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Abstract
For the past 18 months, we have been continuously devel-
oping Veil, an open-source framework for automated and
interactive verification of transition systems, entirely embed-
ded in the Lean proof assistant. Unlike traditional verifiers,
which are implemented as standalone tools and (optionally)
use proof assistants as backend certificate checkers, Veil is a
Lean library, with all its functionality entirely embedded in
the proof assistant. We believe this approach has significant
advantages over traditional verifiers and that, in the near
future, more verifiers will be built in this way. Nonetheless,
Lean’s extraordinary meta-programming facilities—like all
powerful tools—can prove to be both a blessing and a curse,
and it is not at all difficult to create an unmaintainable mess.
In this talk, we describe our vision for building verifiers in
Lean, and share our experience of writing (and rewriting)
Veil, and the lessons we have learned along the way.

1 Introduction
Auto-active verifiers like Dafny [14], F★ [27], and Viper [18]
have demonstrated that automated verification scales to real-
istic software systems. These tools strike a pragmatic balance:
they provide substantial automation through SMT solvers,
while allowing users to guide the proof search process when
automation fails by providing additional assertions. However,
existing auto-active verifiers face three persistent challenges.
First, their trusted computing bases (TCBs) are large, encom-
passing, at the very least, the language semantics axiomatisa-
tion, the VC generator, and the SMT solver(s) used. Second,
when the automation fails, the user experience degrades
significantly—often, the user has to guess which additional
assertions might guide the SMT solver’s proof search process
along productive paths, without having any visibility into
the the solver’s internal state. Third, because the language
of assertions is limited to first-order logic, certain properties
of interest (e.g., relational properties like refinement) are not
directly expressible in the logic and must instead be verified
on artificially constructed programs (e.g., product programs).
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The Lean embedding thesis. We claim that by building
the entire verifier inside a proof assistant such as Lean, all
of these challenges are addressed. The key is to use Lean
not just as a backend certificate checker, as done in prior
work [26], but to have Lean “own” the entire user experience.
Thanks to its powerful meta-programming facilities [22],
Lean is a customisable proof assistant. As such, it can be
used to build an entire verifier, which piggy-backs on top of
Lean’s existing functionality for parsing, its rich logic and
proof automation, as well as, importantly, its IDE integration
for syntax highlighting, highlighting of failed assertions,
displaying counter-examples via the Lean infoview, etc. With
this framing, auto-active verifiers become simply domain-
specific extensions of general-purpose proof assistants like
Lean. The philosophy is simple:

All goals are Lean goals.
All proofs are Lean proofs.

All UI is Lean UI.

The benefits of this approach are manifold:

1. No boilerplate: there is no need to implement a custom
parser, LSP integration, IDE extensions, etc. Lean provides
all these amenities out of the box.

2. Powerful automation ecosystem: Lean provides a rich
ecosystem of proof automation tools, including tactics like
native simp and omega, customisable proof search tactics
such as aesop [15], SMT integration (with proof recon-
struction) via Lean-Auto [24] and Lean-SMT [17], and the
emerging and increasingly powerful grind tactic.

3. Seamless fallback to interactive proofs: if all VCs
are Lean proof goals, users can fall back to interactive
proofs using Lean tactics (including domain-specific tac-
tics) whenever SMT-based proof automation fails.

4. Expressive logic: one can use Lean’s rich logic to di-
rectly encode complex properties, including refinement,
or properties involving higher-order quantification. Such
properties can then be reduced to first-order formulas via
tactics, to be automatically solved via SMT.
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5. Reduced TCB: it is possible and often easy to prove the
soundness of different components of the verifier, reduc-
ing the TCB to that of Lean itself.

