 1 4 1.6x 0.4 0.4 0.6
9 copy3 1 11 2.7x 0.6 1.0 393.3
10 append3 1 6 1.1x 0.4 0.4 0.6
11 delete3 1 12 2.6x 1.2 0.9 2.0
12 deallocate two 2 9 6.2x 0.2 0.2 0.2
13 append three 2 14 2.3x 1.0 2.5 1.7
14 non-destructive append 2 21 3.0x 8.0 51.5 -
15 union 2 23 5.5x 4.3 20.6 36.0
16 intersection4 3 32 7.0x 101.1 121.2 -
17 difference4 2 21 5.1x 4.7 55.0 29.5
18 deduplicate4 2 22 7.3x 1.8 2.5 5.5

Sorted list

19 prepend2 1 4 0.4x 0.2 0.3 0.3
20 insert2 1 19 3.1x 1.0 16.2 1.2
21 insertion sort2 1 7 1.2x 0.7 2.7 42.7
22 sort4 2 13 4.9x 1.0 1.5 2.9
23 reverse4 2 11 4.0x 0.7 0.7 1.4
24 merge2 2 30 4.4x 55.6 10.1 -

Doubly Linked List

25 singleton1 1 5 1.1x 0.2 0.2 0.5
26 copy 1 22 4.3x 7.2 9.9 -
27 append3 1 10 1.6x 1.7 27.2 -
28 delete3 1 19 3.7x 3.4 3.5 -
29 single to double 1 23 6.0x 0.7 0.8 4.6

List of Lists
30 deallocate 2 11 10.7x 0.2 0.3 0.3
31 flatten4 2 17 4.4x 0.6 0.6 1.9
32 length5 2 21 5.5x 22.8 - -

Binary Tree

33 size 1 9 2.5x 0.4 0.6 185.8
34 deallocate 1 6 8.0x 0.2 0.2 0.2
35 deallocate two 1 16 11.8x 0.4 0.5 0.5
36 copy 1 16 3.8x 2.5 42.9 -
37 flatten w/append 1 17 4.8x 0.4 0.6 0.7
38 flatten w/acc 1 12 2.1x 0.6 0.9 1.9
39 flatten 2 23 7.1x 1.5 1.0 5.5
40 flatten to dll in place 2 15 9.6x 11.3 - 23.2
41 flatten to dll w/null5 2 17 11.2x 106.1 1418.3 46.5

BST

42 insert2 1 19 2.8x 14.6 21.7 518.0
43 rotate left2 1 5 0.2x 6.2 7.0 -
44 rotate right2 1 5 0.2x 4.9 5.6 -
45 find min5 1 11 1.4x 66.3 80.2 -
46 find max5 1 18 2.2x 58.0 80.8 -
47 delete root2 1 18 1.3x 13.9 - -
48 from list4 2 27 5.7x 10.0 10.7 -
49 to sorted list4 3 32 7.7x 20.8 11.7 -

Rose Tree
50 deallocate 2 9 12.0x 0.2 0.3 0.2
51 flatten 3 25 8.0x 11.0 6.3 -
52 copy5 2 32 7.9x - - -

Packed Tree
53 pack5 1 16 1.6x - - -
54 unpack5 1 23 2.9x 21.0 - -

1 Jennisys [47] 2 ImpSynth [72] 3 Dryad [50] 4 Eguchi et al. [24] 5 New

Table 1: SuSLik benchmarks and results. We report the number of Procedures
generated, total number Stmt of statements in those procedures, the ratio
Code/Spec of code to specification (in AST nodes), and the synthesis time in
seconds for standard SuSLik (Time), with a simpler cost function (TimeSC )
and with no bounds on predicate unfolding and calls (TimeNB). “-” denotes
timeout after 30 minutes. Footnotes indicate the sources of benchmarks.
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Tab. 1 collects the results of running SuSLik on benchmarks from our prior
work [19,34,70,93] as well as seven new benchmarks, which we added to illustrate
various challenges discussed in subsequent sections.4 Most existing benchmarks
had been adapted from the literature on verification and synthesis [24,47,50,72].
In addition to standard textbook data structures, our benchmarks include oper-
ations on two less common data structures, which to the best of our knowledge
cannot be handled by other synthesizers. A rose tree [51] is a variable-arity tree,
where child nodes are stored in a linked list; it is described in SL by two mutually
recursive predicates (rtree for the tree and children for the list of children), and
our synthesized operations on rose trees are also mutually recursive. A packed
tree is a binary tree serialized into an array; it is interesting because operations
on packed trees use non-trivial pointer arithmetic (we discuss them in Sec. 6).

Apart from the size of each program (in statements), we also report the
ratio of code size to spec size (both in AST nodes) as a measure of synthesis
utility. For the majority of the benchmarks the generated code is larger than
the specification, sometimes significantly (up to 12x); the only exceptions are
benchmarks with very convoluted specs, such as BST rotations (benchmarks 43
and 44), or extremely simple programs, such swap from Fig. 3 (benchmark 1)
and prepending an element to a sorted list (benchmark 19).

A number of benchmarks generate more than one procedure: those pro-
grams require recursive auxiliaries [34], such as our running example flatten

from Fig. 1 (benchmark 40). It is worth mentioning that benchmarks 37 through
41 encode different versions of flattening a binary tree into a singly or doubly-
linked list: 37 and 38 are simplified versions that do not require discovering
auxiliaries because they contain additional hints from the user (a library func-
tion for appending lists in 37 and an inductive specification for flatten with a
list accumulator in 38); 39 is similar to 40 but returns a singly-linked list (and
hence requires allocation). Finally 41 is a version of 40 that uses 0 instead of y
as the back-pointer of the output list; this precludes SuSLik from generating
an auxiliary for appending two lists, and instead it discovers a slightly more
complex, but linear-time solution, which we discuss in Sec. 4.

The missing synthesis times for some benchmarks indicate that they could
not be synthesized automatically after 30 minutes, but were possible to solve in
an “interactive” mode, where the search has been given hints on how to proceed
in the case of multiple choices. We elaborate on the possibility of generating those
programs automatically in subsequent sections. Apart from regular SuSLik time
we also report time for two variations discussed in Sec. 3.

3 Proof Search

Similarly to existing deductive program synthesizers [43], SuSLik adopts best-
first And/Or search [54] to search for a program derivation. The search space
is represented as a tree with two types of nodes. An Or-node corresponds to
a synthesis goal, whose children are alternative derivations, any of which is

4 The code and benchmarks accompanying this paper are available online [35].
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sufficient to solve the goal. An And-node corresponds to a rule application,
whose children are premises, all of which need to be solved in order to build a
derivation. Each goal has a cost, which is meant to estimate how difficult it is
to solve. The search works by maintaining a worklist of Or-nodes that are yet
to be explored. In each iteration, the node with the least cost is dequeued and
expanded by applying all rules enabled according to a proof strategy ; the node’s
children are then added back to the worklist.

The proof strategy and the cost function are crucial to the performance of
the proof search. In current SuSLik implementation both are ad-hoc and brittle;
in the rest of the section we outline possible improvements to their design.

3.1 Pruning via Proof Strategies

A proof strategy is a function that takes in a synthesis goal and its ancestors in
the search tree, and returns a list of rules enabled to expand that goal. With-
out strategies, the branching factor of the search would be impractically large.
SuSLik’s strategies are based on the observation that some orders of rule appli-
cations are redundant, and hence can be eliminated from consideration without
loss of completeness. Identifying redundant orders is non-trivial and is currently
done informally, increasing the risk of introducing incomplete strategies.

For example, SuSLik’s proof strategy precludes applying Call if Close (a
rule that unfolds a predicate in the postcondition) has been applied earlier in
the derivation. The reasoning is that Call only operates on the precondition,
while Close only operates on the postcondition, hence the two rule applications
must be independent, and can always be reordered so that Call is applied first.
But it gets more complicated once we let Call abduce auxiliaries: now applying
Call after Close could be useful to give it access to more companion goals,
whose postconditions differ from that of the top-level goal. Consider for example
copying a rose tree with the following spec:

{r 7→ x ∗ rtree(x, S)} void rtcopy(loc r) {r 7→ y ∗ rtree(y, S) ∗ rtree(x, S)} (6)

Copying a rose tree seems to require two mutually-recursive procedures: the
main one (6) that copies an rtree and an auxiliary one that copies the list of
its children, and hence has children instead of rtree in its postcondition. To our
surprise, however, our proof strategy does not preclude the derivation of rtcopy
(see benchmark 52 in Tab. 1): in this derivation, the auxiliary returns two rtrees,
which are then unfolded after the call to extract the relevant children.

Future Directions. To develop more principled yet efficient strategies, we need to
turn to the proof theory community, which has accumulated a rich body of work
on efficient proof search. One technique of particular interest—focusing [53]—
defines a canonical representation of proofs in linear logic [29] (more precisely, a
canonical ordering on the application of proof rules, which can be enforced during
the search by tracing local properties). Existing program synthesis work [27,79]
has leveraged ideas from focusing, but only in the setting of type inhabitation
for pure lambda calculi. SuSLik takes advantage of some of these ideas, too: it
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designates some rules, such as Read and logical normalization rules, to be in-
vertible; these rules can be applied eagerly and need not be backtracked. Beyond
focusing, we might explore the applicability of more advanced canonical repre-
sentations of programs and proofs [1, 33, 79]. We believe that these techniques
will help us formalize and leverage inherent SSL symmetries, such as that two
programs operating on disjoint parts of the heap can be executed in any order.