2 Unified Multi-Modal Verification in Lean
Veil is a framework for multi-modal verification of transi-
tion systems, embedded in the Lean proof assistant [23]. We
developed it out of frustration with existing tools used for
modelling and verifying distributed protocols. In particular,
we were unsatisfied with both TLA+ [12] and Ivy [16, 20], the
two most popular tools in this space. Both of these tools are
great in some respects: TLA+ is amazing for modelling proto-
cols and quickly testing them via concrete state model check-
ing using TLC [30]. In principle, one can also symbolically
model check TLA+ specifications using Apalache [10, 19] and
semi-automatically prove properties using TLAPS [4], but
the tooling for these tasks is less user-friendly and outside
the default path, and thus, in practice, many people treat
TLA+ as a fancy DSL for breadth-first search [9]. Ivy is ex-
traordinarily powerful for proving decidable properties of
distributed protocols using SMT. It also supports symbolic
model checking and even tactic-based proofs [16], but again,
these feel like bolt-ons rather than core features of the tool.
Zawinski’s Law humorously states that “every program

attempts to expand until it can read mail. Those programs
which cannot so expand are replaced by ones which can.”1
Unfortuantely, something similar is happening with program
verifiers. We half-jokingly postulate the following law:

Every verifier expands until it contains an ad hoc,
bug-ridden, unusable implementation of half of an

interactive theorem prover. Those verifiers which cannot
so expand are replaced by ones which can.

There is a good reason for this: testing and automated
verification is what people want. The more you can auto-
mate, the better. But you cannot automate everything, and
eventually, you will need to resort to interactive proofs.

2.1 A Unified Approach
Veilwas built to avoid this trap.We still prioritise automation,
like existing verifiers, but by embedding our tool entirely in
Lean, we also provide a seamless fallback to a state-of-the-art
interactive theorem prover when required. Put another way,
Veil can be thought of as a domain-specific extension of Lean.
It provides the best of all worlds. The user is encouraged, but
not required, to model their protocol in an Ivy-style domain-
specific language which ensures verification conditions fall
in a decidable fragment of first-order logic. This is the all-
inclusive path, where Veil offers push-button verification and
symbolic model checking, both powered by SMT. But users
who eschew the all-inclusive path because their specification
1Greenspun’s Tenth Rule is another take on a similar phenomenon.

is not easily expressible in decidable FOL are not left in the
lurch. They still get TLC-style concrete state model checking
to test their specifications, as well as the full power of Lean
to interactively prove properties when required. Moreover,
Veil’s architecture is such that, as proof automation (e.g., the
grind tactic) becomes more powerful, users benefit without
having to change their workflow: Veil transparently invokes
all the automation tools at its disposal for every goal.

Fig. 1 gives a taste of Veil’s capabilities. The protocol model
along with its safety specification are defined in Fig. 1a, in a
DSL heavily inspired by Ivy’s Relational Modelling Language
(RML) [20]. Within the same Lean file, users can invoke
bounded model checking to test that the protocol admits
non-trivial executions (lines 33–36) and does not trivially
violate the safety specification (lines 39–42). Moreover, since
the specification comes with invariant annotations, users
can invoke Veil’s push-button verification to automatically
verify that the protocol preserves the invariants (line 48).
The #check_invariants command checks that every invari-
ant clause is preserved by every transition—in this case, by
invoking an external SMT solver. The results are displayed
directly in the editor InfoView. If an invariant is not pre-
served, a concrete counter-example to induction (CTI) is
displayed, allowing the user to refine their specification with
an additional invariant clause that eliminates the CTI, re-
peating the process until an inductive invariant is discovered.
Moreover, external SMT solvers do not have to be trusted:
Veil supports proof reconstruction (at a 3-5x performance
penalty) using Lean-SMT [17] (line 14). Finally, if the user
issues the #check_invariants? command (not shown), Veil
prints a theorem template like the one on lines 51–56, which
the user can prove manually using arbitrary Lean tactics,
as shown on lines 58–62. (This is one of the theorems that
was proven automatically at line 48.) All this occurs within a
unified tool, fully integrated with the Lean ecosystem, with
a seamless transition between different verification styles.