3.2 Prioritization via a Cost Function

When selecting the next goal to expand, SuSLik’s best-first search relies on a
heuristic cost function of the form (with p, w > 1):

cost({φ, P}{ {ψ,Q}) = p ∗ cost(P ) + cost(Q) cost(p(e)u,c) = w ∗ (1 + u+ c)
cost(P ∗Q) = cost(P ) + cost(Q) cost( ) = 1

In other words, a cost of a synthesis goal is a (weighted) total cost of all heaplets
in its pre- and postcondition. The intuition is that the synthesizer needs to
eliminate all these heaplets in order to apply the terminal Emp rule, so each
heaplet contributes to the goal being “harder to solve”. Predicates are more
expensive than other heaplets, because they can be unfolded and produce more
heaplets. In addition, for each predicate instance p(e)u,c SuSLik keeps track of
the number of times it has been unfolded (u) or has gone through a call (c);
factoring this into the cost prevents the search from getting stuck in an infinite
chain of unfolding or calls. Finally, it can be useful to give a higher weight to the
heaplets in the precondition, because many rules that create expensive search
branches (most notably Call) operate on the precondition.

Our implementation currently uses p = 3, w = 2, which is a result of manual
tuning. Column TimeSC in Tab. 1 shows how synthesis times change if we set
p = 1. As you can see, SuSLik’s performance is quite sensitive even to this small
change: four benchmarks, which originally took under 30 seconds, now time out
after 30 minutes, while benchmark 24, on the contrary, is solved five times faster.
These results suggest that different synthesis tasks benefit from different search
parameters, and that we might need a mechanism to tune SuSLik ’s search
strategy for a given synthesis task.

In addition, because the cost heuristic is not efficient enough at guiding
the search, we introduce hard bounds on the number of unfoldings and calls u
and c for a predicate instance. Column TimeNB in Tab. 1 shows the results of
running SuSLik without these bounds: as you can see, 19 benchmarks time out
(compared to only two in the original setup). The requirement to guess sufficient
bounds for each benchmark hampers the usability of SuSLik, hence in the future
we would like to replace them with a better cost function.

Future Directions. To guide the search in a more intelligent and flexible way, we
turn to extensive recent work on using learned models to guide proof search [8,28,
49,78,95] and program synthesis [5,15,39,46,55,82]. Guiding deductive synthesis
would most likely require a non-trivial combination of these two lines of work.

In the area of proof search, existing techniques are used to select the next
strategy in a proof assistant script [59,60,78,95], or select a subset of clauses to
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use in a first-order resolutions proof [9, 49]. Although these techniques are not
directly applicable to our context, we can likely borrow some high-level insights,
such as two-phased search [49], which applies a slow neural heuristic to make
important decisions in early stages of search (e.g., which predicate instances
to unfold), and then less accurate but much faster hand-coded heuristics take
over. Among the many techniques for guiding program synthesis, neural-guided
deductive search (NGDS) [39] might be the natural place to start, since it shows
how to condition the next synthesis step on the current synthesis sub-goal.

At the same time we also expect the limited size of the available dataset (i.e.,
the benchmarks from Tab. 1) would hamper the application of deep learning to
SuSLik. An alternative approach is to encode feature extractors [58] and apply
machine learning algorithms to the result of such feature extractors. Another
approach is to learn a coarse-grained model from available data and then adjust it
during search, based on the feedback from incomplete derivations, as in [6,15,82].

4 Completeness

Soundness and completeness are desirable properties of synthesis algorithms. In
our case, it is natural to formalize these properties relative to an underlying ver-
ification logic, which defines Hoare triples {P} c {Q}, with the total correctness
interpretation “starting from a state satisfying P , program c will execute without
memory errors and terminate in a state satisfying Q”. This logic can be defined
in the style of Smallfoot [7], using a combination of symbolic execution rules
and logical rules, with the addition of cyclic proofs to handle recursion [76].

Relative soundness means that any solution SuSLik finds can be verified:
∀P ,Q, c. P{Q | c ⇒ {P} c {Q}. Relative completeness means that whenever
there exists a verifiable program, SuSLik can find one: ∀P ,Q.(∃c.{P} c {Q})⇒
(∃c′. P{Q | c′). Proving relative soundness is rather straightforward, because
SSL rules are essentially more restrictive versions of verification rules, hence an
SSL derivation can be rewritten by translating every P{Q | c into {P} c {Q}.5
Completeness on the other hand is quite tricky, exactly because SSL rules im-
pose more restrictions on the pre- and postconditions, in order to avoid blind
enumeration of programs and instead guide synthesis by the spec. In the rest of
this section we look into two major sources of relative incompleteness of SSL:
recursive auxiliaries and pure reasoning.

4.1 Recursive Auxiliaries

A common assumption and source of incompleteness in recursive program syn-
thesis [43, 67, 69] is that (1) synthesis is performed one function f at a time: if
auxiliaries are required, their specifications are supplied explicitly; and (2) the
specification Φ of f is inductive: one can prove that Φ holds of f ’s body assuming
it holds of each recursive call. This restriction hampers the usability of synthesiz-
ers, because the user must guess all required auxiliaries and possibly generalize Φ
to make it inductive, which in most cases requires knowing the implementation

5 In our recent work we have developed an automatic translation from SSL derivations
into three Coq-based verification logics [93].
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1 intersect (loc r, y)
2 {
3 let x = *r;
4 if (x == 0) {
5 } else {
6 let v = *x;
7 let n = *(x + 1);
8 *r = n;
9 intersect(r, y);

10 insert(v, x, r, y);
11 }
12 }

13 insert(int v, loc x, r, y) {
14 let z = *r;
15 if (y == 0) { free(x); }
16 else {
17 let vy = *y;
18 let n = *(y + 1);
19 if (v == vy) {
20 *(x + 1) = z;
21 *r = x;
22 } else {
23 insert(v, x, r, n);
24 }}}

Fig. 6: Intersection of lists with unique elements. This implementation cannot be
synthesized from (7), but a slight modification of it can, as explained in the text.

of f . As we have shown in Sec. 2, SuSLik mitigates these limitations to some
extent, as it is able to discover auxiliary functions, such as helper in Fig. 1,
automatically. To make the search tractable, however, cyclic synthesis restricts
the space of auxiliary specifications considered by SuSLik to synthesis goals ob-
served earlier in the derivation. Although this restriction is easy to state, we still
do not have a formal characterization (or even a firm intuitive understanding)
of the class of auxiliaries that SSL fundamentally can and cannot derive. Below
we illustrate the intricacies on a series of examples.

Generalizing Pure Specs. One reason SuSLik might fail to abduce an auxiliary
is that the pure part of the companion’s goal might be too specific for the recur-
sive call. Let us illustrate this phenomenon using the list intersection problem
(benchmark 16 in Tab. 1) with the following specification, where ulist denotes a
singly-linked list with unique elements:

{r 7→ x ∗ ulist(x, Sx) ∗ ulist(y, Sy)}{ {r 7→ z ∗ ulist(z, Sx ∩ Sy) ∗ ulist(y, Sy)} (7)

Given this specification, we expected SuSLik to generate the program shown
in Fig. 6. To compute the intersection of two input lists rooted in x and y,
this program first computes the intersection of y and the tail of x (line 9). The
auxiliary insert then traverses y to check if it contains v (the head of x), and if
so, inserts it into the intermediate result z (line 23), and otherwise, de-allocates
the node x (line 15). This program, however, cannot be derived by SSL; to see
why let us take a closer look at the synthesis goal after line 9, which serves as
the spec for insert:

{Sx = {v} ∪ S1 ∧ v /∈ S1 ∧ Sz = S1 ∩ Sy; r 7→ z ∗ ulist(z, Sz) ∗ ulist(y, Sy) ∗
x 7→ v ∗ . . .}{ {S′

z = Sx ∩ Sy; r 7→ z′ ∗ ulist(z′, S′
z) ∗ ulist(y, Sy)} (8)

The issue here is that the pure spec is too specific: the precondition Sz = S1 ∩ Sy
and the postcondition S′

z = Sx ∩ Sy define the behavior of this function in terms
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of the elements of input lists x and y, but the recursive call in line 23 replaces
y with its tail n so these specifications do not hold anymore. The solution is to
generalize the pure part of spec (8), so that it does not refer to Sx:

{v /∈ Sz; r 7→ z ∗ ulist(z, Sz) ∗ ulist(y, Sy) ∗ x 7→ v ∗ . . .}
{ {S′

z = Sz ∪ ({v} ∩ Sy); r 7→ z′ ∗ ulist(z′, S′
z) ∗ ulist(y, Sy)} (9)

Alas, such a transformation of the pure spec is beyond SuSLik’s capabilities.