2.2 A Principled Approach
Besides the user experience benefits, embedding Veil in Lean
also allows us to greatly reduce the trusted computing base
of our tool. The different verification styles offered by Veil
are supported by a unified semantic framework, fully for-
malised and proven sound in Lean. Importantly, the mecha-
nised meta-theory serves as the actual implementation of our
verification condition generators. Practically, this means that
users of Veil only have to trust the Veil frontend (i.e., syntax
elaboration), the Lean compiler (which is used to execute the
frontend code), and the Lean kernel (which is used to check
the proofs). Moreover, for the more paranoid, Veil allows
transparent desugaring to the underlying Lean definitions
and theorem statements, which can be manually inspected
for correctness—thus reducing the TCB to merely the Lean
kernel. This is conceptually similar to translation validation
modes of existing verifiers like Viper [5, 21], but with a much
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1 type node

2 instantiate tot : TotalOrder node −− FOL theory of total order
3 instantiate btwn : Between node −− FOL theory of ring
4

5 relation leader (n : node) −− protocol state as FOL structure
6 relation pending (id : node) (dest : node)
7

8 after_init {
9 leader N := False

10 pending M N := False

11 }
12

13 action send (n next : node) {
14 require ∀ Z, n ≠ next ∧ ((Z ≠ n ∧ Z ≠ next)→ btw n next Z)
15 pending n next := True

16 }
17

18 action recv (id n next : node) {
19 require ∀ Z, n ≠ next ∧ ((Z ≠ n ∧ Z ≠ next)→ btw n next Z)
20 require pending id n

21 if (id = n) then
22 leader n := True

23 else

24 if (le n id) then
25 pending id next := True

26 }
27

28 safety [single_leader] leader L1 ∧ leader L2 → L1 = L2

29 invariant [leader_greatest] leader L → le N L

30 invariant pending S D ∧ btw S N D → le N S

31 invariant pending L L → le N L

(a) Protocol model and specification

32 −− bounded model checking: checking non−vacuousness
33 sat trace [can_elect_leader] {
34 any 4 actions
35 assert (∃ l, leader l)
36 } by { bmc_sat }
37

38 −− checking bounded safety
39 unsat trace [bounded_safety] {
40 any 4 actions
41 assert (¬ single_leader)
42 } by { bmc }
43

44 −− proof reconstruction removes SMT solvers from the TCB
45 set_option veil.smt.reconstructProofs true
46

47 −− push−button safety verification
48 #check_invariants −− prints for every preserved invariant clause
49

50 −− interactive proof of safety property
51 theorem send_tr_single_leader' :
52 ∀ (n : node) (next : node),
53 TwoState.meetsSpecificationIfSuccessful
54 (Ring.send.ext.twoState n next)
55 (fun th st => (Ring.assumptions th) ∧ (Ring.inv th st))
56 (fun th st' => Ring.single_leader th st') :=
57 by

58 intro n next th st st' ⟨has, hinv⟩ htr
59 simp only [initSimp, actSimp, invSimp] at *
60 rcases htr with ⟨hIsNext, _, htr⟩
61 concretize_state; sdestruct_all; simp_all
62 assumption

(b) Bounded checking, automated verification, and interactive proof

Fig. 1. Leader election in a ring topology, implemented, tested, and verified in Veil.

tighter integration—Veil is designed to be proof-producing
by default, rather than as a later design addition, and having
Lean itself be the only “intermediate” representation.

3 Lessons and Reflections
While others have attempted to embed automated verifiers
inside proof assistants (notably, in Isabelle/HOL [2]), we
believe we are the first that sought to push this idea as
far as possible. This is partly because, prior to Lean, meta-
programming in ITPs was difficult and error-prone: every-
thing was possible, but nothing was easy. Lean is in a com-
pletely different class of usability in this respect: writing
complex meta-programs is now relatively easy, and the sys-
tem scales to large meta-programs, as evidenced by the fact
that most of Lean is written in Lean itself [6]. That said, we
are constantly pushing the boundaries of what is possible
with Lean’s meta-programming facilities,2 and we have had
to learn a lot along the way. We are hoping that, in sharing

2When he first saw Veil, Leo de Moura could not believe it was built in Lean.

some of our experience, we can help other verifier imple-
menters avoid some of the mistakes we made at first, and
anticipate some of the challenges we are now facing.