13 insert(int v, loc x, r, y) {
14 let z = *r;
15 if (z == 0) {
16 intersectOne(v, x, r, y)
17 } else {
18 let vz = *z;
19 let n = *(z + 1);
20 *r = n;
21 *z = v;
22 insert(v, z, r, y);
23 ...
24 }}

To our surprise, SuSLik was nev-
ertheless able to generate a solution
to this problem by finding an alterna-
tive implementation for insert, shown
on the right. This implementation ap-
pends v to z instead of prepending
it; more specifically, insert starts by
traversing z, and once it reaches the
base case, it calls another auxiliary,
intersectOne (omitted for brevity),
which traverses y and returns a list
whose elements are {v} ∩ Sy (i.e., a list with at most one element), which is
then appended to the intersection. At a first glance it is unclear how this super-
fluous traversal of z can possibly help with generalizing the spec (8); the key to
this mystery lies in the recursive call in line 22: note that as the second parame-
ter, instead of the input list x, it actually uses z after replacing its head element
with v! This substitution makes the overly restrictive spec of (8) actually hold.

Of course this implementation is overly convoluted and inefficient, so in the
future we plan equip SuSLik with the capability to generalize pure specs. To
this end, we plan to combine deductive synthesis with invariant inference tech-
niques via bi-abduction [86]. For instance, whenever the Call rule identifies a
companion goal, we can replace its pure pre- and post-condition φ and ψ with
unknown predicates Uφ and Uψ. During synthesis, we would maintain a set of
Constrained Horn Clauses over these unknown predicates (starting with: φ⇒ Uφ
and Uψ ⇒ ψ); these constraints can be solved incrementally, like in our prior
work [69], pruning the current derivation whenever the constraints have no so-
lution. If synthesis succeeds, the assignment to Uφ and Uψ corresponds to the
inductive generalization of the original auxiliary spec. Since only the pure part
of the spec is generalized, the spatial part can still be used to guide synthesis.

Accumulator Parameters. It is common practice to introduce an auxiliary re-
cursive function to thread through additional data in the form of “accumulator”
inputs or outputs. Cyclic program synthesis has trouble conjuring up arbitrary
accumulators, since it constructs auxiliary specifications from the original spec-
ification via unfolding and making recursive calls.

Consider linked list reversal (23 in Tab. 1): SuSLik generates an inefficient,
quadratic version of this program, which reverses the tail of the list and then
appends its head to the result (hence discovering “append element” as the auxil-
iary). The canonical linear-time version of reversal requires an auxiliary with two
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1 flatten (loc x) {
2 if (x == 0) {
3 } else {
4 let l = *(x + 1);
5 let r = *(x + 2);
6 flatten(l);
7 helper(r, l, x);
8 }
9 }

10

11 helper (loc r, loc l, loc x) {
12 if (r == 0) {
13 if (l == 0) {} else {

14 *(l + 2) = x;
15 }
16 } else {
17 let rl = *(r + 1);
18 let rr = *(r + 2);
19 *(r + 2) = rl;
20 *(r + 1) = l;
21 helper(rl, l, r);
22 *(x + 2) = rr;
23 *(x + 1) = r;
24 helper(rr, r, x);
25 }
26 }

Fig. 7: Flattening a tree into a DLL in linear time.

list arguments—the already reversed portion and the portion yet to be reversed—
and hence is outside of SuSLik’s search space: cyclic synthesis cannot encounter
a precondition with two lists, as it starts with a single list predicate in the pre-
condition, and neither unfolding nor making a call can duplicate it.

There are examples, however, where SuSLik surprized us by inventing the
necessary accumulator parameters. Consider again our running example, flat-
tening a tree into a doubly-linked list. Recall that given the spec (1), SuSLik
synthesizes an inefficient implementation with quadratic complexity. A canon-
ical linear-time solution requires an auxiliary that takes as input a tree and a
list accumulator, and simply prepends every traversed tree element to this list;
because of the accumulator parameter, discovering this auxiliary seems to be
outside of scope of cyclic synthesis. To our surprise, SuSLik is actually able
to synthesize a linear-time version of flatten, shown in Fig. 7 (and encoded as
benchmark 41 in Tab. 1), given the following specification:

{tree(x, S)} flatten (loc x) {dll(x, 0, S)} (10)

Compared with (1), the existential back-pointer y of the output list is replaced
with the null-pointer 0, precluding SuSLik from traversing the output of the
recursive call (cf. Sec. 2), which in this case comes in handy, since it enforces
that every tree element is traversed only once.

The new solution starts the same way as the old one, by flattening the left
sub-tree l, which leads to the following synthesis goal after line 6:

{dll(l, 0, Sl) ∗ tree(r, Sr) ∗ [x, 3] ∗ x 7→ v ∗ . . .}{ {dll(x, 0, {v} ∪ Sl ∪ Sr}) (11)

As you can see, the precondition now contains a tree and a list! Since it cannot
recurse on the list dll(l, 0, Sl), the synthesizer instead proceeds to unfold the
tree tree(r, Sr) and then use (11) as a companion for two recursive calls on r’s
sub-trees, turning (11) into a specification for helper in Fig. 7.

4.2 Pure Reasoning

To enable synthesis of the wide range of programs demonstrated in Sec. 2, SuS-
Lik must support a sufficiently rich logic of pure formulas. Our implementation
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Read

∃-Intro

Solve-∃

Write

Frame

Emp
{a1 = a+ 1; emp}{ {emp} | skip{

a1 = a+ 1; x 7→ a1 + 1
}
{
{
x 7→ a1 + 1

}
| skip

{a1 = a+ 1; x 7→ a1}{
{
x 7→ a1 + 1

}
| ∗ x = a1 + 1{

a1 = a+ 1 ; x 7→ a1

}
{
{
y = a+ 2 ; x 7→ y

}
| ∗ x = a1 + 1

{a1 = a+ 1; x 7→ a1}{
{
x 7→ a+ 1

}
| ∗ x = a1 + 1{

x 7→ a+ 1
}
{ {x 7→ a+ 1} | let a1 = ∗x; ∗x = a1 + 1

Fig. 8: SSL derivation for goal (12).

currently supports linear integer arithmetic and sets, but the general idea is to
make SuSLik parametric wrt. the pure logic (as long as it can be translated into
an SMT-decidable theory), and outsource all pure reasoning to an SMT solver.

In the context of synthesis, however, outsourcing pure reasoning is trickier
than it might seem (or at least trickier than in the context of verification).
Consider the following seemingly trivial goal:

{x 7→ a+ 10}{ {x 7→ a+ 11} (12)

This goal can be solved by incrementing the value stored in x, i.e., by the program
let a1 = *x; *x = a1 + 1. Verifying this program is completely straightforward:
a typical SL verifier would use symbolic execution to obtain the final symbolic
state {x 7→ a+ 10 + 1}, reducing verification to a trivial SMT query ∃a.a+ 10 +
1 6= a+ 11. Synthesizing this program, on the other hand, requires guessing the
program expression a1 + 1, which does not occur anywhere in the specification.

To avoid blind enumeration of program expressions, SuSLik attempts to
reduce the goal (12) to a syntax-guided synthesis (SyGuS) query [2]:

∃f.∀x, a, a1.a1 = a+ 10 =⇒ f(x, a1) = a+ 11

Queries like this can be outsourced to numerous existing SyGuS solvers [3, 32,
46, 77]; SuSLik uses CVC4 [74] for this purpose. Because SyGuS queries are
expensive, the challenge is to design SSL rules to issue these queries sparingly.

Fig. 8 shows how two pure reasoning rules, ∃-Intro and Solve-∃, work to-
gether to solve the goal (12). ∃-Intro is triggered by the postcondition heaplet
x 7→ a+ 1, whose right-hand side is a ghost expression, which blocks the appli-
cation of Write. ∃-Intro replaces the ghost expression with a program-level
existential variable y (i.e. an existential which can only be instantiated with
program expressions). Now Solve-∃ takes over: this rule constructs a SyGuS
query using all existentials in the current goal as unknown terms and the pure
pre- and and post-condition as the SyGuS specification. In this case, the SyGuS
query succeeds, replacing the existential y with the program term a1 + 1. From
here on, the regular Write rule finishes the job.

Note that although the goal (12) is artificially simplified, it is extracted from
a real problem: benchmark 32 in Tab. 1, length of a list of lists. In fact the
versions of SuSLik reported in our previous work were incapable of solving this
benchmark because they were lacking the ∃-Intro rule, which we only intro-
duced recently. Although the current combination of pure reasoning rules works
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well for all our benchmarks, it is still incomplete (even modulo the completeness
of the pure synthesizer), because, for efficiency reasons, Solve-∃ only returns
a single solution to the SyGuS problem, even if the pure specification allows
for many. This might be insufficient when Solve-∃ is called before the com-
plete pure postcondition is known (for example, to synthesize actual arguments
for a call). Developing an approach to outsourcing pure reasoning that is both
complete and efficient is an open challenge for future work.

5 Quality of Synthesized Programs

Should we hope that the output of deductive synthesis will be directly integrated
into high-assurance software, we need to make sure that the code it generates
is not only correct, but also efficient, concise, readable, and maintainable. The
current implementation of SuSLik does not take any of these considerations
into account during synthesis; in this section we discuss two of these challenges,
and outline some directions towards addressing them.