3.1 Good Software Engineering Practices
The most obvious lesson, which is often forgotten in re-
search projects, is that good software engineering practices
pay off big time in the long run. As one develops a prototype,
it is normal to have less than ideal code—part of the pro-
cess lies exactly in discovering what are the right interfaces
and abstractions to use. In our case, we were also learning
meta-programming in Lean in the process of developing the
original version of Veil, and our learning was directly driven
by our actual needs. This made for quick progress, but also
meant that the original version of Veil was a bit of a mess.
(More on this in the next section.) For the past few months,
we have been rewriting Veil from scratch to address the tech
debt we had accumulated, and make Veil 2.0 a stable founda-
tion for further development, with a sound architecture and
clean interfaces between components. Some lessons:
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• Test early and often: verifiers are complex beasts, and both
Lean and your project’s dependencies will change at a
very rapid pace; regression testing is crucial for building a
reliable tool. In particular, meta-programs can still produce
ill-typed terms and need to be tested.

• Modularise your implementation as early as possible: sep-
aration of concerns is paramount for maintainability, and
especially important when it comes to meta-programming.
Keep syntax and semantics separate, and use clean inter-
faces between components.

• Lean’s module system is primitive: make sure all your defi-
nitions are namespaced to your project and do not use the
global namespace to avoid conflicts with other libraries.

3.2 Metaprogramming is a Double-Edged Sword
Lean’s meta-programming capabilities are extraordinarily
powerful, but this power must be wielded carefully. The
Veil 2.0 rewrite was largely motivated by the need to impose
proper architecture on the “spaghetti meta-programs” of the
original implementation. The problem, as we found out the
hard way, is that when everything is possible, there are no
guard rails. You can shoot yourself in the foot really badly,
and in particular, you can very tightly couple functionality
that really should be separate.

Separation of verification concerns. An example of
multiple verification-related sub-routines tightly tangled to-
gether is the original implementation of the #check_invariants
command: it both (1) generated the theorems to be checked,
(2) ran the candidate proof scripts and identified whether
they were successful, (3) added the successfully verified the-
orems to the environment, and (4) displayed the verification
results, including counter-examples. This makes sense if you
think of #check_invariants as an elaborator for a command—
the verifier does in fact have to do all these things. The
problem is that this is a lot of responsibility for a single
elaborator to carry, and it is completely unmaintainable. In-
stead, as we discovered by experimentation, it is better to
think of #check_invariants as a viewer of verification results.
Separately, there must a controller to ensure the verification
conditions are produced based on the user-provided specifi-
cation and sent to the solvers. Finally, in order to generate
the VCs, the verifier needs to have a internal representation
of the user-provided specification.

This, as you likely have guessed, is themodel-view-controller
(MVC) architecture, and our experience tells us that it makes
a lot of sense for verifiers embedded in Lean. The idea is sim-
ple: keep your own representations of objects of interest as
Lean environment extensions. Then, some elaborators mod-
ify these representations (to record user-provided informa-
tion), and others read them, either to trigger some back-end
computation (e.g., sending VCs to a solver), or to generate
Lean declarations based on them, or to display information

to the user. The key is to keep your own representations, rather
than piggy-backing on the Lean environment directly.