5.1 Performance

We have already mentioned examples of SuSLik solutions with sub-optimal
asymptotic complexity in Sec. 4: for example, SuSLik generates quadratic pro-
grams for linked list reversal and tree flattening instead of optimal linear-time
versions. Although a linear-time solution to tree flattening from Fig. 7 is actually
within SuSLik’s search space (even with the more general spec (1)), SuSLik
opts for the sub-optimal one simply because it has no ability to reason about
performance and hence has no reason to prefer one over the other.

To enable SuSLik to pick the more efficient of the two implementations, we
can integrate SSL with a resource logic, such as [56], following the recipe from
our prior work on resource-guided synthesis [44]. One option is to annotate each
points-to heaplet x 7→p e with non-negative potential p, which can be used to pay
for execution of statements, according to a user-defined cost model. Predicate
definitions can describe how potential is allocated inside the data structure; for
example, we can define a tree with p units of potential per node as follows:

tree(x, S, p) , x = 0⇒ {S = ∅; emp}
| x 6= 0⇒ {S = {v} ∪ Sl ∪ Sr;

[x, 3] ∗ x 7→p v ∗ 〈x, 1〉 7→ l ∗ 〈x, 2〉 7→ r ∗ tree(l, Sl, p) ∗ tree(r, Sr, p)}
We can now annotate the specification (1) with potentials as follows:

{tree(x, S, 2)} flatten (loc x) {dll(x, y, S, 0)} (13)

If we define the cost of a procedure call to be 1, and the cost of other state-
ments to be 0, this specification guarantees that flatten only makes a number
of recursive calls that is linear in the size of the tree (namely, two calls per tree
element). With this specification, the inefficient solution in Fig. 1 does not verify:
since helper traverses the list r, it must assign some positive potential to every
element of this list in order to pay for the call in line 24, but the specification
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(13) assigns no potential to the output list. On the other hand, the efficient
solution in Fig. 7 verifies: after the recursive call to flatten in line 6 we ob-
tain {dll(l, y, Sl, 0) ∗ tree(r, Sr, 2) ∗ . . .}; helper verifies against this specification
since it only traverses the tree r and hence can use the two units of potential
stored in its root to pay for the two calls in lines 21 and 24. In fact, the user need
not guess the precise amount of potential p = 2 in the spec (13): any constant
p ≥ 2 would work to reject the quadratic solution and admit the linear one.

5.2 Readability

Although readability is hard to quantify, we have noticed several patterns in
SuSLik-generated code that are obviously unnatural to a human programmer,
and hence need to be addressed. Perhaps the most interesting problem arises due
to inference of recursive auxiliaries: because SuSLik has no notion of abstraction
boundaries, the allocation of work between the different procedures is often sub-
optimal. One example is benchmark 39 in Tab. 1, which flattens a binary tree into
a singly-linked list. This example is discussed in detail in our prior work [34]; the
solution is similar to flatten from Fig. 1, except that this transformation cannot
be performed in-place: instead, the original tree nodes have to be deallocated,
and new list nodes have to be allocated. Importantly, in SuSLik’s solution,
tree nodes are deallocated inside the helper function, whose main purpose is to
append two lists. A better design would be to perform deallocation in the main
function, so that helper has no knowledge of tree nodes whatsoever. To address
this issue in the future we might consider different quality metrics when abducing
specs for auxiliaries, such as encouraging all heaplets generated by unfolding the
same predicate to be processed by the same procedure.

6 Applications

6.1 Program Repair

In our statement of the synthesis problem, complete programs are generated
from scratch from Hoare-style specifications. But what if the program is already
written previously but is buggy—would it be possible to automatically find a
fix for it if we know what its specification is? This line of research, employ-
ing deductive synthesis for automated program repair [30], known as deductive
program repair, has been explored in the past for functional programs [42] and
simple memory safety properties [90], and only recently has been extended to
heap-manipulating programs using the approach pioneered by SuSLik [63].

The SL-based deductive repair relies on existing automated deductive ver-
ifiers [17] to identify a buggy code fragment (which breaks the verification),
followed by the discovery of the correct specification, which is used for the sub-
sequent synthesis of the patch. The main shortcoming of the existing SL-based
repair tools is the need to provide the top-level specs for the procedures in order
to enable their verification (and potential bug discovery) in the first place. As
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ptree(x, n, S) , {x 7→ tag ∗ ptree′(x, tag , n, S)}
ptree′(x, tag , n, S) , tag = 1⇒ {n = 1 ∧ S = {v}; 〈x, 1〉 7→ v}

| tag = 0⇒ {n = 1 + nl + nr ∧
S = {v} ∪ Sl ∪ Sr;
〈x, 1〉 7→ v ∗ ptree(x+ 2, nl, Sl)
∗ ptree(x+ 2 · (1 + nl), nr, Sr)}

Fig. 9: (Left) Pointer-based and packed representations of the same binary tree.
(Right) An SL predicate for packed trees.

a way to improve the utility of those tools, a promising direction is to employ
existing static analyzers, such as Infer [12], to derive those specifications by
abducing them from the usages of the corresponding functions [13].

6.2 Data Migration and Serialization

The pay-off of deductive synthesis is especially high for programs like tree flat-
tening, which change the internal representation of a data structure without
changing its payload; these programs usually have a simple specification, while
their implementations can get much more intricate. One example where such
programs can be useful is migration of persistent data: thanks to recent advance-
ments in non-volatile memory (NVM) [40,45,84], large amounts of data are now
persistently stored in memory, in arbitrary programmer-defined data structures.
If the programmer decides to change the data structure, data has to be migrated
between the old and the new representations, and writing those migration func-
tions by hand can be tedious. In addition, reallocating large data structures is
often prohibitively expensive, so the migration needs to be performed in-place,
without reallocation. As we have demonstrated in our running example, this is
something that can be easily specified and synthesized in SuSLik.

Another real-world application of this kind of programs is data serialization
and de-serialization, where data is transformed back and forth between a stan-
dard pointer-based representation and an array so that it can be written to disk
or sent over the network [16,91]. For example, Fig. 9 shows a pointer-based full
binary tree and its serialized (or packed) representation, where the nodes are
laid out sequentially in pre-order [92]. The right-hand-side of the figure shows
an SL predicate ptree that describes packed trees: every node x starts with a tag
that indicates whether it is a leaf; if x is not a leaf, its left child starts at the
address x + 2 and its right child at x + 2 · (1 + nl), where nl is the size of the
left child, which is typically unknown at the level of the program.

Imagine a programmer wants to synthesize functions that translate between
these two representations, i.e., pack and unpack the tree. The most natural spec-
ification for unpack would be:

{r 7→ x ∗ packed(x, sz , S)}unpack_simple(loc r)

{
r 7→ y ∗ packed(x, sz , S)

∗ tree(y, sz , S)

}
(14)
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This specification, however, cannot be implemented in SSL: when x is an internal
node, we do not know the address of its right subtree, so we have nothing to
pass into the second recursive call. Instead unpack must traverse the packed tree
and discover the address of the right subtree by moving past the end of the left
subtree; this can be implemented by returning the address past the end of the
ptree together with the root of the newly built tree, as a record:

{r 7→ x ∗ 〈r, 1〉 7→ ∗ . . .} unpack(loc r) {r 7→ x+ 2 · sz ∗ 〈r, 1〉 7→ y ∗ . . .} (15)

With this specification, SuSLik is able to synthesize unpack in 20 seconds (bench-
mark 54 in Tab. 1); as for pack (benchmark 53), it is within the search space
(which we confirmed in interactive mode) but automatic search currently times
out after 30 minutes. In the future, it would be great if SuSLik could automati-
cally discover an auxiliary with specification (15), given only (14) as inputs; this
is similar to the problem of discovering accumulator parameters, which we dis-
cussed in Sec. 4, and is outside of capabilities of cyclic synthesis at the moment.

6.3 Fine-Grained Concurrency

Finally, we envision that deductive logic-based synthesis will make it possible to
tackle the challenge of synthesizing provably correct concurrent libraries. The
most efficient shared-memory concurrent programs implement custom synchro-
nization patterns via fine-grained primitives, such as compare-and-set (CAS).
Due to sophisticated interference scenarios between threads, reasoning about
such programs is particularly challenging and error-prone, and is the reason for
the existence of many extensions of Concurrent Separation Logic (CSL) [10,65]
for verification of fine-grained concurrency [22,23,36,38,61,85,87–89].

For instance, Fine-Grained Concurrent Separation Logic (FCSL) [61,80,81],
takes a very specific approach to fine-grained concurrency verification, following
the tradition of logics such as LRG [25] and CAP [22] and building on the idea
of splitting the specification of a concurrent library to a resource protocol and
Hoare-style pre/postconditions. State-of-the art automated tools for fine-grained
concurrency verification require one to describe both the protocol and Hoare-style
pre/postconditions for the methods to be verified [21, 94]. We believe, it should
be possible to take those two components and instead synthesize the concurrent
method implementations. The resource protocol will provide an extended set of
language primitives to compose programs from. Those data structure-specific
primitives can be easily specified in FCSL and contribute derived inference rules
describing when these primitives can be used safely.
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