Avoid being too shallow. Another mistake we made—
and which we think others may fall into as well—was driven
by the desire to have the Veil DSL extensively interoper-
ate with Lean. For example, the original implementation of
Veil reused Lean’s section variable mechanism: user-defined
type parameters and instantiate commands were elabo-
rated as Lean section variables. Conversely, section variables
affected definitions produced by Veil. This seemed elegant—
users could employ familiar Lean syntax and the parameters
would “just work”, including in definitions not produced by
Veil—but it was a disaster. As Veil’s complexity increased, we
needed intricate control over which definitions take which
parameters. Lean’s section variables do not easily provide
this granular control, and attempting to work around the
limitations led to brittle, unmaintainable code. The solution:
we now implement our own module system with parameter
tracking. The general lesson is that you should control your
representations. It is fine to reuse Lean’s execution semantics,
but do not rely on its compile-time environment represen-
tations (e.g., section variables). Rather, maintain your own
representations as Lean environment extensions, and ensure
all changes to these are done via elaborators you defined.

3.3 Spectrum from Shallow to Deep Embedding
Whilst, as described in Sec. 3.2, we avoid being shallow at
the meta level (i.e., we do not conflate definition-level con-
structs of Lean, such as type and section, with similar ones
of Veil), we fully embrace shallowness at the object level.
By this we mean that all definitions produced by Veil are
regular Lean definitions, which could have been written by
the user directly. In particular, Veil actions are normal Lean
monadic computations, rather than a deeply-embedded rep-
resentation. Concretely, Veil’s action syntax is an extension
of Lean’s existing do notation [28], which supports local mu-
tation and which we extend with Veil-specific constructs like
require, assert, and pick. This has the massive benefit of
Veil being completely compatible with the entire Lean ecosys-
tem. It also gives us access to efficient execution semantics,
which proves useful for implementing concrete state model
checking by directly leveraging Lean’s compiler.
One of the big open questions, in our view, is how far

one can push this shallow embedding approach. For Veil,
which is focused on modelling abstract transition systems,
it seems to be a good fit. If one tries to model more realistic
programming languages with the runtime semantics and
memory model significantly different from Lean’s, however,
the shallow embedding approach may not be enough, and it
is not clear to us at this stage how good the verification user
experience would be for a deeply-embedded language. If you
are interested, we would encourage you to experiment.
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3.4 The Problem of Generality and Encodings
A problem that is just starting to become apparent in Veil 2.0
is that of generality. To support Veil’s multiple verification
modes—concrete execution, symbolic model checking, and
deductive verification—we need a very general representa-
tion of protocol actions. In particular, in order to be efficient,
concrete execution requires a different encoding of the state
than symbolic model checking, which uses an encoding that
is effective for SMT-based proofs. But we want our proofs
to be agnostic to which encoding is used. Moreover, there
is a need for modularity of specifications, e.g., that actions
defined in one specification can be reused in another (which
might operate on a different state space). But, again, we want
proofs of invariant preservation to be agnostic to which
environment actions are run in. These desiderata require
the definition of actions to be highly generic, in the style
of datatype-generic programming [7]. We achieve this us-
ing Lean’s type classes, but the issue is that, as more and
more layers of generality get added to the framework, the
definitions that users have to manipulate in order to prove
theorems interactively become increasingly unwieldy. We of-
fer tactics to help users “strip away” the generality in proofs,
but the statements themselves remain more complex than
we would want. This is due to the proof assistant keeping us
honest (i.e., we cannot “drop” certain proof obligations from
the context), which we appreciate, but it would be great to
find a way to hide the full complexity away from the user.
The message in this section is that there is no free lunch.

If you want to build a powerful, general verification tool and
want to keep it fully verified itself, you will need to pay the
price somewhere. In the future, however, we hope to develop
better “interfaces” to the full generality, which would only
exist internally within the tool, rather than being exposed
to the user in theorem statements.

3.5 Performance is a Huge Issue
Finally, performance has been our most persistent problem.
When it comes to SMT-based proof automation, Veil is more
than 10x slower than Ivy, the most closely related tool, al-
though Veil is still reasonable, with verification of small speci-
fications taking on the order of a few seconds, and our largest
case study taking 160 seconds, compared to Ivy’s 50 seconds.
In effect, when the SMT solver is the bottleneck, we are not
doing too badly, but when the goals are easy, the overhead im-
posed by our verified translation logic becomes prohibitive,
especially, during the early phase of protocol prototyping.
After all, verified translation of Lean’s higher-order logic
statements to SMT-LIB is (unsurprisingly) much slower than
pretty-printing SMT-LIB queries, as done, e.g., by Ivy.
We can summarise our experience as follows:

If you plan to build an auto-active verifier in Lean,
expect to spend most of your time

on performance engineering.

We use Lean’s simp tactic machinery extensively in Veil:
for generating verification conditions, creating derived defi-
nitions (e.g., transition relations given imperative actions),
hoisting quantifiers, and reducing higher-order goals to first-
order logic. The appeal is correctness by construction—every
rewrite performed by simp is justfied by a proven theorem
and checked by Lean, so translations are inherently sound.
As a bonus, simplification-based translations are easy to im-
plement and debug: you can inspect each rewrite step and
add new simplification rules incrementally. The downside
is that simplification has poor performance characteristics,
and the generated proof terms are large and slow to check.
This is not unique to Veil: the bottleneck in the bv_decide
verified bitblasting tool in Lean [3] is the preprocessing step,
which applies rewrite-based simplification; all other steps
are roughly as performant as the state-of-the-art bitblaster.
Partial solutions to this problem exist (e.g., not checking

the produced proof terms), and the Lean FRO is planning to
write a less general, but more efficient simplifier, but how to
do verified translation efficiently is still an open question.

4 Conclusion
The lessons we extracted from implementing Veil in Lean
suggest exciting directions for future research.

First, we believe, more research should be done one struc-
turing and maintaining large formal developments, contain-
ing a large body of meta-programs. Some issues of this sort
can be mitigated by developing a more powerful module sys-
tem in Lean, similar to that of Rocq proof assistant. While
the challenges of repairing programs [13] and mechanised
formal proofs [8, 25] has been studied in the past, to some ex-
tent, less work has been done on doing so for meta-programs.
Even documenting the good practices of structuring such
projects [29] would be a significant contribution to the body
of knowledge on developing verified software.

Second, as our experience with Lean meta-programming
outlined in Sec. 3.2 demonstrates, further research is needed
to identify robust design patterns for implementing domain-
specific verifiers via meta-programming within an extensible
proof assistant. Although the ITP community already fea-
tures impressive examples of what can be achieved through
extensible notations and user-level automation [11], very
little has been written about how to keep such developments
intellectually manageable and future-proof. In particular, the
folklore knowledge on building domain-specific verifiers is
mostly limited to implementing bespoke translations from
the domain-specific language to one of the well-established
verification IRs, such as Boogie [1] or Viper [18]. While this

5
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approach takes care of emitting and discharging verification
conditions, it does little to address the challenges of offering
informative and domain-relevant feedback to the user of the
verifier, or of extending the prover’s functionality in prin-
cipled ways—issues that are typically treated in an ad-hoc
manner. We believe, identifying patterns similar to MVC,
as we discussed above, will help to make construction of
program verifiers less of a dark art.

Finally, we are looking forward for the verification commu-
nity to reconcile multiple views on implementing language-
specific verifiers by comparing their experiences of doing
so and documenting the practices that did or did not work.
For example, when explaining the internal workings of Veil
to other researchers, we frequently had to justify one of
our main design decisions: making it shallow at the object
level (cf. Sec. 3.3) rather than following a more traditional ap-
proach of a “deep embedding”, when both the syntax and the
semantics of the domain-specific language are implemented
as data types within the language of the meta-verifier, in
our case, Lean.3 This has prompted us to outline the advan-
tages of our approach (e.g., immediate compatibility with
the rest of Lean ecosystem) but also acknowledge possible
shortcomings of the shallow embedding methodology, which
might make it unsuitable for implementing verifiers for lan-
guages that are too different from Lean due to either being
untyped (e.g., TLA+) or because their memory model and a
type system are too different from the one of Lean (e.g., C).
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